1932

Abstract

G-quadruplexes have raised considerable interest during the past years for the development of therapies against cancer. These noncanonical structures of DNA may be found in telomeres and/or oncogene promoters, and it has been observed that the stabilization of such G-quadruplexes may disturb tumor cell growth. Nevertheless, the mechanisms leading to folding and stabilization of these G-quadruplexes are still not well established, and they are the focus of much current work in this field. In seminal works, stabilization was observed to be produced by cations. However, subsequent studies showed that different kinds of small molecules, from planar and nonplanar organic molecules to square-planar and octahedral metal complexes, may also lead to the stabilization of G-quadruplexes. Thus, the comprehension and rationalization of the interaction of these small molecules with G-quadruplexes are also important topics of current interest in medical applications. To shed light on the questions arising from the literature on the formation of G-quadruplexes, their stabilization, and their interaction with small molecules, synergies between experimental studies and computational works are needed. In this review, we mainly focus on in silico approaches and provide a broad compilation of different leading studies carried out to date by different computational methods. We divide these methods into twomain categories: () classical methods, which allow for long-timescale molecular dynamics simulations and the corresponding analysis of dynamical information, and () quantum methods (semiempirical, quantum mechanics/molecular mechanics, and density functional theory methods), which allow for the explicit simulation of the electronic structure of the system but, in general, are not capable of being used in long-timescale molecular dynamics simulations and, therefore, give a more static picture of the relevant processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-060320-091827
2021-05-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-060320-091827.html?itemId=/content/journals/10.1146/annurev-biophys-060320-091827&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aggrawal M, Joo H, Liu W, Tsai J, Xue L. 2012. 8-Oxo-7, 8-dihydrodeoxyadenosine: the first example of a native DNA lesion that stabilizes human telomeric G-quadruplex DNA. Biochem. Biophys. Res. Commun. 421:671–77
    [Google Scholar]
  2. 2. 
    Arola A, Vilar R. 2008. Stabilisation of G-quadruplex DNA by small molecules. Curr. Top. Med. Chem. 8:1405–15
    [Google Scholar]
  3. 3. 
    Arola-Arnal A, Benet-Buchholz J, Neidle S, Vilar R. 2008. Effects of metal coordination geometry on stabilization of human telomeric quadruplex DNA by square-planar and square-pyramidal metal complexes. Inorg. Chem. 47:11910–19
    [Google Scholar]
  4. 4. 
    Artacho E, Machado M, Sánchez-Portal D, Ordejón P, Soler JM. 2003. Electrons in dry DNA from density functional calculations. Mol. Phys. 101:1587–94
    [Google Scholar]
  5. 5. 
    Askerka M, Ho J, Batista E, Gascón J, Batista V. 2016. The MOD-QM/MM method: applications to studies of photosystem II and DNA G-quadruplexes. Methods Enzymol 577:443–81
    [Google Scholar]
  6. 6. 
    Baguley BC. 2002. A Brief History of Cancer Chemotherapy San Diego, CA: Academic
  7. 7. 
    Balasubramanian S, Hurley LH, Neidle S. 2011. Targeting G-quadruplexes in gene promoters: a novel anticancer strategy?. Nat. Rev. Drug Discov. 10:261–75
    [Google Scholar]
  8. 8. 
    Barbieri CM, Srinivasan AR, Rzuczek SG, Rice JE, LaVoie EJ, Pilch DS. 2007. Defining the mode, energetics and specificity with which a macrocyclic hexaoxazole binds to human telomeric G-quadruplex DNA. Nucleic Acids Res 35:3272–86
    [Google Scholar]
  9. 9. 
    Baruah H, Barry CG, Bierbach U. 2004. Platinum-intercalator conjugates: from DNA-targeted cisplatin derivatives to adenine binding complexes as potential modulators of gene regulation. Curr. Top. Med. Chem. 4:1537–49
    [Google Scholar]
  10. 10. 
    Beaudoin JD, Perreault JP. 2010. 5′-UTR G-quadruplex structures acting as translational repressors. Nucleic Acids Res 38:7022–36
    [Google Scholar]
  11. 11. 
    Belmonte-Reche E, Morales JC. 2020. G4-iM Grinder: when size and frequency matter. G-quadruplex, I-motif and higher order structure search and analysis tool. NAR Genom. Bioinform. 2:lqz005
    [Google Scholar]
  12. 12. 
    Benito S, Ferrer A, Benabou S, Aviñó A, Eritja R, Gargallo R. 2018. Evaluation of the effect of polymorphism on G-quadruplex-ligand interaction by means of spectroscopic and chromatographic techniques. Spectrochim. Acta A 196:185–95
    [Google Scholar]
  13. 13. 
    Bernadou J, Pratviel G, Bennis F, Girardet M, Meunier B. 1989. Potassium monopersulfate and a water-soluble manganese porphyrin complex,[Mn(TMPyP)](OAc)5, as an efficient reagent for the oxidative cleavage of DNA. Biochemistry 28:7268–75
    [Google Scholar]
  14. 14. 
    Besler BH, Merz KM Jr., Kollman PA. 1990. Atomic charges derived from semiempirical methods. J. Comput. Chem. 11:431–39
    [Google Scholar]
  15. 15. 
    Bhattacharjee AJ, Ahluwalia K, Taylor S, Jin O, Nicoludis JM et al. 2011. Induction of G-quadruplex DNA structure by Zn(II) 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin. Biochimie 93:1297–309
    [Google Scholar]
  16. 16. 
    Bian Y, Tan C, Wang J, Sheng Y, Zhang J, Wang W. 2014. Atomistic picture for the folding pathway of a hybrid-1 type human telomeric DNA G-quadruplex. PLOS Comput. Biol. 10:e1003562
    [Google Scholar]
  17. 17. 
