Extensive research has yielded crucial insights into the mechanism of neurotransmitter release, and working models for the functions of key proteins involved in release. The SNAREs Syntaxin-1, Synaptobrevin, and SNAP-25 play a central role in membrane fusion, forming SNARE complexes that bridge the vesicle and plasma membranes and that are disassembled by NSF–SNAPs. Exocytosis likely starts with Syntaxin-1 folded into a self-inhibited closed conformation that binds to Munc18-1. Munc13s open Syntaxin-1, orchestrating SNARE complex assembly in an NSF–SNAP–resistant manner together with Munc18-1. In the resulting primed state, with partially assembled SNARE complexes, fusion is inhibited by Synaptotagmin-1 and Complexins, which also perform active functions in release. Upon influx of Ca2+, Synaptotagmin-1 activates fast release, likely by relieving the inhibition caused by Complexins and cooperating with the SNAREs in bringing the membranes together. Although alternative models exist and fundamental questions remain unanswered, a definitive description of the basic release mechanism may be available soon.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Acuna C, Guo Q, Burre J, Sharma M, Sun J, Sudhof TC. 1.  2014. Microsecond dissection of neurotransmitter release: SNARE-complex assembly dictates speed and Ca2+ sensitivity. Neuron 82:1088–100 [Google Scholar]
  2. Aeffner S, Reusch T, Weinhausen B, Salditt T. 2.  2012. Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. PNAS 109:E1609–18 [Google Scholar]
  3. Arac D, Chen X, Khant HA, Ubach J, Ludtke SJ. 3.  et al. 2006. Close membrane–membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol. 13:209–17 [Google Scholar]
  4. Arancillo M, Min SW, Gerber S, Munster-Wandowski A, Wu YJ. 4.  et al. 2013. Titration of Syntaxin1 in mammalian synapses reveals multiple roles in vesicle docking, priming, and release probability. J. Neurosci. 33:16698–714 [Google Scholar]
  5. Aravamudan B, Fergestad T, Davis WS, Rodesch CK, Broadie K. 5.  1999. Drosophila UNC-13 is essential for synaptic transmission. Nat. Neurosci. 2:965–71 [Google Scholar]
  6. Bacaj T, Wu D, Yang X, Morishita W, Zhou P. 6.  et al. 2013. Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release. Neuron 80:947–59 [Google Scholar]
  7. Banerjee A, Barry VA, DasGupta BR, Martin TF. 7.  1996. N-Ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J. Biol. Chem. 271:20223–26 [Google Scholar]
  8. Basu J, Shen N, Dulubova I, Lu J, Guan R. 8.  et al. 2005. A minimal domain responsible for Munc13 activity. Nat. Struct. Mol. Biol. 12:1017–18 [Google Scholar]
  9. Bhalla A, Chicka MC, Tucker WC, Chapman ER. 9.  2006. Ca2+-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat. Struct. Mol. Biol. 13:323–30 [Google Scholar]
  10. Bharat TA, Malsam J, Hagen WJ, Scheutzow A, Sollner TH, Briggs JA. 10.  2014. SNARE and regulatory proteins induce local membrane protrusions to prime docked vesicles for fast calcium-triggered fusion. EMBO Rep. 15:308–14 [Google Scholar]
  11. Boswell KL, James DJ, Esquibel JM, Bruinsma S, Shirakawa R. 11.  et al. 2012. Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion. J. Cell Biol. 197:301–12 [Google Scholar]
  12. Bracher A, Weissenhorn W. 12.  2002. Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p. EMBO J. 21:6114–24 [Google Scholar]
  13. Brunger AT, Weninger K, Bowen M, Chu S. 13.  2009. Single-molecule studies of the neuronal SNARE fusion machinery. Annu. Rev. Biochem. 78:903–28 [Google Scholar]
  14. Burkhardt P, Hattendorf DA, Weis WI, Fasshauer D. 14.  2008. Munc18a controls SNARE assembly through its interaction with the Syntaxin N-peptide. EMBO J. 27:923–33 [Google Scholar]
  15. Burkhardt P, Stegmann CM, Cooper B, Kloepper TH, Imig C. 15.  et al. 2011. Primordial neurosecretory apparatus identified in the choanoflagellate. Monosiga brevicollis. PNAS 108:15264–69 [Google Scholar]
  16. Cai H, Reinisch K, Ferro-Novick S. 16.  2007. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12:671–82 [Google Scholar]
  17. Cao P, Yang X, Sudhof TC. 17.  2013. Complexin activates exocytosis of distinct secretory vesicles controlled by different synaptotagmins. J. Neurosci. 33:1714–27 [Google Scholar]
