Nature supports multifaceted forms of life. Despite the variety and complexity of these forms, motility remains the epicenter of life. The applicable laws of physics change upon going from macroscales to microscales and nanoscales, which are characterized by low Reynolds number (). We discuss motion at low in natural and synthetic systems, along with various propulsion mechanisms, including electrophoresis, electrolyte diffusiophoresis, and nonelectrolyte diffusiophoresis. We also describe the newly uncovered phenomena of motility in non-ATP-driven self-powered enzymes and the directional movement of these enzymes in response to substrate gradients. These enzymes can also be immobilized to function as fluid pumps in response to the presence of their substrates. Finally, we review emergent collective behavior arising from interacting motile species, and we discuss the possible biomedical applications of the synthetic nanobots and microbots.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abid J-P, Frigoli M, Pansu R, Szeftel J, Zyss J. 1.  et al. 2011. Light-driven directed motion of azobenzene-coated polymer nanoparticles in an aqueous medium. Langmuir 27:7967–71 [Google Scholar]
  2. Ahmed S, Wang W, Mair LO, Fraleigh RD, Li S. 2.  et al. 2013. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir 29:16113–18 [Google Scholar]
  3. Anderson JL. 3.  1989. Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21:61–99 [Google Scholar]
  4. Balasubramanian S, Kagan D, Jack Hu C-M, Campuzano S, Lobo-Castañon MJ. 4.  et al. 2011. Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 50:4161–64 [Google Scholar]
  5. Baraban L, Harazim SM, Sanchez S, Schmidt OG. 5.  2013. Chemotactic behavior of catalytic motors in microfluidic channels. Angew. Chem. Int. Ed. 52:5552–56 [Google Scholar]
  6. Baraban L, Streubel R, Makarov D, Han L, Karnaushenko D. 6.  et al. 2012. Fuel-free locomotion of Janus motors: magnetically induced thermophoresis. ACS Nano 7:1360–67 [Google Scholar]
  7. Baykov AA, Malinen AM, Luoto HH, Lahti R. 7.  2013. Pyrophosphate-fueled Na+ and H+ transport in prokaryotes. Microbiol. Mol. Biol. Rev. 77:267–76 [Google Scholar]
  8. Berg HC, Brown DA. 8.  1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500–4 [Google Scholar]
  9. Brennen C, Winet H. 9.  1977. Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9:339–98 [Google Scholar]
  10. Butler PJ, Dey KK, Sen A. 10.  2015. Impulsive enzymes: a new force in mechanobiology. Cell. Molec. Bioeng. 8:106–18 [Google Scholar]
  11. Calvo-Marzal P, Sattayasamitsathit S, Balasubramanian S, Windmiller JR, Dao C, Wang J. 11.  2010. Propulsion of nanowire diodes. Chem. Commun. 46:1623–24 [Google Scholar]
  12. Campuzano S, Orozco J, Kagan D, Guix M, Gao W. 12.  et al. 2011. Bacterial isolation by lectin-modified microengines. Nano Lett. 12:396–401 [Google Scholar]
  13. Chang ST, Paunov VN, Petsev DN, Velev OD. 13.  2007. Remotely powered self-propelling particles and micropumps based on miniature diodes. Nat. Mater. 6:235–40 [Google Scholar]
  14. Cleveland LR, Cleveland BT. 14.  1966. The locomotory waves of Koruga, Deltotrichonympha and Mixotricha. Arch. Protistenk 109:39–63 [Google Scholar]
  15. Colberg PH, Kapral R. 15.  2014. Angström-scale chemically powered motors. Europhys. Lett. 106:30004 [Google Scholar]
  16. Córdova-Figueroa UM, Brady JF. 16.  2008. Osmotic propulsion: the osmotic motor. Phys. Rev. Lett. 100:158303 [Google Scholar]
  17. Dean RB. 17.  1941. Theories of electrolyte equilibrium in muscle. Biol. Symp. 3:331–48 [Google Scholar]
  18. Detrain C, Deneubourg J-L. 18.  2006. Self-organized structures in a superorganism: Do ants “behave” like molecules?. Phys. Life Rev. 3:162–87 [Google Scholar]
  19. Dey KK, Das S, Poyton MF, Sengupta S, Butler PJ. 19.  et al. 2014. Chemotactic separation of enzymes. ACS Nano 8:11941–49 [Google Scholar]
  20. Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J. 20.  2005. Microscopic artificial swimmers. Nature 437:862–65 [Google Scholar]
