1932

Abstract

Next-generation synchrotron radiation sources, such as X-ray free-electron lasers, energy recovery linacs, and ultra-low-emittance storage rings, are catalyzing novel methods of biomolecular microcrystallography and solution scattering. These methods are described and future trends are predicted. Importantly, there is a growing realization that serial microcrystallography and certain cutting-edge solution scattering experiments can be performed at existing storage ring sources by utilizing new technology. In this sense, next-generation sources are serving two distinct functions, namely, provision of new capabilities that require the newer sources and inspiration of new methods that can be performed at existing sources.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-060414-033813
2015-06-22
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/biophys/44/1/annurev-biophys-060414-033813.html?itemId=/content/journals/10.1146/annurev-biophys-060414-033813&mimeType=html&fmt=ahah

Literature Cited

  1. Amunts A, Brown A, Bai XC, Llácer JL, Hussain T. 1.  et al. 2014. Structure of the yeast mitochondrial large ribosomal subunit. Science 343:1485–89 [Google Scholar]
  2. Ansari A, Berendzen J, Bowne SF, Frauenfelder H, Iben IET. 2.  1985. Protein states and proteinquakes. PNAS 82:5000–4 [Google Scholar]
  3. Aquila A, Hunter MS, Doak RB, Kirian RA, Fromme P. 3.  et al. 2012. Time-resolved protein nanocrystallography using an X-ray free-electron laser. Opt. Express 20:2706–16 [Google Scholar]
  4. Arnlund D, Johansson LC, Wickstrand C, Barty A, Williams GJ. 4.  et al. 2014. Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser. Nat. Methods 11:923–26 [Google Scholar]
  5. Ayyer K. 5.  2014. Reconstructing images from sparse data PhD Thesis, Cornell Univ. Press [Google Scholar]
  6. Ayyer K, Philipp HT, Tate MW, Elser V, Gruner SM. 6.  2014. Real-space X-ray tomographic reconstruction of randomly oriented objects with sparse data frames. Opt. Express 22:2403–13 [Google Scholar]
  7. Ayyer K, Philipp HT, Tate MW, Wierman JL, Elser V, Gruner SM. 7.  2014. Determination of crystallographic intensities from sparse data. IUCrJ 229–34 [Google Scholar]
  8. Ballabriga R, Alozy J, Campbell M, Fiederle M, Fröjdh E. 8.  et al. 2013. The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J. Instrum. 8:2 [Google Scholar]
  9. Barends TRM, Foucar L, Botha S, Doak RB, Shoeman RL. 9.  et al. 2014. De novo protein crystal structure determination from X-ray free-electron laser data. Nature 505:244–47 [Google Scholar]
  10. Barty A, Caleman C, Aquila A, Timneanu N, Lomb L. 10.  et al. 2012. Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements. Nat. Photonics 6:35–40 [Google Scholar]
  11. Barty A, Küpper J, Chapman HN. 11.  2013. Molecular imaging using X-ray free-electron lasers. Annu. Rev. Phys. Chem. 64:415–35 [Google Scholar]
  12. Bass M. 12.  2001. Handbook of Optics. Volume III: Classical Optics, Vision Optics, X-Ray Optics New York: McGraw-Hill [Google Scholar]
  13. Bei M, Borland M, Cai Y, Elleaume P, Gerig R. 13.  et al. 2010. The potential of an ultimate storage ring for future light sources. Nuclear Instrum. Methods Phys. Res. A 622:518–35 [Google Scholar]
  14. Bilderback DH, Brock JD, Dale DS, Finkelstein KD, Pfeifer MA, Gruner SM. 14.  2010. Energy recovery linac (ERL) coherent hard X-ray sources. New J. Phys. 12:035011 [Google Scholar]