  18. Carr CM, Grote E, Munson M, Hughson FM, Novick PJ. 18.  1999. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell Biol. 146:333–44 [Google Scholar]
  19. Carr CM, Rizo J. 19.  2010. At the junction of SNARE and SM protein function. Curr. Opin. Cell Biol. 22:488–95 [Google Scholar]
  20. Chan YH, van LB, Boxer SG. 20.  2009. Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides. PNAS 106:979–84 [Google Scholar]
  21. Chapman ER. 21.  2008. How Does synaptotagmin trigger neurotransmitter release?. Annu. Rev. Biochem. 77:615–41 [Google Scholar]
  22. Chapman ER, Davis AF. 22.  1998. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem. 273:13995–4001 [Google Scholar]
  23. Chen X, Lu J, Dulubova I, Rizo J. 23.  2008. NMR analysis of the closed conformation of Syntaxin-1. J. Biomol. NMR 41:43–54 [Google Scholar]
  24. Chen X, Tomchick DR, Kovrigin E, Arac D, Machius M. 24.  et al. 2002. Three-dimensional structure of the complexin/SNARE complex. Neuron 33:397–409 [Google Scholar]
  25. Chernomordik LV, Kozlov MM. 25.  2008. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15:675–83 [Google Scholar]
  26. Chicka MC, Hui E, Liu H, Chapman ER. 26.  2008. Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+. Nat. Struct. Mol. Biol. 15:827–35 [Google Scholar]
  27. Cho RW, Kummel D, Li F, Baguley SW, Coleman J. 27.  et al. 2014. Genetic analysis of the Complexin trans-clamping model for cross-linking SNARE complexes in vivo. PNAS 111:10317–22 [Google Scholar]
  28. Choi UB, Strop P, Vrljic M, Chu S, Brunger AT, Weninger KR. 28.  2010. Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat. Struct. Mol. Biol. 17:318–24 [Google Scholar]
  29. Cohen FS, Melikyan GB. 29.  2004. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199:1–14 [Google Scholar]
  30. Dai H, Shen N, Arac D, Rizo J. 30.  2007. A quaternary SNARE-synaptotagmin-Ca2+-phospholipid complex in neurotransmitter release. J. Mol. Biol. 367:848–63 [Google Scholar]
  31. Damer CK, Creutz CE. 31.  1994. Synergistic membrane interactions of the two C2 domains of synaptotagmin. J. Biol. Chem. 269:31115–23 [Google Scholar]
  32. de Wit H, Walter AM, Milosevic I, Gulyas-Kovacs A, Riedel D. 32.  et al. 2009. Synaptotagmin-1 docks secretory vesicles to Syntaxin-1/SNAP-25 acceptor complexes. Cell 138:935–46 [Google Scholar]
  33. Deak F, Shin OH, Kavalali ET, Sudhof TC. 33.  2006. Structural determinants of Synaptobrevin 2 function in synaptic vesicle fusion. J. Neurosci. 26:6668–76 [Google Scholar]
  34. Deak F, Xu Y, Chang WP, Dulubova I, Khvotchev M. 34.  et al. 2009. Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming. J. Cell Biol. 184:751–64 [Google Scholar]
  35. Dhara M, Yarzagaray A, Schwarz Y, Dutta S, Grabner C. 35.  et al. 2014. Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics. J. Cell Biol. 204:1123–40 [Google Scholar]
  36. Diao J, Cipriano DJ, Zhao M, Zhang Y, Shah S. 36.  et al. 2013. Complexin-1 enhances the on-rate of vesicle docking via simultaneous SNARE and membrane interactions. J. Am. Chem. Soc. 135:15274–77 [Google Scholar]
  37. Diao J, Grob P, Cipriano DJ, Kyoung M, Zhang Y. 37.  et al. 2012. Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion. eLife 1:e00109 [Google Scholar]
  38. Dong G, Hutagalung AH, Fu C, Novick P, Reinisch KM. 38.  2005. The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat. Struct. Mol. Biol. 12:1094–100 [Google Scholar]
  39. Dulubova I, Khvotchev M, Liu S, Huryeva I, Sudhof TC, Rizo J. 39.  2007. Munc18-1 binds directly to the neuronal SNARE complex. PNAS 104:2697–702 [Google Scholar]
  40. Dulubova I, Lou X, Lu J, Huryeva I, Alam A. 40.  et al. 2005. A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity?. EMBO J. 24:2839–50 [Google Scholar]
  41. Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I. 41.  et al. 1999. A conformational switch in Syntaxin during exocytosis: role of munc18. EMBO J. 18:4372–82 [Google Scholar]
  42. Dulubova I, Yamaguchi T, Arac D, Li H, Huryeva I. 42.  et al. 2003. Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins. PNAS 100:32–37 [Google Scholar]
  43. Dulubova I, Yamaguchi T, Gao Y, Min SW, Huryeva I. 43.  et al. 2002. How Tlg2p/Syntaxin 16 ‘snares’ Vps45. EMBO J. 21:3620–31 [Google Scholar]