    Biffi G, Tannahill D, McCafferty J, Balasubramanian S. 2013. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5:182–86
    [Google Scholar]
  18. 18. 
    Biswas PK, Gogonea V. 2005. A regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum-mechanical–molecular-mechanical calculations. J. Chem. Phys. 123:164114
    [Google Scholar]
  19. 19. 
    Bonsignore R, Russo F, Terenzi A, Spinello A, Lauria A et al. 2018. The interaction of Schiff Base complexes of nickel(II) and zinc(II) with duplex and G-quadruplex DNA. J. Inorg. Biochem. 178:106–14
    [Google Scholar]
  20. 20. 
    Bonsignore R, Terenzi A, Spinello A, Martorana A, Lauria A et al. 2016. G-quadruplex vs. duplex-DNA binding of nickel(II) and zinc(II) Schiff Base complexes. J. Inorg. Biochem. 161:115–21
    [Google Scholar]
  21. 21. 
    Campbell NH, Karim NHA, Parkinson GN, Gunaratnam M, Petrucci V et al. 2011. Molecular basis of structure–activity relationships between salphen metal complexes and human telomeric DNA quadruplexes. J. Med. Chem. 55:209–22
    [Google Scholar]
  22. 22. 
    Cao Q, Li Y, Freisinger E, Qin PZ, Sigel RK, Mao ZW. 2017. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs. Inorg. Chem. Front. 4:10–32
    [Google Scholar]
  23. 23. 
    Changenet-Barret P, Hua Y, Markovitsi D 2015. Electronic excitations in guanine quadruplexes. Photoinduced Phenomena in Nucleic Acids II M Barbatti, AC Borin, S Ullrich 183–201 Berlin: Springer
    [Google Scholar]
  24. 24. 
    Cheatham TE III, Cieplak P, Kollman PA. 1999. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J. Biomol. Struct. Dyn. 16:845–62
    [Google Scholar]
  25. 25. 
    Chen X, Wu JH, Lai YW, Zhao R, Chao H, Ji LN 2013. Targeting telomeric G-quadruplexes with the ruthenium(II) complexes [Ru(bpy)(2+)(ptpn)](2+) and [Ru(phen)(2)(ptpn)](2+). Dalton Trans 42:4386–97
    [Google Scholar]
  26. 26. 
    Clay EH, Gould IR. 2005. A combined QM and MM investigation into guanine quadruplexes. J. Mol. Gr. Model. 24:138–46
    [Google Scholar]
  27. 27. 
    Collie GW, Parkinson GN, Neidle S, Rosu F, De Pauw E, Gabelica V. 2010. Electrospray mass spectrometry of telomeric RNA (TERRA) reveals the formation of stable multimeric G-quadruplex structures. J. Am. Chem. Soc. 132:9328–34
    [Google Scholar]
  28. 28. 
    Cordomi A, Edholm O, Perez JJ. 2009. Effect of force field parameters on sodium and potassium ion binding to dipalmitoyl phosphatidylcholine bilayers. J. Chem. Theory Comput. 5:2125–34
    [Google Scholar]
  29. 29. 
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM et al. 1995. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117:5179–97
    [Google Scholar]
  30. 30. 
    Cosconati S, Marinelli L, Trotta R, Virno A, De Tito S et al. 2010. Structural and conformational requisites in DNA quadruplex groove binding: another piece to the puzzle. J. Am. Chem. Soc. 132:6425–33
    [Google Scholar]
  31. 31. 
    Cragnolini T, Laurin Y, Derreumaux P, Pasquali S. 2015. Coarse-grained hire-RNA model for ab initio RNA folding beyond simple molecules, including noncanonical and multiple base pairings. J. Chem. Theory Comput. 11:3510–22
    [Google Scholar]
  32. 32. 
    Cummaro A, Fotticchia I, Franceschin M, Giancola C, Petraccone L. 2011. Binding properties of human telomeric quadruplex multimers: a new route for drug design. Biochimie 93:1392–400
    [Google Scholar]
  33. 33. 
    Dai J, Carver M, Punchihewa C, Jones RA, Yang D 2007. Structure of the hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res 35:4927–40
    [Google Scholar]
  34. 34. 
    Darden T, York D, Pedersen L. 1993. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98:10089–92
    [Google Scholar]
  35. 35. 
    Dewar MJ, Thiel W. 1977. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 99:4899–907
    [Google Scholar]
  36. 36. 
    Dinçalp H, Kirilok Ş, Birel ÖH, Içli S. 2012. Synthesis and G-quadruplex binding study of a novel full visible absorbing perylene diimide dye. J. Photochem. Photobiol. A 235:40–48
    [Google Scholar]
  37. 37. 
    Dixon IM, Lopez F, Estève JP, Tejera AM, Blasco MA et al. 2005. Porphyrin derivatives for telomere binding and telomerase inhibition. ChemBioChem 6:123–32
    [Google Scholar]
  38. 38. 
    Dixon IM, Lopez F, Tejera AM, Estève JP, Blasco MA et al. 2007. A G-quadruplex ligand with 10000-fold selectivity over duplex DNA. J. Am. Chem. Soc. 129:1502–3
    [Google Scholar]
  39. 39. 
    Ducani C, Bernardinelli G, Högberg B, Keppler BK, Terenzi A. 2019. Interplay of three G-quadruplex units in the kit promoter. J. Am. Chem. Soc. 141:10205–13
    [Google Scholar]
  40. 40. 