  15. Blanchet CE, Svergun DI. 15.  2013. Small-angle X-ray scattering on biological macromolecules and nanocomposites in solution. Annu. Rev. Phys. Chem. 64:37–54 [Google Scholar]
  16. Bogan MJ. 16.  2013. X-ray free electron lasers motivate bioanalytical characterization of protein nanocrystals: serial femtosecond crystallography. Anal. Chem. 85:3464–71 [Google Scholar]
  17. Boutet S, Lomb L, Williams GJ, Barends TRM, Aquila A. 17.  et al. 2012. High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–64 [Google Scholar]
  18. Brehm W, Diederichs K. 18.  2014. Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr. D 70:101–9 [Google Scholar]
  19. Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM. 19.  et al. 2008. Impermeable atomic membranes from graphene sheets. Nano Lett. 8:2458–62 [Google Scholar]
  20. Chapman HN, Fromme P, Barty A, White TA, Kirian RA. 20.  et al. 2011. Femtosecond X-ray protein nanocrystallography. Nature 470:73–77 [Google Scholar]
  21. Cho HS, Schotte F, Dashdorj N, Kyndt J, Anfinrud PA. 21.  2013. Probing anisotropic structure changes in proteins with picosecond time-resolved small-angle X-ray scattering. J. Phys. Chem. B 117:15825–32 [Google Scholar]
  22. Cogdell RJ, Gall A, Köhler J. 22.  2006. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q. Rev. Biophys. 39:227–324 [Google Scholar]
  23. Deisenhofer J, Epp O, Sinning I, Michel H. 23.  1995. Crystallographic refinement at 2.3 Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J. Mol. Biol. 246:429–57 [Google Scholar]
  24. Demirci H, Sierra RG, Laksmono H, Shoeman RL, Botha S. 24.  et al. 2013. Serial femtosecond X-ray diffraction of 30S ribosomal subunit microcrystals in liquid suspension at ambient temperature using an X-ray free-electron laser. Acta Crystallogr. F 69:1066–69 [Google Scholar]
  25. Donatelli JJ, Sethian JA. 25.  2014. Algorithmic framework for X-ray nanocrystallographic reconstruction in the presence of the indexing ambiguity. PNAS 111:593–98 [Google Scholar]
  26. Elser V. 26.  2003. Phase retrieval by iterated projections. J. Opt. Soc. Am. A 20:40–55 [Google Scholar]
  27. Elser V. 27.  2009. Noise limits on reconstructing diffraction signals from random tomographs. IEEE Trans. Inf. Theory 55:4715–22 [Google Scholar]
  28. Elser V. 28.  2011. Strategies for processing diffraction data from randomly oriented particles. Ultramicroscopy 111:788–92 [Google Scholar]
  29. Elser V. 29.  2011. Three-dimensional structure from intensity correlations. New J. Phys. 13:123014 [Google Scholar]
  30. Falcone R, Jacobsen C, Kirz J, Marchesini S, Shapiro D, Spence J. 30.  2011. New directions in X-ray microscopy. Contemp. Phys. 52:293–318 [Google Scholar]
  31. Foucar L, Barty A, Coppola N, Hartmann R, Holl P. 31.  et al. 2012. CASS—CFEL-ASG software suite. Comput. Phys. Commun. 183:2207–13 [Google Scholar]
  32. Garman EF, Nave C. 32.  2009. Radiation damage in protein crystals examined under various conditions by different methods. J. Synchrotron Radiat. 16:129–32 [Google Scholar]
  33. Gasbarro A, Bazarov I. 33.  2014. Reduced forms of the Wigner distribution function for the numerical analysis of rotationally symmetric synchrotron radiation. J. Synchrotron Radiat. 21:289–99 [Google Scholar]