  44. Dulubova I, Yamaguchi T, Wang Y, Sudhof TC, Rizo J. 44.  2001. Vam3p structure reveals conserved and divergent properties of Syntaxins. Nat. Struct. Biol. 8:258–64 [Google Scholar]
  45. Fasshauer D, Sutton RB, Brunger AT, Jahn R. 45.  1998. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. PNAS 95:15781–86 [Google Scholar]
  46. Fernandez I, Arac D, Ubach J, Gerber SH, Shin O. 46.  et al. 2001. Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron 32:1057–69 [Google Scholar]
  47. Fernandez I, Ubach J, Dulubova I, Zhang X, Sudhof TC, Rizo J. 47.  1998. Three-dimensional structure of an evolutionarily conserved N-terminal domain of Syntaxin 1A. Cell 94:841–49 [Google Scholar]
  48. Fernandez-Chacon R, Konigstorfer A, Gerber SH, Garcia J, Matos MF. 48.  et al. 2001. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49 [Google Scholar]
  49. Furgason ML, MacDonald C, Shanks SG, Ryder SP, Bryant NJ, Munson M. 49.  2009. The N-terminal peptide of the Syntaxin Tlg2p modulates binding of its closed conformation to Vps45p. PNAS 106:14303–8 [Google Scholar]
  50. Gandasi NR, Barg S. 50.  2014. Contact-induced clustering of Syntaxin and munc18 docks secretory granules at the exocytosis site. Nat. Commun. 5:3914 [Google Scholar]
  51. Gao Y, Zorman S, Gundersen G, Xi Z, Ma L. 51.  et al. 2012. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337:1340–43 [Google Scholar]
  52. Gerber SH, Rah JC, Min SW, Liu X, de Wit H. 52.  et al. 2008. Conformational switch of Syntaxin-1 controls synaptic vesicle fusion. Science 321:1507–10 [Google Scholar]
  53. Giraudo CG, Eng WS, Melia TJ, Rothman JE. 53.  2006. A clamping mechanism involved in SNARE-dependent exocytosis. Science 313:676–80 [Google Scholar]
  54. Giraudo CG, Garcia-Diaz A, Eng WS, Chen Y, Hendrickson WA. 54.  et al. 2009. Alternative zippering as an on-off switch for SNARE-mediated fusion. Science 323:512–16 [Google Scholar]
  55. Graham ME, Handley MT, Barclay JW, Ciufo LF, Barrow SL. 55.  et al. 2008. A gain-of-function mutant of Munc18-1 stimulates secretory granule recruitment and exocytosis and reveals a direct interaction of Munc18-1 with Rab3. Biochem. J. 409:407–16 [Google Scholar]
  56. Guan R, Dai H, Rizo J. 56.  2008. Binding of the Munc13-1 MUN domain to membrane-anchored SNARE complexes. Biochemistry 47:1474–81 [Google Scholar]
  57. Hammarlund M, Palfreyman MT, Watanabe S, Olsen S, Jorgensen EM. 57.  2007. Open Syntaxin docks synaptic vesicles. PLOS Biol. 5:e198 [Google Scholar]
  58. Han GA, Malintan NT, Saw NM, Li L, Han L. 58.  et al. 2011. Munc18-1 domain-1 controls vesicle docking and secretion by interacting with Syntaxin-1 and chaperoning it to the plasma membrane. Mol. Biol. Cell 22:4134–49 [Google Scholar]
  59. Han L, Jiang T, Han GA, Malintan NT, Xie L. 59.  et al. 2009. Rescue of Munc18-1 and -2 double knockdown reveals the essential functions of interaction between Munc18 and closed Syntaxin in PC12 cells. Mol. Biol. Cell 20:4962–75 [Google Scholar]
  60. Hanson PI, Roth R, Morisaki H, Jahn R, Heuser JE. 60.  1997. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90:523–35 [Google Scholar]
  61. Hashizume K, Cheng YS, Hutton JL, Chiu CH, Carr CM. 61.  2009. Yeast Sec1p functions before and after vesicle docking. Mol. Biol. Cell 20:4673–85 [Google Scholar]
  62. Hata Y, Slaughter CA, Sudhof TC. 62.  1993. Synaptic vesicle fusion complex contains unc-18 homologue bound to Syntaxin. Nature 366:347–51 [Google Scholar]
  63. Hernandez JM, Stein A, Behrmann E, Riedel D, Cypionka A. 63.  et al. 2012. Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 336:1581–84 [Google Scholar]
  64. Herrick DZ, Kuo W, Huang H, Schwieters CD, Ellena JF, Cafiso DS. 64.  2009. Solution and membrane-bound conformations of the tandem C2A and C2B domains of synaptotagmin 1: evidence for bilayer bridging. J. Mol. Biol. 390:913–23 [Google Scholar]
  65. Hobson RJ, Liu Q, Watanabe S, Jorgensen EM. 65.  2011. Complexin maintains vesicles in the primed state in C. elegans. Curr. Biol. 21:106–13 [Google Scholar]
  66. Hu SH, Christie MP, Saez NJ, Latham CF, Jarrott R. 66.  et al. 2011. Possible roles for Munc18-1 domain 3a and Syntaxin1 N-peptide and C-terminal anchor in SNARE complex formation. PNAS 108:1040–45 [Google Scholar]
