The pathway of CRISPR-Cas immunity redefines the roles of RNA in the flow of genetic information and ignites excitement for next-generation gene therapy tools. CRISPR-Cas machineries offer a fascinating set of new enzyme assemblies from which one can learn principles of molecular interactions and chemical activities. The interference step of the CRISPR-Cas immunity pathway congregates proteins, RNA, and DNA into a single molecular entity that selectively destroys invading nucleic acids. Although much remains to be discovered, a picture of how the interference process takes place is emerging. This review focuses on the current structural data for the three known types of RNA-guided nucleic acid interference mechanisms. In it, we describe key features of individual complexes and we emphasize comparisons across types and along functional stages. We aim to provide readers with a set of core principles learned from the three types of interference complexes and a deep appreciation of the diversity among them.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Anders C, Niewoehner O, Duerst A, Jinek M. 1.  2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–73 [Google Scholar]
  2. Bailey S. 2.  2013. The Cmr complex: an RNA-guided endoribonuclease. Biochem. Soc. Trans. 41:1464–67 [Google Scholar]
  3. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P. 3.  et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–12 [Google Scholar]
  4. Barrangou R, Horvath P. 4.  2012. CRISPR: new horizons in phage resistance and strain identification. Annu. Rev. Food Sci. Technol. 3:143–62 [Google Scholar]
  5. Barrangou R, Marraffini LA. 5.  2014. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell 54:234–44 [Google Scholar]
  6. Benda C, Ebert J, Scheltema RA, Schiller HB, Baumgärtner M. 6.  et al. 2014. Structural model of a CRISPR RNA-silencing complex reveals the RNA-target cleavage activity in Cmr4. Mol. Cell 56:43–54 [Google Scholar]
  7. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 7.  2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–61 [Google Scholar]
  8. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ. 8.  et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–64 [Google Scholar]
  9. Carte J, Christopher RT, Smith JT, Olson S, Barrangou R. 9.  et al. 2014. The three major types of CRISPR-Cas systems function independently in CRISPR RNA biogenesis in Streptococcus thermophilus. Mol. Microbiol. 93:98–112 [Google Scholar]
  10. Carte J, Wang R, Li H, Terns RM, Terns MP. 10.  2008. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22:3489–96 [Google Scholar]
  11. Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. 11.  2012. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3:945 [Google Scholar]
  12. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y. 12.  et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–7 [Google Scholar]
  13. Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C. 13.  et al. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:1390–400 [Google Scholar]
  14. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M. 14.  et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat. Biotechnol. 32:1262–67 [Google Scholar]
  15. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. 15.  2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10:1116–21 [Google Scholar]
  16. Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lecrivain AL. 16.  et al. 2014. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 42:2577–90 [Google Scholar]
  17. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D. 17.  et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:822–26 [Google Scholar]
  18. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R. 18.  et al. 2011. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71 [Google Scholar]
  19. Gasiunas G, Barrangou R, Horvath P, Siksnys V. 19.  2012. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579–86 [Google Scholar]
  20. Gasiunas G, Siksnys V. 20.  2013. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?. Trends Microbiol. 21:562–67 [Google Scholar]
  21. Gasiunas G, Sinkunas T, Siksnys V. 21.  2014. Molecular mechanisms of CRISPR-mediated microbial immunity. Cell. Molec. Life Sci. 71:449–65 [Google Scholar]
  22. Gesner EM, Schellenberg MJ, Garside EL, George MM, Macmillan AM. 22.  2011. Recognition and maturation of effector RNAs in a CRISPR interference pathway. Nat. Struct. Molec. Biol. 18:688–92 [Google Scholar]
  23. Goldberg GW, Jiang W, Bikard D, Marraffini LA. 23.  2014. Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514:633–37 [Google Scholar]
  24. Gottesman S. 24.  2011. Microbiology: dicing defence in bacteria. Nature 471:588–89 [Google Scholar]
  25. Haft DH, Selengut J, Mongodin EF, Nelson KE. 25.  2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLOS Comput. Biol. 1e60 [Google Scholar]
  26. Hale CR, Cocozaki A, Li H, Terns RM, Terns MP. 26.  2014. Target RNA capture and cleavage by the Cmr type III-B CRISPR–Cas effector complex. Genes Dev. 28:2432–43 [Google Scholar]
  27. Hale CR, Zhao P, Olson S, Duff MO, Graveley BR. 27.  et al. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–56 [Google Scholar]
  28. Hatoum-Aslan A, Maniv I, Marraffini LA. 28.  2011. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. PNAS 108:21218–22 [Google Scholar]
