1932

Abstract

High hydrostatic pressure affects the structure, dynamics, and stability of biomolecular systems and is a key parameter in the context of the exploration of the origin and the physical limits of life. This review lays out the conceptual framework for exploring the conformational fluctuations, dynamical properties, and activity of biomolecular systems using pressure perturbation. Complementary pressure-jump relaxation studies are useful tools to study the kinetics and mechanisms of biomolecular phase transitions and structural transformations, such as membrane fusion or protein and nucleic acid folding. Finally, the advantages of using pressure to explore biomolecular assemblies and modulate enzymatic reactions are discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-052118-115601
2019-05-06
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-052118-115601.html?itemId=/content/journals/10.1146/annurev-biophys-052118-115601&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aertsen A, Meersman F, Hendrickx ME, Vogel RF, Michiels CW 2009. Biotechnology under high pressure: applications and implications. Trends Biotechnol 27:434–41
    [Google Scholar]
  2. 2.
    Akasaka K 2006. Probing conformational fluctuation of proteins by pressure perturbation. Chem. Rev. 106:1814–35
    [Google Scholar]
  3. 3.
    Akasaka K, Matsuki H, eds. 2015. High Pressure Bioscience—Basic Concepts. Applications and Frontiers Netherlands: Springer
    [Google Scholar]
  4. 4.
    Akasaka K, Nagahata H, Maeno A, Sasaki K 2008. Pressure acceleration of proteolysis: a general mechanism. Biophysics 4:29–32
    [Google Scholar]
  5. 5.
    Al-Ayoubi SR, Schummel PH, Golub M, Peters J, Winter R 2017. Influence of cosolvents, self-crowding, temperature and pressure on the sub-nanosecond dynamics and folding stability of lysozyme. Phys. Chem. Chem. Phys. 19:14230–37
    [Google Scholar]
  6. 6.
    Alvarez-Martinez MT, Torrent J, Lange R, Verdier J-M, Balny C, Liautard J-P 2003. Optimized overproduction, purification, characterization and high-pressure sensitivity of the prion protein in the native (PrPC-like) or amyloid (PrPSc-like) conformation. Biochim. Biophys. Acta 1645:228–40
    [Google Scholar]
  7. 7.
    Balny C, Masson P, Heremans K 2002. High pressure effects on biological macromolecules: from structural changes to alteration of cellular processes. Biochim. Biophys. Acta 1595:3–10
    [Google Scholar]
  8. 8.
    Barstow B, Ando N, Kim CU, Gruner SM 2008. Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift. PNAS 105:13362–66
    [Google Scholar]
  9. 9.
    Bartlett DH 2002. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595:367–81
    [Google Scholar]
  10. 10.
    Berheide M, Peper S, Kara S, Long WS, Schenkel S et al. 2010. Influence of the hydrostatic pressure and pH on the asymmetric 2-hydroxyketone formation catalyzed by Pseudomonas putida benzoylformate decarboxylase and variants thereof. Biotechnol. Bioeng. 106:18–26
    [Google Scholar]
  11. 11.
    Bernsdorff C, Winter R 2003. Differential properties of the sterols cholesterol, ergosterol, β-sitosterol, trans-7-dehydrocholesterol, stigmasterol and lanosterol on DPPC bilayer order. J. Phys. Chem. B 107:10658–64
    [Google Scholar]
  12. 12.
    Bernsdorff C, Wolf A, Winter R, Gratton E 1997. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers. Biophys. J. 72:1264–77
    [Google Scholar]
  13. 13.
    Böttner M, Ceh D, Jacobs U, Winter R 1994. High pressure volumetric measurements on phospholipid bilayers. Z. Phys. Chem. 184:205–18
    [Google Scholar]
  14. 14.
    Brangwynne CP, Tompa P, Pappu RV 2015. Polymer physics of intracellular phase transitions. Nat. Phys. 11:899–904
    [Google Scholar]
  15. 15.
    Canchi DR, García AE 2013. Cosolvent effects on protein stability. Annu. Rev. Phys. Chem. 64:273–93
    [Google Scholar]
  16. 16.
    Chalikian TV 2003. Volumetric properties of proteins. Annu. Rev. Biophys. Biomol. Struct. 32:207–35
    [Google Scholar]
  17. 17.