  21. Duan W, Ibele M, Liu R, Sen A. 21.  2012. Motion analysis of light-powered autonomous silver chloride nanomotors. Eur. Phys. J. E 35:77–84 [Google Scholar]
  22. Duan W, Liu R, Sen A. 22.  2013. Transition between collective behaviors of micromotors in response to different stimuli. J. Am. Chem. Soc. 135:1280–83 [Google Scholar]
  23. Dubyak GR. 23.  2004. Ion homeostasis, channels, and transporters: an update on cellular mechanisms. Adv. Physiol. Educ. 28:143–54 [Google Scholar]
  24. Dunderdale G, Ebbens S, Fairclough P, Howse J. 24.  2012. Importance of particle tracking and calculating the mean-squared displacement in distinguishing nanopropulsion from other processes. Langmuir 28:10997–1006 [Google Scholar]
  25. Fischer P, Ghosh A. 25.  2011. Magnetically actuated propulsion at low Reynolds numbers: towards nanoscale control. Nanoscale 3:557–63 [Google Scholar]
  26. Fournier-Bidoz S, Arsenault AC, Manners I, Ozin GA. 26.  2005. Synthetic self-propelled nanorotors. Chem. Commun. 41:441–43 [Google Scholar]
  27. Fox DL, Coe WR. 27.  1943. Biology of the California sea-mussel (Mytilus californianus). II. Nutrition, metabolism, growth and calcium deposition. J. Exp. Zool. 93:205–49 [Google Scholar]
  28. Fraser PJ, Shelmerdine RL. 28.  2002. Dogfish hair cells sense hydrostatic pressure. Nature 415:495–96 [Google Scholar]
  29. Fratzl P, Barth FG. 29.  2009. Biomaterial systems for mechanosensing and actuation. Nature 462:442–48 [Google Scholar]
  30. Fusco S, Chatzipirpiridis G, Sivaraman KM, Ergeneman O, Nelson BJ, Pané S. 30.  2013. Chitosan electrodeposition for microrobotic drug delivery. Adv. Healthcare Mater. 2:1037–44 [Google Scholar]
  31. Gangwal S, Pawar A, Kretzschmar I, Velev OD. 31.  2010. Programmed assembly of metallodielectric patchy particles in external AC electric fields. Soft Matter 6:1413–18 [Google Scholar]
  32. Gao W, Pei A, Dong R, Wang J. 32.  2014. Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J. Am. Chem. Soc. 136:2276–79 [Google Scholar]
  33. Gao W, Sattayasamitsathit S, Manesh KM, Weihs D, Wang J. 33.  2010. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 132:14403–5 [Google Scholar]
  34. Gao W, Sattayasamitsathit S, Orozco J, Wang J. 34.  2011. Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. J. Am. Chem. Soc. 133:11862–64 [Google Scholar]
  35. Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F. 35.  et al. 2013. Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7:9232–40 [Google Scholar]
  36. Ghosh A, Fischer P. 36.  2009. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9:2243–45 [Google Scholar]
  37. Gibbons IR. 37.  1981. Cilia and flagella of eukaryotes. J. Cell Biol. 91:107–24 [Google Scholar]
  38. Gibbs JG, Fragnito NA, Zhao Y. 38.  2010. Asymmetric Pt/Au coated catalytic micromotors fabricated by dynamic shadowing growth. Appl. Phys. Lett. 97:253107 [Google Scholar]
  39. Gibbs JG, Zhao Y-P. 39.  2009. Autonomously motile catalytic nanomotors by bubble propulsion. Appl. Phys. Lett. 94:163104 [Google Scholar]
  40. Golestanian R. 40.  2009. Anomalous diffusion of symmetric and asymmetric active colloids. Phys. Rev. Lett. 102:188305 [Google Scholar]
  41. Golestanian R, Liverpool TB, Ajdari A. 41.  2005. Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94:220801 [Google Scholar]
  42. Guix M, Mayorga-Martinez CC, Merkoçi A. 42.  2014. Nano/micromotors in (bio)chemical science applications. Chem. Rev. 114:6285–322 [Google Scholar]
  43. Guo M, Ehrlicher AJ, Jensen MH, Renz M, Moore JR. 43.  et al. 2014. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 158:822–32 [Google Scholar]
  44. Gupta S, Alargova RG, Kilpatrick PK, Velev OD. 44.  2009. On-chip dielectrophoretic coassembly of live cells and particles into responsive biomaterials. Langmuir 26:3441–52 [Google Scholar]
  45. Hand WG, Haupt W. 45.  1971. Flagellar activity of the colony members of Volvox aureus Ehrbg. during light stimulation. J. Protozool. 18:361–64 [Google Scholar]
  46. Hong Y, Blackman NMK, Kopp ND, Sen A, Velegol D. 46.  2007. Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99:178103 [Google Scholar]