  29. Hatoum-Aslan A, Samai P, Maniv I, Jiang W, Marraffini LA. 29.  2013. A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs. J. Biol. Chem. 288:27888–97 [Google Scholar]
  30. Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. 30.  2010. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355–58 [Google Scholar]
  31. Heidrich N, Vogel J. 31.  2013. Same same but different: new structural insight into CRISPR-Cas complexes. Mol. Cell 52:4–7 [Google Scholar]
  32. Hochstrasser ML, Doudna JA. 32.  2015. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem. Sci. 40:58–66 [Google Scholar]
  33. Hochstrasser ML, Taylor DW, Bhat P, Guegler CK, Sternberg SH. 33.  et al. 2014. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. PNAS 111:6618–23 [Google Scholar]
  34. Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D. 34.  et al. 2005. New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol. Rev. 29:435–63 [Google Scholar]
  35. Horvath P, Barrangou R. 35.  2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–70 [Google Scholar]
  36. Hsu PD, Lander ES, Zhang F. 36.  2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78 [Google Scholar]
  37. Huo Y, Nam KH, Ding F, Lee H, Wu L. 37.  et al. 2014. Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nature Struct. Mol. Biol. 21:771–77 [Google Scholar]
  38. Jackson RN, Golden SM, van Erp PB, Carter J, Westra ER. 38.  et al. 2014. Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science 345:1473–79 [Google Scholar]
  39. Jackson RN, Lavin M, Carter J, Wiedenheft B. 39.  2014. Fitting CRISPR-associated Cas3 into the helicase family tree. Curr. Opin. Struct. Biol. 24:106–14 [Google Scholar]
  40. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 40.  2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21 [Google Scholar]
  41. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E. 41.  et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997 [Google Scholar]
  42. Jones CL, Sampson TR, Nakaya HI, Pulendran B, Weiss DS. 42.  2012. Repression of bacterial lipoprotein production by Francisella novicida facilitates evasion of innate immune recognition. Cell. Microbiol. 14:1531–43 [Google Scholar]
  43. Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER. 43.  et al. 2011. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat. Struct. Molec. Biol. 18:529–36 [Google Scholar]
  44. Kunin V, Sorek R, Hugenholtz P. 44.  2007. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 8:R61 [Google Scholar]
  45. Li H. 45.  2015. Structural principles of CRISPR RNA processing. Structure 23:13–20 [Google Scholar]
  46. Lintner NG, Kerou M, Brumfield SK, Graham S, Liu H. 46.  et al. 2011. Structural and functional characterization of an archaeal clustered regularly interspaced short palindromic repeat (CRISPR)-associated complex for antiviral defense (CASCADE). J. Biol. Chem. 286:21643–56 [Google Scholar]
  47. Makarova KS, Aravind L, Wolf YI, Koonin EV. 47.  2011. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct 6:38 [Google Scholar]
  48. Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. 48.  2006. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1:7 [Google Scholar]
  49. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E. 49.  et al. 2011. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9:467–77 [Google Scholar]
  50. Makarova KS, Wolf YI, Koonin EV. 50.  2013. The basic building blocks and evolution of CRISPR–Cas systems. Biochem. Soc. Trans. 41:1392–400 [Google Scholar]
  51. Malina A, Mills JR, Cencic R, Yan Y, Fraser J. 51.  et al. 2013. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev. 27:2602–14 [Google Scholar]
  52. Marraffini LA, Sontheimer EJ. 52.  2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–45 [Google Scholar]
  53. Marraffini LA, Sontheimer EJ. 53.  2010. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11:181–90 [Google Scholar]
  54. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Almendros C. 54.  2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–40 [Google Scholar]
  55. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E. 55.  2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60:174–82 [Google Scholar]
  56. Mulepati S, Bailey S. 56.  2011. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3). J. Biol. Chem. 286:31896–903 [Google Scholar]
  57. Mulepati S, Héroux A, Bailey S. 57.  2014. Structural biology. Crystal structure of a CRISPR RNA–guided surveillance complex bound to a ssDNA target. Science 345:1479–84 [Google Scholar]
  58. Nam KH, Haitjema C, Liu X, Ding F, Wang H. 58.  et al. 2012. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure 20:1574–84 [Google Scholar]
  59. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI. 59.  et al. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:935–49 [Google Scholar]
  60. O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. 60.  2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:263–66 [Google Scholar]
  61. Plagens A, Tjaden B, Hagemann A, Randau L, Hensel R. 61.  2012. Characterization of the CRISPR/Cas subtype I-A system of the hyperthermophilic crenarchaeon Thermoproteus tenax. J. Bacteriol. 194:2491–500 [Google Scholar]
  62. Pourcel C, Salvignol G, Vergnaud G. 62.  2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–63 [Google Scholar]