    Chan HS, Dill KA 1998. Protein folding in the landscape perspective: chevron plots and non-Arrhenius kinetics. Proteins Struct. Funct. Genet. 30:2–33
    [Google Scholar]
  18. 18.
    Chen CR, Makhatadze GI 2014. Molecular determinant of the effects of hydrostatic pressure on protein folding stability. Nat. Commun. 8:14561
    [Google Scholar]
  19. 19.
    Chong PL, Fortes PA, Jameson DA 1985. Mechanisms of inhibition of (Na,K)-ATPase by hydrostatic pressure studied with fluorescent probes. J. Biol. Chem. 260:14484–90
    [Google Scholar]
  20. 20.
    Cinar H, Cinar S, Chan HS, Winter R 2018. Pressure-induced dissolution and reentrant formation of condensed, liquid-liquid phase-separated elastomeric α-elastin. Chem. Eur. J. 24:8286–91
    [Google Scholar]
  21. 21.
    Conn CE, Ces O, Mulet X, Finet S, Winter R et al. 2006. Dynamics of structural transformations between lamellar and inverse bicontinuous cubic lyotropic phases. Phys. Rev. Lett. 96:108102
    [Google Scholar]
  22. 22.
    Czeslik C, Luong TQ, Winter R 2017. Enzymatic activity under pressure. MRS Bull 42:738–42
    [Google Scholar]
  23. 23.
    Czeslik C, Reis O, Winter R, Rapp G 1998. Effect of high pressure on the structure of dipalmitoylphosphatidylcholine bilayer membranes: a synchrotron-X-ray diffraction and FT-IR spectroscopy study using the diamond anvil technique. Chem. Phys. Lipids 91:135–44
    [Google Scholar]
  24. 24.
    Daniel I, Oger P, Winter R 2006. Origins of life and biochemistry under high-pressure conditions. Chem. Soc. Rev. 35:858–75
    [Google Scholar]
  25. 25.
    de Oliveira GAP, de Marques MA, Cruzeiro-Silva C, Cordeiro Y, Schuabb C et al. 2016. Structural basis for the dissociation of α-synuclein fibrils triggered by pressure perturbation of the hydrophobic core. Sci. Rep. 6:37990
    [Google Scholar]
  26. 26.
    Decaneto E, Suladze S, Rosin C, Havenith M, Lubitz W, Winter R 2015. Pressure and temperature effects on the activity and structure of the catalytic domain of human MT1-MMP. Biophys. J. 109:2371–81
    [Google Scholar]
  27. 27.
    DeLong EF, Yayanos AA 1985. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:1101–103
    [Google Scholar]
  28. 28.
    Dubins DN, Lee A, Macgregor RB, Chalikian TV 2001. On the stability of double stranded nucleic acids. J. Am. Chem. Soc. 123:9254–59
    [Google Scholar]
  29. 29.
    Eisenmenger MJ, Reyes-De-Corcuera JI 2009. High pressure enhancement of enzymes: a review. Enzyme Microb. Technol. 45:331–47
    [Google Scholar]
  30. 30.
    Erlach MB, Koehler J, Moeser B, Horinek D, Kremer W, Kalbitzer HR 2014. Relationship between nonlinear pressure-induced chemical shift changes and thermodynamic parameters. J. Phys. Chem. B 118:5681–90
    [Google Scholar]
  31. 31.
    Erlach MB, Munte CE, Kremer W, Hartl R, Rochelt D et al. 2010. Ceramic cells for high pressure NMR spectroscopy of proteins. J. Magn. Reson. 204:196–99
    [Google Scholar]
  32. 32.
    Erlkamp M, Grobelny S, Winter R 2014. Crowding effects on the temperature and pressure dependent structure, stability and folding kinetics of Staphylococcal Nuclease. Phys. Chem. Chem. Phys 16:5965–76
    [Google Scholar]
  33. 33.
    Erlkamp M, Marion J, Martinez N, Czeslik C, Peters J, Winter R 2015. Influence of pressure and crowding on the sub-nanosecond dynamics of globular proteins. J. Phys. Chem. B 119:4842–48
    [Google Scholar]
  34. 34.
    Erwin N, Patra S, Winter R 2018. Probing conformational and functional substates of calmodulin by high pressure FTIR spectroscopy: influence of Ca2+ binding and the hypervariable region of K-Ras4B. Phys. Chem. Chem. Phys. 18:30020–28
    [Google Scholar]
  35. 35.