    Ebrahimi M, Khayamian T, Hadadzadeh H, Sayed Tabatabaei BE, Jannesari Z, Khaksar G. 2015. Spectroscopic, biological, and molecular modeling studies on the interactions of [Fe(III)-meloxicam] with G-quadruplex DNA and investigation of its release from bovine serum albumin (BSA) nanoparticles. J. Biomol. Struct. Dyn. 33:2316–29
    [Google Scholar]
  41. 41. 
    Evans SE, Mendez MA, Turner KB, Keating LR, Grimes RT et al. 2007. End-stacking of copper cationic porphyrins on parallel-stranded guanine quadruplexes. J. Biol. Inorg. Chem. 12:1235–49
    [Google Scholar]
  42. 42. 
    Fadrná E, Spacková N, Sarzyñska J, Koca J, Orozco M et al. 2009. Single stranded loops of quadruplex DNA as key benchmark for testing nucleic acids force fields. J. Chem. Theory Comput. 5:2514–30
    [Google Scholar]
  43. 43. 
    Feng Y, Yang D, Chen H, Cheng W, Wang L et al. 2016. Stabilization of G-quadruplex DNA and inhibition of Bcl-2 expression by a pyridostatin analog. Bioorg. Med. Chem. Lett. 26:1660–63
    [Google Scholar]
  44. 44. 
    Ferreira R, Artali R, Benoit A, Gargallo R, Eritja R et al. 2013. Structure and stability of human telomeric G-quadruplex with preclinical 9-amino acridines. PLOS ONE 8:e57701
    [Google Scholar]
  45. 45. 
    Field MJ, Bash PA, Karplus M. 1990. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comput. Chem. 11:700–33
    [Google Scholar]
  46. 46. 
    Fletcher TM, Sun D, Salazar M, Hurley LH. 1998. Effect of DNA secondary structure on human telomerase activity. Biochemistry 37:5536–41
    [Google Scholar]
  47. 47. 
    Foloppe N, MacKerell AD Jr. 2000. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21:86–104
    [Google Scholar]
  48. 48. 
    Fonseca Guerra C, van der Wijst T, Poater J, Swart M, Bickelhaupt FM 2010. Adenine versus guanine quartets in aqueous solution: dispersion-corrected DFT study on the differences in -stacking and hydrogen-bonding behavior. Theor. Chem. Acc. 125:245–52
    [Google Scholar]
  49. 49. 
    Fonseca Guerra C, Zijlstra H, Paragi G, Bickelhaupt FM 2011. Telomere structure and stability: Covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets. Chem. Eur. J. 17:12612–22
    [Google Scholar]
  50. 50. 
    Giambaşu GM, Case DA, York DM. 2019. Predicting site-binding modes of ions and water to nucleic acids using molecular solvation theory. J. Am. Chem. Soc. 141:2435–45
    [Google Scholar]
  51. 51. 
    Ginnari-Satriani L, Casagrande V, Bianco A, Ortaggi G, Franceschin M. 2009. A hydrophilic three side-chained triazatruxene as a new strong and selective G-quadruplex ligand. Org. Biomol. Chem. 7:2513–16
    [Google Scholar]
  52. 52. 
    Gkionis K, Kruse H, Platts JA, Mladek A, Koca J, Šponer J. 2014. Ion binding to quadruplex DNA stems: comparison of MM and QM descriptions reveals sizable polarization effects not included in contemporary simulations. J. Chem. Theory Comput. 10:1326–40
    [Google Scholar]
  53. 53. 
    Gonçalves DP, Rodriguez R, Balasubramanian S, Sanders JK. 2006. Tetramethylpyridiniumporphyrazines: a new class of G-quadruplex inducing and stabilising ligands. Chem. Commun. 45:4685–87
    [Google Scholar]
  54. 54. 
    Gresh N, Naseem-Khan S, Lagardère L, Piquemal JP, Sponer JE, Sponer J. 2017. Channeling through two stacked guanine quartets of one and two alkali cations in the Li+, Na+, K+, and Rb+ series: assessment of the accuracy of the SIBFA anisotropic polarizable molecular mechanics potential. J. Phys. Chem. B 121:3997–4014
    [Google Scholar]
  55. 55. 
    Grimme S. 2004. Accurate description of van der Waals complexes by density functional theory including empirical corrections. J. Comput. Chem. 25:1463–73
    [Google Scholar]
  56. 56. 
    Grimme S, Antony J, Ehrlich S, Krieg H 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132:154104
    [Google Scholar]
  57. 57. 
    Grunenberg J, Barone G, Spinello A. 2014. The right answer for the right electrostatics: Force field methods are able to describe relative energies of DNA guanine quadruplexes. J. Chem. Theory Comput. 10:2901–5
    [Google Scholar]
  58. 58. 
    Haider S, Parkinson GN, Neidle S. 2002. Crystal structure of the potassium form of an Oxytricha nova G-quadruplex. J. Mol. Biol. 320:189–200
    [Google Scholar]
  59. 59. 
    Haider SM, Parkinson GN, Neidle S. 2003. Structure of a G-quadruplex–ligand complex. J. Mol. Biol. 326:117–25
    [Google Scholar]
  60. 60. 
    Haider S, Parkinson GN, Neidle S. 2008. Molecular dynamics and principal components analysis of human telomeric quadruplex multimers. Biophys. J. 95:296–311
    [Google Scholar]
  61. 61. 
    Hänsel-Hertsch R, Beraldi D, Lensing SV, Marsico G, Zyner K et al. 2016. G-quadruplex structures mark human regulatory chromatin. Nat. Genet. 48:1267–72
    [Google Scholar]
  62. 62. 
    Harrap K. 1985. Preclinical studies identifying carboplatin as a viable cisplatin alternative. Cancer Treat. Rev. 12:21–33
    [Google Scholar]
  63. 63. 