  67. Hui E, Gaffaney JD, Wang Z, Johnson CP, Evans CS, Chapman ER. 67.  2011. Mechanism and function of synaptotagmin-mediated membrane apposition. Nat. Struct. Mol. Biol. 18:813–21 [Google Scholar]
  68. Hui E, Johnson CP, Yao J, Dunning FM, Chapman ER. 68.  2009. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca2+-regulated fusion. Cell 138:709–21 [Google Scholar]
  69. Huntwork S, Littleton JT. 69.  2007. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci. 10:1235–37 [Google Scholar]
  70. Jahn R, Fasshauer D. 70.  2012. Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–7 [Google Scholar]
  71. Jahn R, Scheller RH. 71.  2006. SNAREs–engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7:631–43 [Google Scholar]
  72. Johnson JR, Ferdek P, Lian LY, Barclay JW, Burgoyne RD, Morgan A. 72.  2009. Binding of UNC-18 to the N-terminus of Syntaxin is essential for neurotransmission in Caenorhabditis elegans. Biochem. J. 418:73–80 [Google Scholar]
  73. Jorquera RA, Huntwork-Rodriguez S, Akbergenova Y, Cho RW, Littleton JT. 73.  2012. Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity. J. Neurosci. 32:18234–45 [Google Scholar]
  74. Kaeser-Woo YJ, Yang X, Sudhof TC. 74.  2012. C-terminal complexin sequence is selectively required for clamping and priming but not for Ca2+ triggering of synaptic exocytosis. J. Neurosci. 32:2877–85 [Google Scholar]
  75. Kesavan J, Borisovska M, Bruns D. 75.  2007. v-SNARE actions during Ca2+-triggered exocytosis. Cell 131:351–63 [Google Scholar]
  76. Khvotchev M, Dulubova I, Sun J, Dai H, Rizo J, Sudhof TC. 76.  2007. Dual modes of Munc18-1/SNARE interactions are coupled by functionally critical binding to Syntaxin-1 N terminus. J. Neurosci. 27:12147–55 [Google Scholar]
  77. Kim CS, Kweon DH, Shin YK. 77.  2002. Membrane topologies of neuronal SNARE folding intermediates. Biochemistry 41:10928–33 [Google Scholar]
  78. Kim JY, Choi BK, Choi MG, Kim SA, Lai Y. 78.  et al. 2012. Solution single-vesicle assay reveals PIP2-mediated sequential actions of synaptotagmin-1 on SNAREs. EMBO J. 31:2144–55 [Google Scholar]
  79. Kummel D, Krishnakumar SS, Radoff DT, Li F, Giraudo CG. 79.  et al. 2011. Complexin cross-links prefusion SNAREs into a zigzag array. Nat. Struct. Mol. Biol. 18:927–33 [Google Scholar]
  80. Kyoung M, Srivastava A, Zhang Y, Diao J, Vrljic M. 80.  et al. 2011. In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release. PNAS 108:E304–13 [Google Scholar]
  81. Lai AL, Huang H, Herrick DZ, Epp N, Cafiso DS. 81.  2011. Synaptotagmin 1 and SNAREs form a complex that is structurally heterogeneous. J. Mol. Biol. 405:696–706 [Google Scholar]
  82. Lai Y, Diao J, Cipriano DJ, Zhang Y, Pfuetzner RA. 82.  et al. 2014. Complexin inhibits spontaneous release and synchronizes Ca2+-triggered synaptic vesicle fusion by distinct mechanisms. eLife 3:e03756 [Google Scholar]
  83. Lai Y, Diao J, Liu Y, Ishitsuka Y, Su Z. 83.  et al. 2013. Fusion pore formation and expansion induced by Ca2+ and synaptotagmin 1. PNAS 110:1333–38 [Google Scholar]
  84. Lai Y, Shin YK. 84.  2012. The importance of an asymmetric distribution of acidic lipids for synaptotagmin 1 function as a Ca2+ sensor. Biochem. J. 443:223–29 [Google Scholar]
  85. Lee HK, Yang Y, Su Z, Hyeon C, Lee TS. 85.  et al. 2010. Dynamic Ca2+-dependent stimulation of vesicle fusion by membrane-anchored synaptotagmin 1. Science 328:760–63 [Google Scholar]
  86. Lee J, Guan Z, Akbergenova Y, Littleton JT. 86.  2013. Genetic analysis of synaptotagmin C2 domain specificity in regulating spontaneous and evoked neurotransmitter release. J. Neurosci. 33:187–200 [Google Scholar]
  87. Li F, Kummel D, Coleman J, Reinisch KM, Rothman JE, Pincet F. 87.  2014. A half-zippered SNARE complex represents a functional intermediate in membrane fusion. J. Am. Chem. Soc. 136:3456–64 [Google Scholar]
  88. Li F, Pincet F, Perez E, Eng WS, Melia TJ. 88.  et al. 2007. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14:890–96 [Google Scholar]
  89. Li W, Ma C, Guan R, Xu Y, Tomchick DR, Rizo J. 89.  2011. The crystal structure of a Munc13 C-terminal module exhibits a remarkable similarity to vesicle tethering factors. Structure 19:1443–55 [Google Scholar]