    Foguel D, Suarez MC, Ferrão-Gonzales AD, Porto TCR, Palmieri L et al. 2003. Dissociation of amyloid fibrils of alpha-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities. PNAS 100:9831–36
    [Google Scholar]
  36. 36.
    Fourme R, Ascone I, Kahn R, Mezouar M, Bouvier P et al. 2002. Opening the high-pressure domain beyond 2 kbar to protein and virus crystallography—technical advance. Structure 10:1409–14
    [Google Scholar]
  37. 37.
    Friedrich O, Kress KR, Hartmann M, Frey B, Sommer K et al. 2006. Prolonged high-pressure treatments in mammalian skeletal muscle result in loss of functional sodium channels and altered calcium channel kinetics. Cell Biochem. Biophys. 45:71–83
    [Google Scholar]
  38. 38.
    Fu Y, Kasinath V, Moorman VR, Nucci NV, Hilser VJ, Wand AJ 2012. Coupled motion in proteins revealed by pressure perturbation. J. Am. Chem. Soc. 134:8543–50
    [Google Scholar]
  39. 39.
    Ganguly A, Luong TQ, Brylski O, Dirkmann M, Möller D et al. 2017. Elucidation of the catalytic mechanism of a miniature zinc finger hydrolase. J. Phys. Chem. B 121:6390–98
    [Google Scholar]
  40. 40.
    Gao M, Berghaus M, Möbitz S, Schuabb V, Erwin N et al. 2018. On the origin of microtubules’ high-pressure sensitivity. Biophys. J. 114:1080–90
    [Google Scholar]
  41. 41.
    Gao M, Berghaus M, von der Ecken J, Raunser S, Winter R 2015. Condensation agents determine the temperature-pressure stability of f-actin bundles. Angew. Chem. Int. Ed. 54:11088–92
    [Google Scholar]
  42. 42.
    Gao M, Held C, Patra S, Arns L, Sadowski G, Winter R 2017. Crowders and cosolvents—major contributors to the cellular milieu and efficient means to counteract environmental stresses. Chem. Phys. Chem. 18:2951–72
    [Google Scholar]
  43. 43.
    Gao M, Winter R 2015. The effects of lipid membranes, crowding and osmolytes on the aggregation and fibrillation propensity of human IAPP. J. Diabetes Res. 2015:849017
    [Google Scholar]
  44. 44.
    Goto M, Kusube M, Tamai N, Matsuki H, Kaneshina S 2008. Effect of hydrostatic pressure on the bilayer phase behavior of symmetric and asymmetric phospholipids with the same total chain length. Biochim. Biophys. Acta 1778:1067–78
    [Google Scholar]
  45. 45.
    Grudzielanek S, Smirnovas V, Winter R 2006. Solvation-assisted pressure tuning of insulin fibrillation: from novel aggregation pathways to biotechnological applications. J. Mol. Biol. 356:497–509
    [Google Scholar]
  46. 46.
    Harrison JP, Gheeraert N, Tsigelnitskiy D, Cockell CS 2013. The limits for life under multiple extremes. Trends Microbiol 21:204–12
    [Google Scholar]
  47. 47.
    Hawley SA 1971. Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry 10:2436–42
    [Google Scholar]
  48. 48.
    Hayashi M, Nishiyama M, Kazayama Y, Toyota T, Harada Y, Takiguchi K 2016. Reversible morphological control of tubulin-encapsulating giant liposomes by hydrostatic pressure. Langmuir 32:3794–802
    [Google Scholar]
  49. 49.
    Herberhold H, Royer CA, Winter R 2004. Effects of chaotropic and kosmotropic cosolvents on the pressure-induced unfolding and denaturation of proteins: an FT-IR study on staphylococcal nuclease. Biochemistry 43:3336–45
    [Google Scholar]
  50. 50.
    Heremans K, Smeller L 1998. Protein structure and dynamics at high pressure. Biochim. Biophys. Acta 1386:353–70
    [Google Scholar]
  51. 51.
    Ikeuchi Y, Suzuki A, Oota T, Hagiwara K, Tatsumi R et al. 2002. Fluorescence study of the high pressure-induced denaturation of skeletal muscle actin. Eur. J. Biochem. 269:364–71
    [Google Scholar]
  52. 52.