    Havrila M, Stadlbauer P, Islam B, Otyepka M, Šponer J. 2017. Effect of monovalent ion parameters on molecular dynamics simulations of G-quadruplexes. J. Chem. Theory Comput. 13:3911–26
    [Google Scholar]
  64. 64. 
    Ho J, Newcomer MB, Ragain CM, Gascon JA, Batista ER et al. 2014. MOD-QM/MM structural refinement method: characterization of hydrogen bonding in the Oxytricha nova G-quadruplex. J. Chem. Theory Comput. 10:5125–35
    [Google Scholar]
  65. 65. 
    Ho YP, Au-Yeung SC, To KK 2003. Platinum-based anticancer agents: innovative design strategies and biological perspectives. Med. Res. Rev. 23:633–55
    [Google Scholar]
  66. 66. 
    Hounsou C, Guittat L, Monchaud D, Jourdan M, Saettel N et al. 2007. G-quadruplex recognition by quinacridines: a SAR, NMR, and biological study. ChemMedChem 2:655–66
    [Google Scholar]
  67. 67. 
    Huang XX, Zhu LN, Wu B, Huo YF, Duan NN, Kong DM. 2014. Two cationic porphyrin isomers showing different multimeric G-quadruplex recognition specificity against monomeric G-quadruplexes. Nucleic Acids Res 42:8719–31
    [Google Scholar]
  68. 68. 
    Hud NV, Smith FW, Anet FA, Feigon J. 1996. The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: a thermodynamic analysis by 1H NMR. Biochemistry 35:15383–90
    [Google Scholar]
  69. 69. 
    Huppert JL, Balasubramanian S. 2005. Prevalence of quadruplexes in the human genome. Nucleic Acids Res 33:2908–16
    [Google Scholar]
  70. 70. 
    Husby J, Todd AK, Platts JA, Neidle S. 2013. Small-molecule G-quadruplex interactions: systematic exploration of conformational space using multiple molecular dynamics. Biopolymers 99:989–1005
    [Google Scholar]
  71. 71. 
    Islam B, Sgobba M, Laughton C, Orozco M, Sponer J et al. 2013. Conformational dynamics of the human propeller telomeric DNA quadruplex on a microsecond time scale. Nucleic Acids Res 41:2723–35
    [Google Scholar]
  72. 72. 
    Islam B, Stadlbauer P, Gil-Ley A, Pérez-Hernández G, Haider S et al. 2017. Exploring the dynamics of propeller loops in human telomeric DNA quadruplexes using atomistic simulations. J. Chem. Theory Comput. 13:2458–80
    [Google Scholar]
  73. 73. 
    Islam B, Stadlbauer P, Krepl M, Havrila M, Haider S, Sponer J. 2018. Structural dynamics of lateral and diagonal loops of human telomeric G-quadruplexes in extended MD simulations. J. Chem. Theory Comput. 14:5011–26
    [Google Scholar]
  74. 74. 
    Islam B, Stadlbauer P, Krepl M, Koca J, Neidle S et al. 2015. Extended molecular dynamics of a c-kit promoter quadruplex. Nucleic Acids Res 43:8673–93
    [Google Scholar]
  75. 75. 
    Islam B, Stadlbauer P, Vorlicková M, Mergny JL, Otyepka M, Šponer J. 2019. Stability of two-quartet G-quadruplexes and their dimers in atomistic simulations. bioRxiv 820852. https://doi.org/10.1101/820852
    [Crossref]
  76. 76. 
    Ivani I, Dans PD, Noy A, Pérez A, Faustino I et al. 2016. Parmbsc1: a refined force field for DNA simulations. Nat. Methods 13:55–88
    [Google Scholar]
  77. 77. 
    Izbicka E, Wheelhouse RT, Raymond E, Davidson KK, Lawrence RA et al. 1999. Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells. Cancer Res 59:639–44
    [Google Scholar]
  78. 78. 
    Jorgensen WL. 1981. Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water. J. Am. Chem. Soc. 103:335–40
    [Google Scholar]
  79. 79. 
    Joung IS, Cheatham TE III 2008. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 112:9020–41
    [Google Scholar]
  80. 80. 
    Karim NHA, Mendoza O, Shivalingam A, Thompson AJ, Ghosh S et al. 2014. Salphen metal complexes as tunable G-quadruplex binders and optical probes. RSC Adv 4:3355–63
    [Google Scholar]
  81. 81. 
    Keating L, Szalai V. 2004. Parallel-stranded guanine quadruplex interactions with a copper cationic porphyrin. Biochemistry 43:15891–900
    [Google Scholar]
  82. 82. 
    Kieltyka R, Englebienne P, Fakhoury J, Autexier C, Moitessier N, Sleiman HF. 2008. A platinum supramolecular square as an effective G-quadruplex binder and telomerase inhibitor. J. Am. Chem. Soc. 130:10040–41
    [Google Scholar]
  83. 83. 
    Kim MY, Vankayalapati H, Shin-Ya K, Wierzba K, Hurley LH. 2002. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. J. Am. Chem. Soc. 124:2098–99
    [Google Scholar]
  84. 84. 
    Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD et al. 1994. Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–15
    [Google Scholar]
  85. 85. 
    Klamt A. 1995. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99:2224–35
    [Google Scholar]
  86. 86. 
    Klamt A, Schüürmann G. 1993. Cosmo: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. 2:799–805
    [Google Scholar]
  87. 87. 
    Kolesnikova S, Hubálek M, Bednárová L, Cvačka J, Curtis EA. 2017. Multimerization rules for G-quadruplexes. Nucleic Acids Res 45:8684–96
    [Google Scholar]
  88. 88. 
    Kostova I. 2006. Ruthenium complexes as anticancer agents. Curr. Med. Chem. 13:1085–107
    [Google Scholar]
  89. 89. 