  34. Gati C, Bourenkov G, Klinge M, Rehders D, Stellato F. 34.  et al. 2014. Serial crystallography on in vivo grown microcrystals using synchrotron radiation. IUCrJ 1:87–94 [Google Scholar]
  35. Gimenez EN, Ballabriga R, Campbell M, Horswell I, Dolbnya I. 35.  et al. 2011. Characterization of Medipix3 with synchrotron radiation. IEEE Trans. Nuclear Sci. 58:323–32 [Google Scholar]
  36. Gimenez EN, Ballabriga R, Campbell M, Horswell I, Llopart X. 36.  et al. 2011. Study of charge-sharing in MEDIPIX3 using a micro-focused synchrotron beam. J. Instrum. 6:C01031 [Google Scholar]
  37. Glatter O, Kratky O. 37.  1982. Small Angle X-Ray Scattering New York: Academic [Google Scholar]
  38. Greber BJ, Boehringer D, Leitner A, Bieri P, Voigts-Hoffmann F. 38.  et al. 2014. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 505:515–19 [Google Scholar]
  39. Hau-Riege SP. 39.  2012. Photoelectron dynamics in X-ray free-electron-laser diffractive imaging of biological samples. Phys. Rev. Lett. 108:238101 [Google Scholar]
  40. Hau-Riege SP. 40.  2013. Nonequilibrium electron dynamics in materials driven by high-intensity X-ray pulses. Phys. Rev. E 87:053102 [Google Scholar]
  41. Heymann M, Opthalage A, Wierman JL, Akella S, Szebenyi DME. 41.  et al. 2014. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. IUCrJ 1:349–60 [Google Scholar]
  42. Holton JM. 42.  2009. A beginner's guide to radiation damage. J. Synchrotron Radiat. 16:133–42 [Google Scholar]
  43. Holton JM, Frankel KA. 43.  2010. The minimum crystal size needed for a complete diffraction data set. Acta Crystallogr. D 66:393–408 [Google Scholar]
  44. Hosseinizadeh A, Schwander P, Dashti A, Fung R, D'Souza RM, Ourmazd A. 44.  2014. High-resolution structure of viruses from random diffraction snapshots. Philos. Trans. R. Soc. B 369:20130326 [Google Scholar]
  45. Howells MR, Beetz T, Chapman HN, Cui C, Holton JM. 45.  et al. 2009. An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. J. Electron Spectrosc. Relat. Phenom. 170:4–12 [Google Scholar]
  46. Hunter MS, Fromme P. 46.  2011. Toward structure determination using membrane-protein nanocrystals and microcrystals. Methods 55:387–404 [Google Scholar]
  47. Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL 2nd. 47.  et al. 2009. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat. Methods 6:606–12 [Google Scholar]
  48. Johansson LC, Arnlund D, Katona G, White TA, Barty A. 48.  et al. 2013. Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography. Nat. Commun. 4:2911 [Google Scholar]
  49. Johansson LC, Arnlund D, White TA, Katona G, DePonte DP. 49.  et al. 2012. Lipidic phase membrane protein serial femtosecond crystallography. Nat. Methods 9:263–65 [Google Scholar]
  50. Kam Z. 50.  1977. Determination of macromolecular structure in solution by spatial correlation of scattering fluctuations. Macromolecules 10:927–34 [Google Scholar]
  51. Kam Z, Gafni I. 51.  1985. Three-dimensional reconstruction of the shape of human wart virus using spatial correlations. Ultramicroscopy 17:251–62 [Google Scholar]
  52. Kam Z, Koch MHJ, Bordas J. 52.  1981. Fluctuation X-ray-scattering from biological particles in frozen solution by using synchrotron radiation. PNAS 78:3559–62 [Google Scholar]
  53. Kang HJ, Lee C, Drew D. 53.  2013. Breaking the barriers in membrane protein crystallography. Int. J. Biochem. Cell Biol. 45:636–44 [Google Scholar]