    Imoto S, Kibies P, Rosin C, Winter R, Kast SM, Marx D 2016. Toward extreme biophysics: deciphering the infrared response of biomolecular solutions at high pressures. Angew. Chem. Int. Ed. 55:9534–38
    [Google Scholar]
  53. 53.
    Iwadate M, Asakura T, Dubovskii PV, Yamada H, Akasaka K, Williamson MP 2001. Pressure-dependent changes in the structure of the melittin alpha-helix determined by NMR. J. Biomol. NMR 19:115–24
    [Google Scholar]
  54. 54.
    Jaworek MW, Schuabb V, Winter R 2018. Pressure and cosolvent modulation of the catalytic activity of amyloid fibrils. Chem. Commun. 54:5696–99
    [Google Scholar]
  55. 55.
    Jeworrek C, Pühse M, Winter R 2008. X-ray kinematography of phase transformations of three-component lipid mixtures: a time-resolved synchrotron X-ray scattering study using the pressure-jump relaxation technique. Langmuir 24:11851–59
    [Google Scholar]
  56. 56.
    Jonas J 1991. High Pressure NMR 24 Berlin: Springer
  57. 57.
    Julius K, Al-Ayoubi SR, Paulus M, Tolan M, Winter R 2018. The effects of osmolytes and crowding on the pressure-induced dissociation and inactivation of dimeric LADH. Phys. Chem. Chem. Phys. 20:7093–104
    [Google Scholar]
  58. 58.
    Kalbitzer HR, Spoerner M, Ganser P, Hozsa C, Kremer W 2009. Fundamental link between folding states and functional states of proteins. J. Am. Chem. Soc. 131:16714–19
    [Google Scholar]
  59. 59.
    Kapoor S, Triola G, Vetter IR, Erlkamp M, Waldmann H, Winter R 2012. Revealing conformational substates of lipidated N-Ras protein by pressure modulation. PNAS 109:460–65
    [Google Scholar]
  60. 60.
    Kara S, Long WS, Berheide M, Peper S, Niemeyer B, Liese A 2011. Influence of reaction conditions on the enantioselectivity of biocatalyzed C-C bond formations under high pressure conditions. J. Biotechnol. 152:87–92
    [Google Scholar]
  61. 61.
    Kasinath V, Fu Y, Sharp KA, Wand AJ 2015. A sharp thermal transition of fast aromatic-ring dynamics in ubiquitin. Angew. Chem. Int. Ed. 54:102–107
    [Google Scholar]
  62. 62.
    Kitahara R, Akasaka K 2003. Close identity of a pressure-stabilized intermediate with a kinetic intermediate in protein folding. PNAS 100:3167–72
    [Google Scholar]
  63. 63.
    Knorr D, Heinz V, Buckow R 2006. High pressure application for food biopolymers. Biochim. Biophys. Acta 1764:619–31
    [Google Scholar]
  64. 64.
    Kuwata K, Li H, Yamada H, Legname G, Prusiner SB et al. 2002. Locally disordered conformer of the hamster prion protein: a crucial intermediate to PrPSc. ? Biochemistry 41:12277–83
    [Google Scholar]
  65. 65.
    Lesch H, Hecht C, Friedrich J 2004. Protein phase diagrams: the physics behind their elliptic shape. J. Chem. Phys. 121:12671–75
    [Google Scholar]
  66. 66.
    Lesch H, Stadlbauer H, Friedrich J, Vanderkooi JM 2002. Stability diagram and unfolding of a modified cytochrome c: What happens in the transformation regime. ? Biophys. J. 82:1644–53
    [Google Scholar]
  67. 67.
    Linke K, Periasamy N, Ehrmann M, Winter R, Vogel RF 2008. Influence of high pressure on the dimerization of ToxR, a protein involved in bacterial signal transduction. Appl. Environ. Microbiol. 74:7821–23
    [Google Scholar]
  68. 68.
    Luong TQ, Erwin N, Neumann M, Schmidt A, Loos C et al. 2016. Hydrostatic pressure increases the catalytic activity of amyloid fibril enzymes. Angew. Chem. Int. Ed. 55:12412–16
    [Google Scholar]
  69. 69.