    Krepl M, Zgarbová M, Stadlbauer P, Otyepka M, Banas P et al. 2012. Reference simulations of noncanonical nucleic acids with different χ variants of the AMBER force field: quadruplex DNA, quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 8:2506–20
    [Google Scholar]
  90. 90. 
    Laio A, Parrinello M 2002. Escaping free-energy minima. PNAS 99:12562–66
    [Google Scholar]
  91. 91. 
    Le Grand S, Götz AW, Walker RC 2013. SPFP: speed without compromise—a mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 184:374–80
    [Google Scholar]
  92. 92. 
    Lee W, Matsika S. 2015. QM/MM studies reveal pathways leading to the quenching of the formation of thymine dimer photoproduct by flanking bases. Phys. Chem. Chem. Phys. 17:9927–35
    [Google Scholar]
  93. 93. 
    Lee W, Matsika S. 2017. Conformational and electronic effects on the formation of anti cyclobutane pyrimidine dimers in G-quadruplex structures. Phys. Chem. Chem. Phys. 19:3325–36
    [Google Scholar]
  94. 94. 
    Levitt M, Warshel A. 1975. Computer simulation of protein folding. Nature 253:694–98
    [Google Scholar]
  95. 95. 
    Li Q, Zhang J, Yang L, Yu Q, Chen Q et al. 2014. Stabilization of G-quadruplex DNA and inhibition of telomerase activity studies of ruthenium(II) complexes. J. Inorg. Biochem. 130:122–29
    [Google Scholar]
  96. 96. 
    Liao G, Chen X, Wu J, Qian C, Wang H et al. 2014. Novel ruthenium(II) polypyridyl complexes as G-quadruplex stabilisers and telomerase inhibitors. Dalton Trans 43:7811–19
    [Google Scholar]
  97. 97. 
    Lim KW, Alberti P, Guédin A, Lacroix L, Riou J-F et al. 2009. Sequence variation (CTAGGG)n in the human telomere favors a G-quadruplex structure containing a G.C.G.C. tetrad. Nucleic Acids Res 37:6239–48
    [Google Scholar]
  98. 98. 
    Lim KW, Amrane S, Bouaziz S, Xu W, Mu Y et al. 2009. Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. J. Am. Chem. Soc. 131:4301–9
    [Google Scholar]
  99. 99. 
    Limongelli V, De Tito S, Cerofolini L, Fragai M, Pagano B et al. 2013. The G-triplex DNA. Angew. Chem. 125:2325–29
    [Google Scholar]
  100. 100. 
    Liu W, Zhong YF, Liu LY, Shen CT, Zeng W et al. 2018. Solution structures of multiple G-quadruplex complexes induced by a platinum(II)-based tripod reveal dynamic binding. Nat. Commun. 9:3496
    [Google Scholar]
  101. 101. 
    Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ. 2006. Structure of the human telomere in K+ stolution: an intramolecular (3 + 1) G-quadruplex scaffold. J. Am. Chem. Soc. 128:9963–70
    [Google Scholar]
  102. 102. 
    Lyubartsev A, Mirzoev A, Chen L, Laaksonen A. 2010. Systematic coarse-graining of molecular models by the Newton inversion method. Faraday Discuss 144:43–56
    [Google Scholar]
  103. 103. 
    Lyubartsev AP, Laaksonen A. 1995. Calculation of effective interaction potentials from radial distribution functions: a reverse Monte Carlo approach. Phys. Rev. E 52:3730–37
    [Google Scholar]
  104. 104. 
    MacKerell AD Jr., Banavali N, Foloppe N. 2001. Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56:257–65
    [Google Scholar]
  105. 105. 
    Mandal SS, Varshney U, Bhattacharya S. 1997. Role of the central metal ion and ligand charge in the DNA binding and modification by metallosalen complexes. Bioconjug. Chem. 8:798–812
    [Google Scholar]
  106. 106. 
    Marathias VM, Bolton PH. 2000. Structures of the potassium-saturated, 2:1, and intermediate, 1:1, forms of a quadruplex DNA. Nucleic Acids Res 28:1969–77
    [Google Scholar]
  107. 107. 
    Marathias VM, Wang KY, Kumar S, Pham TQ, Swaminathan S, Bolton PH. 1996. Determination of the number and location of the manganese binding sites of DNA quadruplexes in solution by EPR and NMR in the presence and absence of thrombin. J. Mol. Biol. 260:378–94
    [Google Scholar]
  108. 108. 
    Maraval A, Franco S, Vialas C, Pratviel G, Blasco MA, Meunier B. 2003. Porphyrin–aminoquinoline conjugates as telomerase inhibitors. Org. Biomol. Chem. 1:921–27
    [Google Scholar]
  109. 109. 
    Martino L, Virno A, Pagano B, Virgilio A, Di Micco S et al. 2007. Structural and thermodynamic studies of the interaction of distamycin a with the parallel quadruplex structure [d(TGGGGT)]4. J. Am. Chem. Soc. 129:16048–56
    [Google Scholar]
  110. 110. 
    Mergny JL, Riou JF, Mailliet P, Teulade-Fichou MP, Gilson E 2002. Natural and pharmacological regulation of telomerase. Nucleic Acids Res 30:839–65
    [Google Scholar]
  111. 111. 
    Minhas GS, Pilch DS, Kerrigan JE, LaVoie EJ, Rice JE. 2006. Synthesis and G-quadruplex stabilizing properties of a series of oxazole-containing macrocycles. Bioorg. Med. Chem. Lett. 16:3891–95
    [Google Scholar]
  112. 112. 
    Mirzoev A, Lyubartsev AP. 2013. Magic: software package for multiscale modeling. J. Chem. Theory Comput. 9:1512–20
    [Google Scholar]
  113. 113. 
    Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T 2006. Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. PNAS 103:13765–70
    [Google Scholar]
  114. 114. 
    Nanda D, Jug K. 1980. SINDO1. A semiempirical SCF MO method for molecular binding energy and geometry I. Approximations and parametrization. Theor. Chim. Acta 57:95–106
    [Google Scholar]
  115. 115. 
    Naome A, Laaksonen A, Vercauteren DP. 2014. A solvent-mediated coarse-grained model of DNA derived with the systematic Newton inversion method. J. Chem. Theory Comput. 10:3541–49
    [Google Scholar]
  116. 116. 
    Neese F. 2012. ORCA—an ab initio, DFT and semiemprical SCF-MO package (version 2.9.1). Software Univ. Bonn, Ger.
    [Google Scholar]
  117. 117. 
    Ode H, Matsuo Y, Neya S, Hoshino T. 2008. Force field parameters for rotation around χ torsion axis in nucleic acids. J. Comput. Chem 29:2531–42
    [Google Scholar]
  118. 118. 
    Ordejón P, Artacho E, Soler JM. 1996. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B 53:R10441–44
    [Google Scholar]
  119. 119. 
    Pagano B, Fotticchia I, De Tito S, Mattia CA, Mayol L et al. 2010. Selective binding of distamycin A derivative to G-quadruplex structure [d(TGGGT)](4). J. Nucleic Acids 2010:247137
    [Google Scholar]
  120. 120. 
    Pagano B, Virno A, Mattia CA, Mayol L, Randazzo A, Giancola C. 2008. Targeting DNA quadruplexes with distamycin A and its derivatives: an ITC and NMR study. Biochimie 90:1224–32
    [Google Scholar]
  121. 121. 
    Pant M, Rajagopal A. 1972. Theory of inhomogeneous magnetic electron gas. Solid State Commun 10:1157–60
    [Google Scholar]
  122. 122. 
    Parkinson GN, Lee MP, Neidle S. 2002. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–80
    [Google Scholar]
  123. 123. 
    Payne MC, Teter MP, Allan DC, Arias T, Joannopoulos AJ. 1992. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64:1045
    [Google Scholar]
  124. 124. 
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR et al. 1992. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46:6671–87
    [Google Scholar]
  125. 125. 
    Pérez A, Marchán I, Svozil D, Sponer J, Cheatham TE III et al. 2007. Refinement of the AMBER force field for nucleic acids: improving the description of conformers. Biophys. J. 92:3817–29
    [Google Scholar]
  126. 126. 
    Petraccone L, Fotticchia I, Cummaro A, Pagano B, Ginnari-Satriani L et al. 2011. The triazatruxene derivative azatrux binds to the parallel form of the human telomeric G-quadruplex under molecular crowding conditions: biophysical and molecular modeling studies. Biochimie 93:1318–27
    [Google Scholar]
  127. 127. 
    Phan AT, Kuryavyi V, Luu KN, Patel DJ. 2007. Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res 35:6517–25
    [Google Scholar]
  128. 128. 
    Pople JA, Beveridge DL. 1970. Approximate Molecular Orbital Theory New York: McGraw-Hill
  129. 129. 
    Qin QP, Meng T, Tan MX, Liu YC, Luo XJ et al. 2018. Synthesis and in vitro biological evaluation of three 4′-(4-methoxyphenyl)-2,2′:6′,2′′-terpyridine iridium(III) complexes as new telomerase inhibitors. Eur. J. Med. Chem. 143:1387–95
    [Google Scholar]
  130. 130. 
    Randazzo A, Spada GP, da Silva MW 2012. Circular dichroism of quadruplex structures. Quadruplex Nucleic Acids JB Chaires, D Graves 67–86 Berlin: Springer
    [Google Scholar]
  131. 131. 
    Rappe AK, Goddard WA III 1991. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95:3358–63
    [Google Scholar]
  132. 132. 
    Rebic M, Mocci F, Laaksonen A, Ulicny J. 2014. Multiscale simulations of human telomeric G-quadruplex DNA. J. Phys. Chem. B 119:105–13
    [Google Scholar]
  133. 133. 
    Rebic M, Mocci F, Ulicny J, Lyubartsev AP, Laaksonen A. 2017. Coarse-grained simulation of rodlike higher-order quadruplex structures at different salt concentrations. ACS Omega 2:386–96
    [Google Scholar]
  134. 134. 
    Renčiuk D, Zhou J, Beaurepaire L, Guédin A, Bourdoncle A, Mergny JL. 2012. A fret-based screening assay for nucleic acid ligands. Methods 57:122–28
    [Google Scholar]
  135. 135. 
    Reshetnikov RV, Sponer J, Rassokhina OI, Kopylov AM, Tsvetkov PO et al. 2011. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process. Nucleic Acids Res 39:9789–802
    [Google Scholar]
  136. 136. 
    Rodriguez R, Muller S, Yeoman JA, Trentesaux C, Riou JF, Balasubramanian S. 2008. A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 130:15758–59
    [Google Scholar]
  137. 137. 
    Romera C, Bombarde O, Bonnet R, Gomez D, Dumy P et al. 2011. Improvement of porphyrins for G-quadruplex DNA targeting. Biochimie 93:1310–17
    [Google Scholar]
  138. 138. 
    Rosu F, Gabelica V, Poncelet H, De Pauw E. 2010. Tetramolecular G-quadruplex formation pathways studied by electrospray mass spectrometry. Nucleic Acids Res 38:5217–25
    [Google Scholar]
  139. 139. 
    Ryckaert JP, Ciccotti G, Berendsen HJ. 1977. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23:327–41
    [Google Scholar]
  140. 140. 