  90. Liu W, Montana V, Parpura V, Mohideen U. 90.  2009. Single molecule measurements of interaction free energies between the proteins within binary and ternary SNARE complexes. J. Nanoneurosci. 1:120–29 [Google Scholar]
  91. Liu W, Parpura V. 91.  2010. SNAREs: could they be the answer to an energy landscape riddle in exocytosis?. Sci. World J. 10:1258–68 [Google Scholar]
  92. Lynch KL, Gerona RR, Kielar DM, Martens S, McMahon HT, Martin TF. 92.  2008. Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion. Mol. Biol. Cell 19:5093–103 [Google Scholar]
  93. Ma C, Li W, Xu Y, Rizo J. 93.  2011. Munc13 mediates the transition from the closed Syntaxin-Munc18 complex to the SNARE complex. Nat. Struct. Mol. Biol. 18:542–49 [Google Scholar]
  94. Ma C, Su L, Seven AB, Xu Y, Rizo J. 94.  2013. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 339:421–25 [Google Scholar]
  95. Mackler JM, Drummond JA, Loewen CA, Robinson IM, Reist NE. 95.  2002. The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418:340–44 [Google Scholar]
  96. Malsam J, Kreye S, Sollner TH. 96.  2008. Membrane fusion: SNAREs and regulation. Cell. Mol. Life Sci. 65:2814–32 [Google Scholar]
  97. Malsam J, Parisotto D, Bharat TA, Scheutzow A, Krause JM. 97.  et al. 2012. Complexin arrests a pool of docked vesicles for fast Ca2+-dependent release. EMBO J. 31:3270–81 [Google Scholar]
  98. Martens S, Kozlov MM, McMahon HT. 98.  2007. How synaptotagmin promotes membrane fusion. Science 316:1205–8 [Google Scholar]
  99. Martin JA, Hu Z, Fenz KM, Fernandez J, Dittman JS. 99.  2011. Complexin has opposite effects on two modes of synaptic vesicle fusion. Curr. Biol. 21:97–105 [Google Scholar]
  100. Maximov A, Tang J, Yang X, Pang ZP, Sudhof TC. 100.  2009. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323:516–21 [Google Scholar]
  101. Mayer A, Wickner W, Haas A. 101.  1996. Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85:83–94 [Google Scholar]
  102. McMahon HT, Missler M, Li C, Sudhof TC. 102.  1995. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83:111–19 [Google Scholar]
  103. Meijer M, Burkhardt P, de Wit H, Toonen RF, Fasshauer D, Verhage M. 103.  2012. Munc18-1 mutations that strongly impair SNARE-complex binding support normal synaptic transmission. EMBO J. 31:2156–68 [Google Scholar]
  104. Mima J, Hickey CM, Xu H, Jun Y, Wickner W. 104.  2008. Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J. 27:2031–42 [Google Scholar]
  105. Min D, Kim K, Hyeon C, Cho YH, Shin YK, Yoon TY. 105.  2013. Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat. Commun. 4:1705 [Google Scholar]
  106. Misura KM, Scheller RH, Weis WI. 106.  2000. Three-dimensional structure of the neuronal-Sec1-Syntaxin 1a complex. Nature 404:355–62 [Google Scholar]
  107. Mohrmann R, de Wit H, Verhage M, Neher E, Sorensen JB. 107.  2010. Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 330:502–5 [Google Scholar]
  108. Nicholson KL, Munson M, Miller RB, Filip TJ, Fairman R, Hughson FM. 108.  1998. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nat. Struct. Biol. 5:793–802 [Google Scholar]
  109. Pabst S, Hazzard JW, Antonin W, Sudhof TC, Jahn R. 109.  et al. 2000. Selective interaction of complexin with the neuronal SNARE complex: determination of the binding regions. J. Biol. Chem. 275:19808–18 [Google Scholar]
  110. Paddock BE, Wang Z, Biela LM, Chen K, Getzy MD. 110.  et al. 2011. Membrane penetration by synaptotagmin is required for coupling calcium binding to vesicle fusion in vivo. J. Neurosci. 31:2248–57 [Google Scholar]
  111. Parisotto D, Pfau M, Scheutzow A, Wild K, Mayer MP. 111.  et al. 2014. An extended helical conformation in domain 3a of Munc18-1 provides a template for SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex assembly. J. Biol. Chem. 289:9639–50 [Google Scholar]
  112. Park Y, Hernandez JM, van den BG, Ahmed S, Holt M. 112.  et al. 2012. Controlling synaptotagmin activity by electrostatic screening. Nat. Struct. Mol. Biol. 19:991–97 [Google Scholar]