  47. Hong Y, Diaz M, Córdova-Figueroa UM, Sen A. 47.  2010. Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Adv. Funct. Mater. 20:1568–76 [Google Scholar]
  48. Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R. 48.  2007. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99:048102 [Google Scholar]
  49. Ibele M, Mallouk TE, Sen A. 49.  2009. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 48:3308–12 [Google Scholar]
  50. Ibele ME, Lammert PE, Crespi VH, Sen A. 50.  2010. Emergent, collective oscillations of self-mobile particles and patterned surfaces under redox conditions. ACS Nano 4:4845–51 [Google Scholar]
  51. Ibele ME, Wang Y, Kline TR, Mallouk TE, Sen A. 51.  2007. Hydrazine fuels for bimetallic catalytic microfluidic pumping. J. Am. Chem. Soc. 129:7762–63 [Google Scholar]
  52. Jiang HR, Yoshinaga N, Sano M. 52.  2010. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Phys. Rev. Lett. 105:268302 [Google Scholar]
  53. Jun I-K, Hess H. 53.  2010. A biomimetic, self-pumping membrane. Adv. Mater. 22:4823–25 [Google Scholar]
  54. Kagan D, Benchimol MJ, Claussen JC, Chuluun-Erdene E, Esener S, Wang J. 54.  2012. Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation. Angew. Chem. Int. Ed. 51:7519–22 [Google Scholar]
  55. Kagan D, Campuzano S, Balasubramanian S, Kuralay F, Flechsig G-U, Wang J. 55.  2011. Functionalized micromachines for selective and rapid isolation of nucleic acid targets from complex samples. Nano Lett. 11:2083–87 [Google Scholar]
  56. Kagan D, Laocharoensuk R, Zimmerman M, Clawson C, Balasubramanian S. 56.  et al. 2010. Rapid delivery of drug carriers propelled and navigated by catalytic nanoshuttles. Small 6:2741–47 [Google Scholar]
  57. Kardon JR, Vale RD. 57.  2009. Regulators of the cytoplasmic dynein motor. Nat. Rev. Mol. Cell Biol. 10:854–65 [Google Scholar]
  58. Ke H, Ye S, Carroll RL, Showalter K. 58.  2010. Motion analysis of self-propelled Pt–Silica particles in hydrogen peroxide solutions. J. Phys. Chem. A 114:5462–67 [Google Scholar]
  59. Kim S, Qiu F, Kim S, Ghanbari A, Moon C. 59.  et al. 2013. Fabrication and characterization of magnetic microrobots for three-dimensional cell culture and targeted transportation. Adv. Mater. 25:5863–68 [Google Scholar]
  60. Kline TR, Iwata J, Lammert PE, Mallouk TE, Sen A, Velegol D. 60.  2006. Catalytically driven colloidal patterning and transport. J. Phys. Chem. B 110:24513–21 [Google Scholar]
  61. Kline TR, Paxton WF, Mallouk TE, Sen A. 61.  2005. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. 117:754–56 [Google Scholar]
  62. Kline TR, Paxton WF, Wang Y, Velegol D, Mallouk TE, Sen A. 62.  2005. Catalytic micropumps: microscopic convective fluid flow and pattern formation. J. Am. Chem. Soc. 127:17150–51 [Google Scholar]
  63. Kline TR, Sen A. 63.  2006. Reversible pattern formation through photolysis. Langmuir 22:7124–27 [Google Scholar]
  64. Kocherginsky N. 64.  2009. Acidic lipids, H+-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award. Prog. Biophys. Mol. Biol. 99:20–41 [Google Scholar]
  65. Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ. 65.  2010. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans. Robot. 26:1006–17 [Google Scholar]
  66. Kwak MK, Jeong H-E, Kim T-I, Yoon H, Suh KY. 66.  2010. Bio-inspired slanted polymer nanohairs for anisotropic wetting and directional dry adhesion. Soft Matter 6:1849–57 [Google Scholar]
  67. Laocharoensuk R, Burdick J, Wang J. 67.  2008. Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano 2:1069–75 [Google Scholar]
  68. Lauga E. 68.  2011. Enhanced diffusion by reciprocal swimming. Phys. Rev. Lett. 106:178101 [Google Scholar]
  69. Liu M, Liu L, Gao W, Su M, Ge Y. 69.  et al. 2014. A micromotor based on polymer single crystals and nanoparticles: toward functional versatility. Nanoscale 6:8601–5 [Google Scholar]
  70. Liu M, Zentgraf T, Liu Y, Bartal G, Zhang X. 70.  2010. Light-driven nanoscale plasmonic motors. Nat. Nanotechnol. 5:570–73 [Google Scholar]