    Sabater L, Fang PJ, Chang CF, De Rache A, Prado E et al. 2015. Cobalt(III) porphyrin to target G-quadruplex DNA. Dalton Trans 44:3701–7
    [Google Scholar]
  141. 141. 
    Sabharwal NC, Mendoza O, Nicoludis JM, Ruan T, Mergny JL, Yatsunyk LA. 2016. Investigation of the interactions between Pt(II) and Pd(II) derivatives of 5,10,15,20-tetrakis (N-methyl-4-pyridyl) porphyrin and G-quadruplex DNA. J. Biol. Inorg. Chem. 21:227–39
    [Google Scholar]
  142. 142. 
    Sahakyan AB, Chambers VS, Marsico G, Santner T, Di Antonio M, Balasubramanian S. 2017. Machine learning model for sequence-driven DNA G-quadruplex formation. Sci. Rep. 7:14535
    [Google Scholar]
  143. 143. 
    Salvati E, Leonetti C, Rizzo A, Scarsella M, Mottolese M et al. 2007. Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J. Clin. Investig. 117:3236–47
    [Google Scholar]
  144. 144. 
    Scalmani G, Frisch MJ. 2010. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 132:114110
    [Google Scholar]
  145. 145. 
    Sen D, Gilbert W. 1988. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–66
    [Google Scholar]
  146. 146. 
    Senn HM, Thiel W 2006. QM/MM methods for biological systems. Atomistic Approaches in Modern Biology: From Quantum Chemistry to Molecular Simulations M Reiher 173–290 Berlin: Springer
    [Google Scholar]
  147. 147. 
    Sherwood P, de Vries AH, Guest MF, Schreckenbach G, Catlow CRA et al. 2003. QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis. J. Mol. Struct. THEOCHEM 632:1–28
    [Google Scholar]
  148. 148. 
    Shi S, Geng X, Zhao J, Yao T, Wang C et al. 2010. Interaction of [Ru(bpy)2(dppz)]2+ with human telomeric DNA: preferential binding to G-quadruplexes over I-motif. Biochimie 92:370–77
    [Google Scholar]
  149. 149. 
    Shin-ya K, Wierzba K, Matsuo K, Ohtani T, Yamada Y et al. 2001. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. J. Am. Chem. Soc. 123:1262–63
    [Google Scholar]
  150. 150. 
    Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH 2002. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. PNAS 99:11593–98
    [Google Scholar]
  151. 151. 
    Smargiasso N, Rosu F, Hsia W, Colson P, Baker ES et al. 2008. G-quadruplex DNA assemblies: loop length, cation identity, and multimer formation. J. Am. Chem. Soc. 130:10208–16
    [Google Scholar]
  152. 152. 
    Smith JE, Lu C, Taylor JS. 2014. Effect of sequence and metal ions on UVB-induced anti cyclobutane pyrimidine dimer formation in human telomeric DNA sequences. Nucleic Acids Res 42:5007–19
    [Google Scholar]
  153. 153. 
    Soler JM, Artacho E, Gale JD, Garca A, Junquera J et al. 2002. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condensed Matter 14:2745–79
    [Google Scholar]
  154. 154. 
    Soper A. 1996. Empirical potential Monte Carlo simulation of fluid structure. Chem. Phys. 202:295–306
    [Google Scholar]
  155. 155. 
    Šponer J, Mladek A, Spackova N, Cang X, Cheatham TE III, Grimme S. 2013. Relative stability of different DNA guanine quadruplex stem topologies derived using large-scale quantum-chemical computations. J. Am. Chem. Soc. 135:9785–96
    [Google Scholar]
  156. 156. 
    Stadlbauer P, Krepl M, Cheatham TE, Koča J, Šponer J. 2013. Structural dynamics of possible late-stage intermediates in folding of quadruplex DNA studied by molecular simulations. Nucleic Acids Res 41:7128–43
    [Google Scholar]
  157. 157. 
    Stadlbauer P, Mazzanti L, Cragnolini T, Wales DJ, Derreumaux P et al. 2016. Coarse-grained simulations complemented by atomistic molecular dynamics provide new insights into folding and unfolding of human telomeric G-quadruplexes. J. Chem. Theory Comput. 12:6077–97
    [Google Scholar]
  158. 158. 
    Stadlbauer P, Trantrek L, Cheatham TE III, Koča J, Šponer J. 2014. Triplex intermediates in folding of human telomeric quadruplexes probed by microsecond-scale molecular dynamics simulations. Biochimie 105:22–35
    [Google Scholar]
  159. 159. 
    Staroverov VN, Scuseria GE, Tao J, Perdew JP. 2003. Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J. Chem. Phys. 119:12129–37
    [Google Scholar]
  160. 160. 
    Štefl R, Cheatham TE III, Špačková N, Fadrná E, Berger I et al. 2003. Formation pathways of a guanine-quadruplex DNA revealed by molecular dynamics and thermodynamic analysis of the substrates. Biophys. J. 85:1787–804
    [Google Scholar]
  161. 161. 
    Stewart JJ. 1989. Optimization of parameters for semiempirical methods. II. Applications. J. Comput. Chem. 10:221–64
    [Google Scholar]
  162. 162. 
    Su DG, Fang H, Gross ML, Taylor JSA 2009. Photocrosslinking of human telomeric G-quadruplex loops by anti cyclobutane thymine dimer formation. PNAS 106:12861–66
    [Google Scholar]
  163. 163. 
    Sun RWY, Li CKL, Ma DL, Yan JJ, Lok CN et al. 2010. Stable anticancer gold(III)–porphyrin complexes: effects of porphyrin structure. Chem. Eur. J. 16:3097–113
    [Google Scholar]
  164. 164. 