    Luong TQ, Winter R 2015. Combined pressure and cosolvent effects on enzyme activity—a high-pressure stopped-flow kinetic study on α-chymotrypsin. Phys. Chem. Chem. Phys. 17:23273–78
    [Google Scholar]
  70. 70.
    Macdonald AG 2002. Experiments on ion channels at high pressure. Biochim. Biophys. Acta 1595:387–89
    [Google Scholar]
  71. 71.
    Mantulin WW, Gotto AM Jr, Pownall HJ 1984. Effect of hydrostatic pressure on the transfer of a fluorescent phosphatidylcholine between apolipoprotein-phospholipid recombinants. J. Am. Chem. Soc. 106:3317–19
    [Google Scholar]
  72. 72.
    Masson P 2002. Hydration and conformation changes during enzyme catalysis: from molecular enzymology to enzyme engineering and biotechnology. Trends in High Pressure Bioscience and Biotechnology R Hayashi 177–87 Amsterdam: Elsevier Science B.V.
    [Google Scholar]
  73. 73.
    McCarthy NL, Ces O, Law RV, Seddon JM, Brooks NJ 2015. Separation of liquid domains in model membranes induced with high hydrostatic pressure. Chem. Commun. 51:8675–78
    [Google Scholar]
  74. 74.
    McCoy J, Hubbell WL 2011. High-pressure EPR reveals conformational equilibria and volumetric properties of spin-labeled proteins. PNAS 108:1331–36
    [Google Scholar]
  75. 75.
    Meersmann F, Daniel I, Bartlett DH, Winter R, Hazael R, McMillan PF 2013. High-pressure biochemistry and biophysics. Rev. Mineral. Geochem. 75:607–48
    [Google Scholar]
  76. 76.
    Mishra R, Winter R 2008. Cold- and pressure-induced dissociation of protein aggregates and amyloid fibrils. Angew. Chem. Int. Ed. 47:6518–21
    [Google Scholar]
  77. 77.
    Morild E 1981. The theory of pressure effects on enzymes. Adv. Protein Chem. 34:93–166
    [Google Scholar]
  78. 78.
    Mozhaev VV, Lange R, Kudryashova EV, Balny C 1996. Application of high hydrostatic pressure for increasing activity and stability of enzymes. Biotechnol. Bioeng. 52:320–31
    [Google Scholar]
  79. 79.
    Nicolini C, Celli A, Gratton E, Winter R 2006. Pressure tuning of the morphology of heterogeneous lipid vesicles: a two-photon-excitation fluorescence microscopy study. Biophys. J. 91:2936–42
    [Google Scholar]
  80. 80.
    Niraula TN, Konno T, Li H, Yamada H, Akasaka K, Tachibana H 2004. Pressure-dissociable reversible assembly of intrinsically denatured lysozyme is a precursor for amyloid fibrils. PNAS 101:4089–93
    [Google Scholar]
  81. 81.
    Nishiyama M, Kimura Y, Nishiyama Y, Terazima M 2009. Pressure-induced changes in the structure and function of the kinesin-microtubule complex. Biophys. J. 96:1142–50
    [Google Scholar]
  82. 82.
    Nucci NV, Fuglestad B, Athanasoula EA, Wand AJ 2014. Role of cavities and hydration in the pressure unfolding of T4 lysozyme. PNAS 111:13846–51
    [Google Scholar]
  83. 83.
    Oger PM, Cario A 2013. Adaptation of the membrane in Archaea. Biophys. Chem. 183:42–56
    [Google Scholar]
  84. 84.
    Oger PM, Jebbar M 2010. The many ways of coping with pressure. Res. Microbiol. 161:799–809
    [Google Scholar]
  85. 85.
    Ohmae E, Murakami C, Tate SI, Gekko K, Hata K et al. 2012. Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli. Biochim. Biophys. Acta 1824:511–19
    [Google Scholar]
  86. 86.
    Onuchic JN, Luthey-Schulten Z, Wolynes PG 1997. Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem. 48:545–600
    [Google Scholar]
  87. 87.
    Panick G, Malessa R, Winter R, Rapp G, Frye KJ, Royer CA 1998. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy. J. Mol. Biol. 275:389–402
    [Google Scholar]
  88. 88.
    Panick G, Vidugiris GJ, Malessa R, Rapp G, Winter R, Royer CA 1999. Exploring the temperature-pressure phase diagram of staphylococcal nuclease. Biochemistry 38:4157–64
    [Google Scholar]
  89. 89.