  63. Pul U, Wurm R, Arslan Z, Geissen R, Hofmann N, Wagner R. 63.  2010. Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Molec. Microbiol. 75:1495–512 [Google Scholar]
  64. Ramia NF, Spilman M, Tang L, Shao Y, Elmore J. 64.  et al. 2014. Essential structural and functional roles of the Cmr4 subunit in RNA cleavage by the Cmr CRISPR-Cas complex. Cell Rep. 9:1610–17 [Google Scholar]
  65. Ramia NF, Tang L, Cocozaki AI, Li H. 65.  2014. Staphylococcus epidermidis Csm1 is a 3′–5′ exonuclease. Nucleic Acids Res. 42:1129–38 [Google Scholar]
  66. Reeks J, Naismith JH, White MF. 66.  2013. CRISPR interference: a structural perspective. Biochem. J. 453:155–66 [Google Scholar]
  67. Reeks J, Sokolowski RD, Graham S, Liu H, Naismith JH, White MF. 67.  2013. Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing. Biochem. J. 452:223–30 [Google Scholar]
  68. Richter H, Zoephel J, Schermuly J, Maticzka D, Backofen R, Randau L. 68.  2012. Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis. Nucleic Acids Res. 40:9887–96 [Google Scholar]
  69. Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V. 69.  et al. 2013. Structure of the CRISPR interference complex CSM reveals key similarities with Cascade. Mol. Cell 52:124–34 [Google Scholar]
  70. Sampson TR, Saroj SD, Llewellyn AC, Tzeng Y-L, Weiss DS. 70.  2013. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:254–57 [Google Scholar]
  71. Sander JD, Joung JK. 71.  2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:347–55 [Google Scholar]
  72. Sashital DG, Jinek M, Doudna JA. 72.  2011. An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat. Struct. Molec. Biol. 18:680–87 [Google Scholar]
  73. Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER. 73.  et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS 108:10098–103 [Google Scholar]
  74. Shao Y, Li H. 74.  2013. Recognition and cleavage of a nonstructured CRISPR RNA by its processing endoribonuclease Cas6. Structure 21:385–93 [Google Scholar]
  75. Sinkunas T, Gasiunas G, Waghmare SP, Dickman MJ, Barrangou R. 75.  et al. 2013. In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J. 32:385–94 [Google Scholar]
  76. Sokolowski RD, Graham S, White MF. 76.  2014. Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system. Nucleic Acids Res. 42:6532–41 [Google Scholar]
  77. Sorek R, Lawrence CM, Wiedenheft B. 77.  2013. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 82:237–66 [Google Scholar]
  78. Spilman M, Cocozaki A, Hale C, Shao Y, Ramia N. 78.  et al. 2013. Structure of an RNA silencing complex of the CRISPR-Cas immune system. Mol. Cell 52:146–52 [Google Scholar]
  79. Staals RHJ, Agari Y, Maki-Yonekura S, Zhu Y, Taylor DW. 79.  et al. 2013. Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus. Mol. Cell 52:135–45 [Google Scholar]
  80. Staals RHJ, Zhu Y, Taylor DW, Kornfeld JE, Sharma K. 80.  et al. 2014. RNA Targeting by the Type III-A CRISPR-Cas Csm Complex of Thermus thermophilus. Mol. Cell 56:518–30 [Google Scholar]
  81. Sternberg SH, Haurwitz RE, Doudna JA. 81.  2012. Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. RNA 18:661–72 [Google Scholar]
  82. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 82.  2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67 [Google Scholar]
  83. Stoddard BL. 83.  2005. Homing endonuclease structure and function. Q. Rev. Biophys. 38:49–95 [Google Scholar]
  84. Terns MP, Terns RM. 84.  2011. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 14:321–27 [Google Scholar]
  85. Terns RM, Terns MP. 85.  2014. CRISPR-based technologies: prokaryotic defense weapons repurposed. Trends Genet. 30:111–18 [Google Scholar]
  86. van der Oost J, Westra ER, Jackson RN, Wiedenheft B. 86.  2014. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat. Rev. Microbiol. 12:479–92 [Google Scholar]
  87. Wang R, Preamplume G, Terns MP, Terns RM, Li H. 87.  2011. Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure 19:257–64 [Google Scholar]
  88. Westra ER, Swarts DC, Staals RHJ, Jore MM, Brouns SJJ, van der Oost J. 88.  2012. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu. Rev. Genet. 46:311–39 [Google Scholar]
  89. Westra ER, van Erp PBG, Künne T, Wong SP, Staals RHJ. 89.  et al. 2012. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46:595–605 [Google Scholar]
  90. Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJJ. 90.  et al. 2011. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477:486–89 [Google Scholar]
  91. Wiedenheft B, Sternberg SH, Doudna JA. 91.  2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–38 [Google Scholar]
  92. Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K. 92.  et al. 2011. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. PNAS 108:10092–97 [Google Scholar]
  93. Yang W. 93.  2011. Nucleases: diversity of structure, function and mechanism. Q. Rev. Biophys. 44:1–93 [Google Scholar]
  94. Yosef I, Goren MG, Qimron U. 94.  2012. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40:5569–76 [Google Scholar]
  95. Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K. 95.  et al. 2012. Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol. Cell 45:303–13 [Google Scholar]
  96. Zhao H, Sheng G, Wang J, Wang M, Bunkoczi G. 96.  et al. 2014. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature 515:147–50 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error