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen JA et al. 2001. Chemistry with ADF. J. Comput. Chem. 22:931–67
    [Google Scholar]
  165. 165. 
    Terenzi A, Bonsignore R, Spinello A, Gentile C, Martorana A et al. 2014. Selective G-quadruplex stabilizers: Schiff-base metal complexes with anticancer activity. RSC Adv 4:33245–56
    [Google Scholar]
  166. 166. 
    Terenzi A, Lötsch D, van Schoonhoven S, Roller A, Kowol CR et al. 2016. Another step toward DNA selective targeting: Ni(II) and Cu(II) complexes of a Schiff base ligand able to bind gene promoter G-quadruplexes. Dalton Trans 45:7758–67
    [Google Scholar]
  167. 167. 
    Tuntiwechapikul W, Lee JT, Salazar M. 2001. Design and synthesis of the G-quadruplex-specific cleaving reagent perylene-EDTA.iron(II). J. Am. Chem. Soc. 123:5606–7
    [Google Scholar]
  168. 168. 
    Tuntiwechapikul W, Salazar M. 2001. Cleavage of telomeric G-quadruplex DNA with perylene-EDTA.Fe(II). Biochemistry 40:13652–58
    [Google Scholar]
  169. 169. 
    Varizhuk AM, Protopopova AD, Tsvetkov VB, Barinov NA, Podgorsky VV et al. 2018. Polymorphism of G4 associates: from stacks to wires via interlocks. Nucleic Acids Res 46:8978–92
    [Google Scholar]
  170. 170. 
    Vialas C, Pratviel G, Meunier B. 2000. Oxidative damage generated by an oxo-metalloporphyrin onto the human telomeric sequence. Biochemistry 39:9514–22
    [Google Scholar]
  171. 171. 
    Wang Y, Patel DJ 1993. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1:263–82
    [Google Scholar]
  172. 172. 
    Warshel A, Levitt M. 1976. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103:227–49
    [Google Scholar]
  173. 173. 
    Weigend F, Ahlrichs R. 2005. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7:3297–305
    [Google Scholar]
  174. 174. 
    Wolters LP, Smits NW, Guerra CF. 2015. Covalency in resonance-assisted halogen bonds demonstrated with cooperativity in N-halo-guanine quartets. Phys. Chem. Chem. Phys. 17:1585–92
    [Google Scholar]
  175. 175. 
    Wu P, Ma DL, Leung CH, Yan SC, Zhu N et al. 2009. Stabilization of G-quadruplex DNA with platinum(II) Schiff base complexes: luminescent probe and down-regulation of C-Myc oncogene expression. Chem. Eur. J. 15:13008–21
    [Google Scholar]
  176. 176. 
    Xia Y, Chen Q, Qin X, Sun D, Zhang J, Liu J. 2013. Studies of ruthenium(II)-2,2′-bisimidazole complexes on binding to G-quadruplex DNA and inducing apoptosis in HeLa cells. New J. Chem. 37:3706–15
    [Google Scholar]
  177. 177. 
    Xu CX, Shen Y, Hu Q, Zheng YX, Cao Q et al. 2014. Stabilization of human telomeric G-quadruplex and inhibition of telomerase activity by propeller-shaped trinuclear Pt(II) complexes. Chem. Asian J. 9:2519–26
    [Google Scholar]
  178. 178. 
    Xu CX, Zheng YX, Zheng XH, Hu Q, Zhao Y et al. 2013. V-shaped dinuclear Pt(II) complexes: selective interaction with human telomeric G-quadruplex and significant inhibition towards telomerase. Sci. Rep. 3:2060
    [Google Scholar]
  179. 179. 
    Xu Y, Suzuki Y, Lonnberg T, Komiyama M. 2009. Human telomeric DNA sequence-specific cleaving by G-quadruplex formation. J. Am. Chem. Soc. 131:2871–74
    [Google Scholar]
  180. 180. 
    Yao JL, Gao X, Sun W, Shi S, Yao TM. 2013.. [ Ru(bpy)2dppz-idzo]2+: a colorimetric molecular ‘light switch’ and powerful stabilizer for G-quadruplex DNA. Dalton Trans 42:5661–72
    [Google Scholar]
  181. 181. 
    You YH, Lee DH, Yoon JH, Nakajima S, Yasui A, Pfeifer GP. 2001. Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. J. Biol. Chem. 276:44688–94
    [Google Scholar]
  182. 182. 
    Zaccaria F, Fonseca Guerra C 2018. RNA versus DNA G-quadruplex: the origin of increased stability. Chem. Eur. J. 24:16315–22
    [Google Scholar]
  183. 183. 
    Zaccaria F, Paragi G, Guerra CF. 2016. The role of alkali metal cations in the stabilization of guanine quadruplexes: why K+ is the best. Phys. Chem. Chem. Phys. 18:20895–904
    [Google Scholar]
  184. 184. 
    Zerner M. 1991. Semiempirical molecular orbital methods. Reviews in Computational Chemistry, Vol. 2 KB Lipkowitz, DB Boyd 313–65 Hoboken, NJ: Wiley
    [Google Scholar]
  185. 185. 
    Zgarbová M, Sponer J, Otyepka M, Cheatham TE III, Galindo-Murillo R, Jurecka P. 2015. Refinement of the sugar–phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J. Chem. Theory Comput. 11:5723–36
    [Google Scholar]
  186. 186. 
    Zhou J, Bourdoncle A, Rosu F, Gabelica V, Mergny JL. 2012. Tri-G-quadruplex: controlled assembly of a G-quadruplex structure from three G-rich strands. Angew. Chem. Int. Ed. 51:11002–5
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-060320-091827
Loading
/content/journals/10.1146/annurev-biophys-060320-091827
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error