    Patra S, Anders C, Erwin N, Winter R 2017. Osmolyte effects on the conformational dynamics of a DNA hairpin at ambient and extreme environmental conditions. Angew. Chem. Int. Ed. 56:5045–49
    [Google Scholar]
  90. 90.
    Patra S, Anders C, Schummel PH, Winter R 2018. Antagonistic effects of natural osmolyte mixtures and hydrostatic pressure on the conformational dynamics of a DNA hairpin probed at the single-molecule level. Phys. Chem. Chem. Phys. 20:13159–70
    [Google Scholar]
  91. 91.
    Peterson RW, Wand AJ 2005. Self-contained high-pressure cell, apparatus, and procedure for the preparation of encapsulated proteins dissolved in low viscosity fluids for nuclear magnetic resonance spectroscopy. Rev. Sci. Instrum. 76:094101
    [Google Scholar]
  92. 92.
    Piccinilli F, Plotegher N, Ortore MG, Tessari I, Brucale M et al. 2017. High-pressure-driven reversible dissociation of α-synuclein fibrils reveals structural hierarchy. Biophys. J. 113:1685–96
    [Google Scholar]
  93. 93.
    Potekhin SA, Senin AA, Abdurakhmanov NN, Khusainova RS 2008. High pressure effect on the main transition from the ripple gel Pβ phase to the liquid crystal (Lα) phase in dipalmitoylphosphatidylcholine. Microcalorimetric study. Biochim. Biophys. Acta 1778:2588–93
    [Google Scholar]
  94. 94.
    Powalska E, Janosch S, Kinne-Saffran E, Kinne RKH, Fontes CFL et al. 2007. Fluorescence spectroscopic studies of pressure effects on Na+,K+-ATPase reconstituted into phospholipid bilayers and model raft mixtures. Biochemistry 46:1672–83
    [Google Scholar]
  95. 95.
    Prigozhin MB, Liu Y, Wirth AJ, Kapoor S, Winter R et al. 2013. Misplaced helix slows down ultrafast pressure-jump protein folding. PNAS 110:8087–92
    [Google Scholar]
  96. 96.
    Purushothaman S, Cicuta P, Ces O, Brooks NJ 2015. Influence of high pressure on the bending rigidity of model membranes. J. Phys. Chem. B 119:9805–10
    [Google Scholar]
  97. 97.
    Radford SE, Dobson CM 1999. From computer simulations to human disease: emerging themes in protein folding. Cell 97:291–98
    [Google Scholar]
  98. 98.
    Rastogi NK 2013. Recent Developments in High Pressure Processing of Foods New York: Springer
  99. 99.
    Ravindra R, Winter R 2003. On the temperature–pressure free-energy landscape of proteins. Chem. Phys. Chem. 4:359–65
    [Google Scholar]
  100. 100.
    Reis O, Winter R, Zerda TW 1996. The effect of high external pressure on DPPC-cholesterol multi-lamellar vesicles: a pressure-tuning Fourier transform infrared spectroscopy study. Biochim. Biophys. Acta 1279:5–16
    [Google Scholar]
  101. 101.
    Roche J, Caro JA, Norberto DR, Barthe P, Roumestand C et al. 2012. Cavities determine the pressure unfolding of proteins. PNAS 109:6945–50
    [Google Scholar]
  102. 102.
    Rosin C, Erlkamp M, von der Ecken J, Raunser S, Winter R 2014. Exploring the stability limits of actin and its suprastructures. Biophys. J. 107:2982–92
    [Google Scholar]
  103. 103.
    Rosin C, Estel K, Hälker J, Winter R 2015. Combined effects of temperature, pressure, and co-solvents on the polymerization kinetics of actin. Chem. Phys. Chem. 16:1379–85
    [Google Scholar]
  104. 104.
    Scarlata S 2005. Determination of the activation volume of PLCβ by Gβγ-subunits through the use of high hydrostatic pressure. Biophys. J. 88:2867–74
    [Google Scholar]
  105. 105.
    Schroer MA, Markgraf J, Wieland DC, Sahle CJ, Möller J 2011. Nonlinear pressure dependence of the interaction potential of dense protein solutions. Phys. Rev. Lett. 106:178102
    [Google Scholar]
  106. 106.