  54. Kim KJ. 54.  1986. Brightness, coherence and propagation characteristics of synchrotron radiation. Nuclear Instrum. Methods Phys. Res. A 246:71–76 [Google Scholar]
  55. Kirian RA. 55.  2012. Structure determination through correlated fluctuations in X-ray scattering. J. Phys. B 45:223001 [Google Scholar]
  56. Kirian RA, Schmidt KE, Wang X, Doak RB, Spence JC. 56.  2011. Signal, noise, and resolution in correlated fluctuations from snapshot small-angle X-ray scattering. Phys. Rev. E 84:011921 [Google Scholar]
  57. Koch MHJ, Vachette P, Svergun DI. 57.  2003. Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Q. Rev. Biophys. 36:147–227 [Google Scholar]
  58. Kuhlbrandt W. 58.  2014. The resolution revolution. Science 343:1443–44 [Google Scholar]
  59. Liu HG, Poon BK, Saldin DK, Spence JCH, Zwart PH. 59.  2013. Three-dimensional single-particle imaging using angular correlations from X-ray laser data. Acta Crystallogr. A 69:365–73 [Google Scholar]
  60. Liu W, Wacker D, Gati C, Han GW, James D. 60.  et al. 2013. Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–24 [Google Scholar]
  61. Loh ND. 61.  2014. A minimal view of single-particle imaging with X-ray lasers. Philos. Trans. R. Soc. B 369:20130328 [Google Scholar]
  62. Loh ND, Bogan MJ, Elser V, Barty A, Boutet S. 62.  et al. 2010. Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns. Phys. Rev. Lett. 104:225501 [Google Scholar]
  63. Loh NTD, Elser V. 63.  2009. Reconstruction algorithm for single-particle diffraction imaging experiments. Phys. Rev. E 80:026705 [Google Scholar]
  64. McNeil BWJ, Thompson NR. 64.  2010. X-ray free-electron lasers. Nat. Photonics 4:814–21 [Google Scholar]
  65. Mendez D, Lane TJ, Sung J, Sellberg J, Levard C. 65.  et al. 2014. Observation of correlated X-ray scattering at atomic resolution. Philos. Trans. R. Soc. B 369:20130315 [Google Scholar]
  66. Nave C, Garman EF. 66.  2005. Towards an understanding of radiation damage in cryocooled macromolecular crystals. J. Synchrotron Radiat. 12:257–60 [Google Scholar]
  67. Nave C, Hill MA. 67.  2005. Will reduced radiation damage occur with very small crystals?. J. Synchrotron Radiat. 12:299–303 [Google Scholar]
  68. Nederlof I, Li YW, van Heel M, Abrahams JP. 68.  2013. Imaging protein three-dimensional nanocrystals with cryo-EM. Acta Crystallogr. D 69:852–59 [Google Scholar]
  69. Nederlof I, van Genderen E, Li YW, Abrahams JP. 69.  2013. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals. Acta Crystallogr. D 69:1223–30 [Google Scholar]
  70. Neutze R, Moffat K. 70.  2012. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges. Curr. Opin. Struct. Biol. 22:651–59 [Google Scholar]
  71. Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J. 71.  2000. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–57 [Google Scholar]
  72. Ohashi H, Yamazaki H, Yumoto H, Koyama T, Senba Y. 72.  et al. 2013. Stable delivery of nano-beams for advanced nano-scale analyses. J. Phys. 425:052018 [Google Scholar]
  73. Perry SL, Guha S, Pawate AS, Bhaskarla A, Agarwal V. 73.  et al. 2013. A microfluidic approach for protein structure determination at room temperature via on-chip anomalous diffraction. Lab Chip 13:3183–87 [Google Scholar]
  74. Philipp HT, Ayyer K, Tate MW, Elser V, Gruner SM. 74.  2012. Solving structure with sparse, randomly-oriented X-ray data. Opt. Express 20:13129–37 [Google Scholar]