  113. Pei J, Ma C, Rizo J, Grishin NV. 113.  2009. Remote homology between Munc13 MUN domain and vesicle tethering complexes. J. Mol. Biol. 391:509–17 [Google Scholar]
  114. Pertsinidis A, Mukherjee K, Sharma M, Pang ZP, Park SR. 114.  et al. 2013. Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ. PNAS 110:E2812–20 [Google Scholar]
  115. Poirier MA, Xiao W, Macosko JC, Chan C, Shin YK, Bennett MK. 115.  1998. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5:765–69 [Google Scholar]
  116. Rathore SS, Bend EG, Yu H, Hammarlund M, Jorgensen EM, Shen J. 116.  2010. Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE-Sec1/Munc18 membrane fusion complex. PNAS 107:22399–406 [Google Scholar]
  117. Regehr WG. 117.  2012. Short-term presynaptic plasticity. Cold Spring Harb. Perspect. Biol. 4:a005702 [Google Scholar]
  118. Reim K, Mansour M, Varoqueaux F, McMahon HT, Sudhof TC. 118.  et al. 2001. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104:71–81 [Google Scholar]
  119. Ren Y, Yip CK, Tripathi A, Huie D, Jeffrey PD. 119.  et al. 2009. A structure-based mechanism for vesicle capture by the multisubunit tethering complex Dsl1. Cell 139:1119–29 [Google Scholar]
  120. Rhee JS, Li LY, Shin OH, Rah JC, Rizo J. 120.  et al. 2005. Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. PNAS 102:18664–69 [Google Scholar]
  121. Richmond JE, Davis WS, Jorgensen EM. 121.  1999. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat. Neurosci. 2:959–64 [Google Scholar]
  122. Richmond JE, Weimer RM, Jorgensen EM. 122.  2001. An open form of Syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412:338–41 [Google Scholar]
  123. Rickman C, Jimenez JL, Graham ME, Archer DA, Soloviev M. 123.  et al. 2006. Conserved prefusion protein assembly in regulated exocytosis. Mol. Biol. Cell 17:283–94 [Google Scholar]
  124. Rizo J, Chen X, Arac D. 124.  2006. Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol. 16:339–50 [Google Scholar]
  125. Rizo J, Rosenmund C. 125.  2008. Synaptic vesicle fusion. Nat. Struct. Mol. Biol. 15:665–74 [Google Scholar]
  126. Rizo J, Sudhof TC. 126.  2012. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices—guilty as charged?. Annu. Rev. Cell Dev. Biol. 28:279–308 [Google Scholar]
  127. Roggero CM, De Blas GA, Dai H, Tomes CN, Rizo J, Mayorga LS. 127.  2007. Complexin/synaptotagmin interplay controls acrosomal exocytosis. J. Biol. Chem. 282:26335–43 [Google Scholar]
  128. Schaub JR, Lu X, Doneske B, Shin YK, McNew JA. 128.  2006. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat. Struct. Mol. Biol. 13:748–50 [Google Scholar]
  129. Schollmeier Y, Krause JM, Kreye S, Malsam J, Sollner TH. 129.  2011. Resolving the function of distinct Munc18-1/SNARE protein interaction modes in a reconstituted membrane fusion assay. J. Biol. Chem. 286:30582–90 [Google Scholar]
  130. Seiler F, Malsam J, Krause JM, Sollner TH. 130.  2009. A role of complexin–lipid interactions in membrane fusion. FEBS Lett. 583:2343–8 [Google Scholar]
  131. Seven AB, Brewer KD, Shi L, Jiang QX, Rizo J. 131.  2013. Prevalent mechanism of membrane bridging by synaptotagmin-1. PNAS 110:E3243–52 [Google Scholar]
  132. Shao X, Fernandez I, Sudhof TC, Rizo J. 132.  1998. Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change?. Biochemistry 37:16106–15 [Google Scholar]
  133. Shao X, Li C, Fernandez I, Zhang X, Sudhof TC, Rizo J. 133.  1997. Synaptotagmin-Syntaxin interaction: the C2 domain as a Ca2+-dependent electrostatic switch. Neuron 18:133–42 [Google Scholar]
  134. Shen J, Rathore SS, Khandan L, Rothman JE. 134.  2010. SNARE bundle and Syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of membrane fusion. J. Cell Biol. 190:55–63 [Google Scholar]
  135. Shen J, Tareste DC, Paumet F, Rothman JE, Melia TJ. 135.  2007. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 128:183–95 [Google Scholar]
  136. Shi L, Shen QT, Kiel A, Wang J, Wang HW. 136.  et al. 2012. SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science 335:1355–59 [Google Scholar]
  137. Shin J, Lou X, Kweon DH, Shin YK. 137.  2014. Multiple conformations of a single SNAREpin between two nanodisc membranes reveal diverse pre-fusion states. Biochem. J. 459:95–102 [Google Scholar]