    Schroer MA, Zhai Y, Wieland DCF, Sahle CJ, Nase J et al. 2011. Exploring the piezophilic behavior of natural cosolvent mixtures. Angew. Chem. Int. Ed. 50:11413–16
    [Google Scholar]
  107. 107.
    Schuabb C, Kumar K, Pataraia S, Marx D, Winter R 2017. Pressure modulates the self-cleavage step of the hairpin ribozyme. Nat. Commun. 8:14661
    [Google Scholar]
  108. 108.
    Schummel PH, Haag A, Kremer W, Kalbitzer HR, Winter R 2016. Cosolvent and crowding effects on the temperature and pressure dependent conformational dynamics and stability of globular actin. J. Phys. Chem. B 120:6575–86
    [Google Scholar]
  109. 109.
    Seeliger J, Erwin N, Rosin C, Kahse M, Weise K, Winter R 2015. Exploring the structure and phase behavior of plasma membrane vesicles under extreme environmental conditions. Phys. Chem. Chem. Phys. 17:7507–13
    [Google Scholar]
  110. 110.
    Silva JL, Foguel D, Royer CA 2001. Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem. Sci. 26:612–18
    [Google Scholar]
  111. 111.
    Silva JL, Miles EW, Weber G 1986. Pressure dissociation and conformational drift of the β dimer of tryptophan synthase. Biochemistry 25:5780–86
    [Google Scholar]
  112. 112.
    Silva JL, Oliveira AC, Vieira TC, de Oliveira GA, Suarez MC, Foguel D 2014. High-pressure chemical biology and biotechnology. Chem. Rev. 114:7239–67
    [Google Scholar]
  113. 113.
    Silva JL, Weber G 1988. Pressure-induced dissociation of brome mosaic virus. J. Mol. Biol. 199:149–59
    [Google Scholar]
  114. 114.
    Smeller L 2002. Pressure-temperature phase diagrams of biomolecules. Biochim. Biophys. Acta 1595:11–29
    [Google Scholar]
  115. 115.
    Son I, Shek YL, Dubins DN, Chalikian TV 2014. Hydration changes accompanying helix-to-coil DNA transitions. J. Am. Chem. Soc. 136:4040–47
    [Google Scholar]
  116. 116.
    Souza MO, Creczynski-Pasa TB, Scofano HM, Gräber P, Mignaco JA 2004. High hydrostatic pressure perturbs the interactions between CF0F1 subunits and induces a dual effect on activity. Int. J. Biochem. Cell Biol. 36:920–30
    [Google Scholar]
  117. 117.
    Spoerner M, Nuehs A, Ganser P, Herrmann C, Wittinghofer A, Kalbitzer HR 2005. Conformational states of Ras complexed with the GTP analogue GppNHp or GppCH2p: implications for the interaction with effector proteins. Biochemistry 44:2225–36
    [Google Scholar]
  118. 118.
    St. John RJ, Carpenter JF, Randolph TW 1999. High pressure fosters protein refolding from aggregates at high concentrations. PNAS 96:13029–33
    [Google Scholar]
  119. 119.
    Suladze S, Cinar S, Sperlich B, Winter R 2015. Pressure modulation of the enzymatic activity of phospholipase A2, a putative membrane-associated pressure sensor. J. Am. Chem. Soc. 137:12588–99
    [Google Scholar]
  120. 120.
    Takahashi S, Sugimoto N 2013. Effect of pressure on the stability of G-quadruplex DNA: thermodynamics under crowding conditions. Angew. Chem. Int. Ed. 52:13774–78
    [Google Scholar]
  121. 121.
    Takahashi S, Sugimoto N 2015. Pressure-dependent formation of i-motif and G-quadruplex DNA structures. Phys. Chem. Chem. Phys. 17:31004–10125
    [Google Scholar]
  122. 122.
    Tamura T, Yamaoka T, Kunugi S, Panitch A, Tirrell DA 2000. Effects of temperature and pressure on the aggregation properties of an engineered elastin model polypeptide in aqueous solution. Biomacromolecules 1:552–55
    [Google Scholar]
  123. 123.