  75. Philipp HT, Ayyer K, Tate MW, Elser V, Gruner SM. 75.  2013. Recovering structure from many low-information 2-D images of randomly selected samples. J. Phys. 425:192016 [Google Scholar]
  76. Pollack L. 76.  2011. SAXS studies of ion–nucleic acid interactions. Annu. Rev. Biophys. 40:225–42 [Google Scholar]
  77. Poon HC, Saldin DK. 77.  2011. Beyond the crystallization paradigm: structure determination from diffraction patterns from ensembles of randomly oriented particles. Ultramicroscopy 111:798–806 [Google Scholar]
  78. Putnam CD, Hammel M, Hura GL, Tainer JA. 78.  2007. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40:191–285 [Google Scholar]
  79. Quevillon-Cheruel S, Dominique L, Leulliot N, Graille M, Poupon A. 79.  et al. 2004. The Paris-Sud yeast structural genomics pilot-project: from structure to function. Biochimie 86:617–23 [Google Scholar]
  80. Ravelli RBG, Garman EF. 80.  2006. Radiation damage in macromolecular cryocrystallography. Curr. Opin. Struct. Biol. 16:624–29 [Google Scholar]
  81. Redecke L, Nass K, DePonte DP, White TA, Rehders D. 81.  et al. 2013. Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser. Science 339:227–30 [Google Scholar]
  82. Saldin DK, Poon HC, Bogan MJ, Marchesini S, Shapiro DA. 82.  et al. 2011. New light on disordered ensembles: ab initio structure determination of one particle from scattering fluctuations of many copies. Phys. Rev. Lett. 106:115501 [Google Scholar]
  83. Saldin DK, Poon HC, Schwander P, Uddin M, Schmidt M. 83.  2011. Reconstructing an icosahedral virus from single-particle diffraction experiments. Opt. Express 19:17318–35 [Google Scholar]
  84. Sanishvili R, Yoder DW, Pothineni SB, Rosenbaum G, Xu SL. 84.  et al. 2011. Radiation damage in protein crystals is reduced with a micron-sized X-ray beam. PNAS 108:6127–32 [Google Scholar]
  85. Sauter NK, Hattne J, Grosse-Kunstleve RW, Echols N. 85.  2013. New Python-based methods for data processing. Acta Crystallogr. D 69:1274–82 [Google Scholar]
  86. Schlichting I, Miao J. 86.  2012. Emerging opportunities in structural biology with X-ray free-electron lasers. Curr. Opin. Struct. Biol. 22:613–26 [Google Scholar]
  87. Schmidt M. 87.  2013. Mix and inject: reaction initiation by diffusion for time-resolved macromolecular crystallography. Adv. Condens. Matter Phys. http://dx.doi.org/10.1155/2013/167276 [Google Scholar]
  88. Schmidt-Krey I, Cheng Y. 88.  2013. Electron Crystallography of Soluble and Membrane Proteins. Heidelberg, Ger: Springer [Google Scholar]
  89. Schotte F, Cho HS, Kaila VRI, Kamikubo H, Dashdorj N. 89.  et al. 2012. Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography. PNAS 109:19256–61 [Google Scholar]
  90. Shi D, Nannenga BL, Iadanza MG, Gonen T. 90.  2013. Three-dimensional electron crystallography of protein microcrystals. Elife 2:e0 13451–17 [Google Scholar]
  91. Shim JU, Cristobal G, Link DR, Thorsen T, Fraden S. 91.  2007. Using microfluidics to decouple nucleation and growth of protein crystals. Crystal Growth Design 7:2192–94 [Google Scholar]
  92. Shim JU, Cristobal G, Link DR, Thorsen T, Jia YW. 92.  et al. 2007. Control and measurement of the phase behavior of aqueous solutions using microfluidics. J. Am. Chem. Soc. 129:8825–35 [Google Scholar]
  93. Shneerson VL, Saldin DK. 93.  2009. Molecular shapes from small-angle X-ray scattering: extension of the theory to higher scattering angles. Acta Crystallogr. A 65:128–34 [Google Scholar]