  138. Shin OH, Xu J, Rizo J, Sudhof TC. 138.  2009. Differential but convergent functions of Ca2+ binding to synaptotagmin-1 C2 domains mediate neurotransmitter release. PNAS 106:16469–74 [Google Scholar]
  139. Siksou L, Varoqueaux F, Pascual O, Triller A, Brose N, Marty S. 139.  2009. A common molecular basis for membrane docking and functional priming of synaptic vesicles. Eur. J. Neurosci. 30:49–56 [Google Scholar]
  140. Sinha R, Ahmed S, Jahn R, Klingauf J. 140.  2011. Two Synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses. PNAS 108:14318–23 [Google Scholar]
  141. Sivaram MV, Saporita JA, Furgason ML, Boettcher AJ, Munson M. 141.  2005. Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p. Biochemistry 44:6302–11 [Google Scholar]
  142. Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE. 142.  1993. A protein assembly–disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–18 [Google Scholar]
  143. Sorensen JB. 143.  2009. Conflicting views on the membrane fusion machinery and the fusion pore. Annu. Rev. Cell Dev. Biol. 25:513–37 [Google Scholar]
  144. Sorensen JB, Wiederhold K, Muller EM, Milosevic I, Nagy G. 144.  et al. 2006. Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J. 25:955–66 [Google Scholar]
  145. Stein A, Weber G, Wahl MC, Jahn R. 145.  2009. Helical extension of the neuronal SNARE complex into the membrane. Nature 460:525–28 [Google Scholar]
  146. Striegel AR, Biela LM, Evans CS, Wang Z, Delehoy JB. 146.  et al. 2012. Calcium binding by synaptotagmin's C2A domain is an essential element of the electrostatic switch that triggers synchronous synaptic transmission. J. Neurosci. 32:1253–60 [Google Scholar]
  147. Sudhof TC. 147.  2013. Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80:675–90 [Google Scholar]
  148. Sudhof TC, Rothman JE. 148.  2009. Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–77 [Google Scholar]
  149. Sutton RB, Davletov BA, Berghuis AM, Sudhof TC, Sprang SR. 149.  1995. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80:929–38 [Google Scholar]
  150. Sutton RB, Fasshauer D, Jahn R, Brunger AT. 150.  1998. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–53 [Google Scholar]
  151. Tang J, Maximov A, Shin OH, Dai H, Rizo J, Sudhof TC. 151.  2006. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175–87 [Google Scholar]
  152. Toonen RF, Verhage M. 152.  2007. Munc18-1 in secretion: lonely Munc joins SNARE team and takes control. Trends Neurosci. 30:564–72 [Google Scholar]
  153. Trimbuch T, Xu J, Flaherty D, Tomchick DR, Rizo J, Rosenmund C. 153.  2014. Re-examining how complexin inhibits neurotransmitter release. eLife 3:e02391 [Google Scholar]
  154. Tucker WC, Weber T, Chapman ER. 154.  2004. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304:435–38 [Google Scholar]
  155. Ubach J, Zhang X, Shao X, Sudhof TC, Rizo J. 155.  1998. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain?. EMBO J. 17:3921–30 [Google Scholar]
  156. van den Bogaart G, Holt MG, Bunt G, Riedel D, Wouters FS, Jahn R. 156.  2010. One SNARE complex is sufficient for membrane fusion. Nat. Struct. Mol. Biol. 17:358–64 [Google Scholar]
  157. van den Bogaart G, Thutupalli S, Risselada JH, Meyenberg K, Holt M. 157.  et al. 2011. Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation. Nat. Struct. Mol. Biol. 18:805–12 [Google Scholar]
  158. Varoqueaux F, Sigler A, Rhee JS, Brose N, Enk C. 158.  et al. 2002. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. PNAS 99:9037–42 [Google Scholar]
  159. Vennekate W, Schroder S, Lin CC, van den Bogaart G, Grunwald M. 159.  et al. 2012. Cis- and trans-membrane interactions of synaptotagmin-1. PNAS 109:11037–42 [Google Scholar]
  160. Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH. 160.  et al. 2000. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–69 [Google Scholar]
  161. Weber T, Parlati F, McNew JA, Johnston RJ, Westermann B. 161.  et al. 2000. SNAREpins are functionally resistant to disruption by NSF and αSNAP. J. Cell Biol. 149:1063–72 [Google Scholar]
  162. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M. 162.  et al. 1998. SNAREpins: minimal machinery for membrane fusion. Cell 92:759–72 [Google Scholar]