    Templer J, Seddon JM, Duesing PM, Winter R, Erbes J 1998. Modeling the phase behavior of the inverse hexagonal and inverse bicontinuous cubic phases in 2:1 fatty acid/phosphatidylcholine mixtures. J. Phys. Chem. 102:7262–71
    [Google Scholar]
  124. 124.
    Ulmer HM, Herberhold H, Fahsel S, Gänzle MG, Winter R, Vogel RF 2002. Effects of pressure-induced membrane phase transitions on inactivation of HorA, an ATP-dependent multidrug resistance transporter, in Lactobacillus plantarum. Appl. Environ. . Microbiol 68:1088–95
    [Google Scholar]
  125. 125.
    Urbauer JL, Ehrhardt MR, Bieber RJ, Flynn PF, Wand AJ 1996. High-resolution triple-resonance NMR spectroscopy of a novel calmodulin⋅peptide complex at kilobar pressures. J. Am. Chem. Soc. 118:11329–30
    [Google Scholar]
  126. 126.
    van Eldik R 1986. Inorganic High Pressure Chemistry: Kinetics and Mechanisms Amsterdam: Elsevier
  127. 127.
    Wagner G 1980. Activation volumes for the rotational motion of interior aromatic rings in globular proteins determined by high resolution 1H NMR at variable pressure. FEBS Lett 112:280–84
    [Google Scholar]
  128. 128.
    Winter R 2002. Synchrotron X-ray and neutron small-angle scattering of lyotropic lipid mesophases, model biomembranes and proteins in solution at high pressure. Biochim. Biophys. Acta 1595:160–84
    [Google Scholar]
  129. 129.
    Winter R 2010. Pressure perturbation of artificial and natural membranes. Comparative High Pressure Biology P Sébert 61–84 Enfield, NH: Sci. Publ.
    [Google Scholar]
  130. 130.
    Winter R, Czeslik C 2000. Pressure effects on the structure of lyotropic lipid mesophases and model biomembrane systems. Z. Kristallogr. 215:454–74
    [Google Scholar]
  131. 131.
    Winter R, Lopes D, Grudzielanek S, Vogtt K 2007. Towards an understanding of the temperature/pressure configurational and free-energy landscape of biomolecules. J. Non-Equilib. Thermodyn. 32:41–97
    [Google Scholar]
  132. 132.
    Winter R, Pilgrim WC 1989. A SANS study of high pressure phase transitions in model biomembranes. Ber. Bunsenges. Phys. Chem. 93:708–17
    [Google Scholar]
  133. 133.
    Woenckhaus J, Köhling R, Winter R, Thiyagarajan P, Finet S 2000. High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron X-ray scattering technique. Rev. Sci. Instrum. 71:3895–99
    [Google Scholar]
  134. 134.
    Wong PTT, Siminovitch DJ, Mantsch HH 1988. Structure and properties of model membranes: new knowledge from high-pressure vibrational spectroscopy. Biochim. Biophys. Acta 47:139–71
    [Google Scholar]
  135. 135.
    Worcester D, Hammouda B 1997. Interdigitated hydrocarbon chains in C20 and C22 phosphatidylcholines induced by hydrostatic pressure. Physica B 241–243:1175–77
    [Google Scholar]
  136. 136.
    Yamada H, Nishikawa K, Honda M, Shimura T, Akasaka K, Tabayashi K 2001. Pressure-resisting cell for high-pressure, high-resolution nuclear magnetic resonance measurements at very high magnetic fields. Rev. Sci. Instrum. 72:1463–71
    [Google Scholar]
  137. 137.
    Yancey PH, Gerringer ME, Drazen JC, Rowden AA, Jamieson A 2014. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. PNAS 111:4461–65
    [Google Scholar]
  138. 138.
    Yancey PH, Siebenaller FJ 2015. Co-evolution of proteins and solutions: protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J. Exp. Biol. 218:1880–96
    [Google Scholar]
  139. 139.
    Yayanos AA 1986. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. PNAS 83:9542–46
    [Google Scholar]
  140. 140.
    Zhou H-X, Rivas G, Minton AP 2008. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37:375–97
    [Google Scholar]
  141. 141.
    Zwicker D, Seyboldt R, Weber CA, Hyman AA, Julicher F 2017. Growth and division of active droplets provides a model for protocells. Nat. Phys. 13:408–13
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-052118-115601
Loading
/content/journals/10.1146/annurev-biophys-052118-115601
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error