  94. Sliz P, Harrison SC, Rosenbaum G. 94.  2003. How does radiation damage in protein crystals depend on X-ray dose?. Structure 11:13–19 [Google Scholar]
  95. Snell EH, Helliwell JR. 95.  2005. Macromolecular crystallization in microgravity. Rep. Prog. Phys. 68:799–853 [Google Scholar]
  96. Spence JCH, Weierstall U, Chapman HN. 96.  2012. X-ray lasers for structural and dynamic biology. Rep. Prog. Phys. 75:102601 [Google Scholar]
  97. Starodub D, Aquila A, Bajt S, Barthelmess M, Barty A. 97.  et al. 2012. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns. Nat. Commun. 3:1276 [Google Scholar]
  98. Stellato F, Oberthür D, Liang M, Bean R, Gati C. 98.  et al. 2014. Room-temperature macromolecular serial crystallography using synchrotron radiation. IUCrJ 1:204–12 [Google Scholar]
  99. Svergun DI, Koch MHJ. 99.  2002. Advances in structure analysis using small-angle scattering in solution. Curr. Opin. Struct. Biol. 12:654–60 [Google Scholar]
  100. Thibault P, Elser V. 100.  2010. X-ray diffraction microscopy. Annu. Rev. Condens. Matter Phys. 1:237–55 [Google Scholar]
  101. Warkentin M, Badeau R, Hopkins J, Thorne RE. 101.  2011. Dark progression reveals slow timescales for radiation damage between T = 180 and 240 K. Acta Crystallogr. D 67:792–803 [Google Scholar]
  102. Weierstall U, James D, Wang C, White TA, Wang D. 102.  et al. 2014. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5:3309 [Google Scholar]
  103. Weierstall U, Spence JCH, Doak RB. 103.  2012. Injector for scattering measurements on fully solvated biospecies. Rev. Sci. Instrum. 83:035108 [Google Scholar]
  104. White TA, Barty A, Stellato F, Holton JM, Kirian RA. 104.  et al. 2013. Crystallographic data processing for free-electron laser sources. Acta Crystallogr. D 69:1231–40 [Google Scholar]
  105. White TA, Kirian RA, Martin AV, Aquila A, Nass K. 105.  et al. 2012. CrystFEL: a software suite for snapshot serial crystallography. J. Appl. Crystallogr. 45:335–41 [Google Scholar]
  106. Wierman JL, Alden JS, Kim CU, McEuen PL, Gruner SM. 106.  2013. Graphene as a protein crystal mounting material to reduce background scatter. J. Appl. Crystallogr. 46:1501–7 [Google Scholar]
  107. Woodson SA. 107.  2010. Compact intermediates in RNA folding. Annu. Rev. Biophys. 39:61–77 [Google Scholar]
  108. Woodson SA. 108.  2011. RNA folding pathways and the self-assembly of ribosomes. Acc. Chem. Res. 44:1312–19 [Google Scholar]
  109. Yuk JM, Kim K, Aleman B, Regan W, Ryu JH. 109.  et al. 2011. Graphene veils and sandwiches. Nano Lett. 11:3290–94 [Google Scholar]
  110. Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ. 110.  et al. 2012. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336:61–64 [Google Scholar]
  111. Zang C, Stevens JA, Link JJ, Guo LJ, Wang LJ, Zhong DP. 111.  2009. Ultrafast proteinquake dynamics in cytochrome c. J. Am. Chem. Soc. 131:2846–52 [Google Scholar]
  112. Ziaja B, Chapman HN, Faustlin R, Hau-Riege S, Jurek Z. 112.  et al. 2012. Limitations of coherent diffractive imaging of single objects due to their damage by intense X-ray radiation. New J. Phys. 14:114015 [Google Scholar]
/content/journals/10.1146/annurev-biophys-060414-033813
Loading
/content/journals/10.1146/annurev-biophys-060414-033813
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error