  163. Weimer RM, Gracheva EO, Meyrignac O, Miller KG, Richmond JE, Bessereau JL. 163.  2006. UNC-13 and UNC-10/rim localize synaptic vesicles to specific membrane domains. J. Neurosci. 26:8040–47 [Google Scholar]
  164. Weninger K, Bowen ME, Choi UB, Chu S, Brunger AT. 164.  2008. Accessory proteins stabilize the acceptor complex for Synaptobrevin, the 1:1 Syntaxin/SNAP-25 complex. Structure 16:308–20 [Google Scholar]
  165. Wickner W. 165.  2010. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu. Rev. Cell Dev. Biol. 26:115–36 [Google Scholar]
  166. Wragg RT, Snead D, Dong Y, Ramlall TF, Menon I. 166.  et al. 2013. Synaptic vesicles position complexin to block spontaneous fusion. Neuron 77:323–34 [Google Scholar]
  167. Xiao W, Poirier MA, Bennett MK, Shin YK. 167.  2001. The neuronal t-SNARE complex is a parallel four-helix bundle. Nat. Struct. Biol. 8:308–11 [Google Scholar]
  168. Xu H, Jun Y, Thompson J, Yates J, Wickner W. 168.  2010. HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion. EMBO J. 29:1948–60 [Google Scholar]
  169. Xu H, Zick M, Wickner WT, Jun Y. 169.  2011. A lipid-anchored SNARE supports membrane fusion. PNAS 108:17325–30 [Google Scholar]
  170. Xu J, Brewer KD, Perez-Castillejos R, Rizo J. 170.  2013. Subtle interplay between synaptotagmin and complexin binding to the SNARE complex. J. Mol. Biol. 425:3461–75 [Google Scholar]
  171. Xu Y, Su L, Rizo J. 171.  2010. Binding of Munc18-1 to Synaptobrevin and to the SNARE four-helix bundle. Biochemistry 49:1568–76 [Google Scholar]
  172. Xue M, Craig TK, Xu J, Chao HT, Rizo J, Rosenmund C. 172.  2010. Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity. Nat. Struct. Mol. Biol. 17:568–75 [Google Scholar]
  173. Xue M, Lin YQ, Pan H, Reim K, Deng H. 173.  et al. 2009. Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila complexins orchestrates synaptic vesicle exocytosis. Neuron 64:367–80 [Google Scholar]
  174. Xue M, Ma C, Craig TK, Rosenmund C, Rizo J. 174.  2008. The Janus-faced nature of the C2B domain is fundamental for synaptotagmin-1 function. Nat. Struct. Mol. Biol. 15:1160–68 [Google Scholar]
  175. Xue M, Reim K, Chen X, Chao HT, Deng H. 175.  et al. 2007. Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol. 14:949–58 [Google Scholar]
  176. Xue M, Stradomska A, Chen H, Brose N, Zhang W. 176.  et al. 2008. Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system. PNAS 105:7875–80 [Google Scholar]
  177. Yamaguchi T, Dulubova I, Min SW, Chen X, Rizo J, Sudhof TC. 177.  2002. Sly1 binds to Golgi and ER Syntaxins via a conserved N-terminal peptide motif. Dev. Cell 2:295–305 [Google Scholar]
  178. Yang X, Kaeser-Woo YJ, Pang ZP, Xu W, Sudhof TC. 178.  2010. Complexin clamps asynchronous release by blocking a secondary Ca2+ sensor via its accessory α helix. Neuron 68:907–20 [Google Scholar]
  179. Yoon TY, Lu X, Diao J, Lee SM, Ha T, Shin YK. 179.  2008. Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 15:707–13 [Google Scholar]
  180. Yu IM, Hughson FM. 180.  2010. Tethering factors as organizers of intracellular vesicular traffic. Annu. Rev. Cell Dev. Biol. 26:137–56 [Google Scholar]
  181. Zhang X, Kim-Miller MJ, Fukuda M, Kowalchyk JA, Martin TF. 181.  2002. Ca2+-dependent synaptotagmin binding to SNAP-25 is essential for Ca2+-triggered exocytosis. Neuron 34:599–611 [Google Scholar]
  182. Zhang X, Rizo J, Sudhof TC. 182.  1998. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry 37:12395–403 [Google Scholar]
  183. Zhou A, Brewer KD, Rizo J. 183.  2013. Analysis of SNARE complex/synaptotagmin-1 interactions by one-dimensional NMR spectroscopy. Biochemistry 52:3446–56 [Google Scholar]
  184. Zhou P, Bacaj T, Yang X, Pang ZP, Sudhof TC. 184.  2013. Lipid-anchored SNAREs lacking transmembrane regions fully support membrane fusion during neurotransmitter release. Neuron 80:470–83 [Google Scholar]
  185. Zhou P, Pang ZP, Yang X, Zhang Y, Rosenmund C. 185.  et al. 2013. Syntaxin-1 N-peptide and Habc-domain perform distinct essential functions in synaptic vesicle fusion. EMBO J. 32:159–71 [Google Scholar]
  186. Zick M, Wickner WT. 186.  2014. A distinct tethering step is vital for vacuole membrane fusion. eLife 3:e03251 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error