  71. Liu R, Sen A. 71.  2011. Autonomous nanomotor based on copper–platinum segmented nanobattery. J. Am. Chem. Soc. 133:20064–67 [Google Scholar]
  72. Loget G, Kuhn A. 72.  2010. Propulsion of microobjects by dynamic bipolar self-regeneration. J. Am. Chem. Soc. 132:15918–19 [Google Scholar]
  73. Mahadevan L, Matsudaira P. 73.  2000. Motility powered by supramolecular springs and ratchets. Science 288:95–100 [Google Scholar]
  74. Manesh KM, Balasubramanian S, Wang J. 74.  2010. Nanomotor-based ‘writing’ of surface microstructures. Chem. Commun. 46:5704–6 [Google Scholar]
  75. Mano N, Heller A. 75.  2005. Bioelectrochemical propulsion. J. Am. Chem. Soc. 127:11574–75 [Google Scholar]
  76. Marino H, Bergeles C, Nelson BJ. 76.  2014. Robust electromagnetic control of microrobots under force and localization uncertainties. IEEE Trans. Automat. Sci. Eng. 11:310–16 [Google Scholar]
  77. Mehta AD, Rief M, Spudich JA, Smith DA, Simmons RM. 77.  1999. Single-molecule biomechanics with optical methods. Science 283:1689–95 [Google Scholar]
  78. Mei Y, Solovev AA, Sanchez S, Schmidt OG. 78.  2011. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 40:2109–19 [Google Scholar]
  79. Metzler R, Jeon J-H, Cherstvy AG, Barkai E. 79.  2014. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16:24128–64 [Google Scholar]
  80. Metzler R, Klafter J. 80.  2000. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339:1–77 [Google Scholar]
  81. Mhanna R, Qiu F, Zhang L, Ding Y, Sugihara K. 81.  et al. 2014. Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small 10:1953–57 [Google Scholar]
  82. Mou F, Chen C, Zhong Q, Yin Y, Ma H-R, Guan J. 82.  2014. Autonomous motion and temperature-controlled drug delivery of Mg/Pt-poly(N-isopropylacrylamide) Janus micromotors driven by simulated body fluid and blood plasma. ACS Appl. Mater. Interfaces 6:9897–903 [Google Scholar]
  83. Orozco J, Campuzano S, Kagan D, Zhou M, Gao W, Wang J. 83.  2011. Dynamic isolation and unloading of target proteins by aptamer-modified microtransporters. Anal. Chem. 83:7962–69 [Google Scholar]
  84. Pak OS, Gao W, Wang J, Lauga E. 84.  2011. High-speed propulsion of flexible nanowire motors: theory and experiments. Soft Matter 7:8169–81 [Google Scholar]
  85. Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. 85.  2013. Living crystals of light-activated colloidal surfers. Science 339:936–40 [Google Scholar]
  86. Palacci J, Sacanna S, Vatchinsky A, Chaikin PM, Pine DJ. 86.  2013. Photoactivated colloidal dockers for cargo transportation. J. Am. Chem. Soc. 135:15978–81 [Google Scholar]
  87. Pantarotto D, Browne WR, Feringa BL. 87.  2008. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chem. Commun. 2008:1533–35 [Google Scholar]
  88. Parry BR, Surovtsev IV, Cabeen MT, O'Hern CS, Dufresne ER, Jacobs-Wagner C. 88.  2014. The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156:183–94 [Google Scholar]
  89. Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A. 89.  2013. Intelligent, self-powered, drug delivery systems. Nanoscale 5:1273–83 [Google Scholar]
  90. Patra D, Zhang H, Sengupta S, Sen A. 90.  2013. Dual stimuli-responsive, rechargeable micropumps via “host–guest” interactions. ACS Nano 7:7674–79 [Google Scholar]
  91. Pavlick RA, Sengupta S, McFadden T, Zhang H, Sen A. 91.  2011. A polymerization-powered motor. Angew. Chem. Int. Ed. 50:9374–77 [Google Scholar]
  92. Paxton WF, Baker PT, Kline TR, Wang Y, Mallouk TE, Sen A. 92.  2006. Catalytically induced electrokinetics for motors and micropumps. J. Am. Chem. Soc. 128:14881–88 [Google Scholar]
  93. Paxton WF, Kistler KC, Olmeda CC, Sen A, St Angelo SK. 93.  et al. 2004. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126:13424–31 [Google Scholar]
  94. Peyer KE, Zhang L, Nelson BJ. 94.  2013. Bio-inspired magnetic swimming microrobots for biomedical applications. Nanoscale 5:1259–72 [Google Scholar]
  95. Pokroy B, Epstein AK, Persson-Gulda MCM, Aizenberg J. 95.  2009. Fabrication of bioinspired actuated nanostructures with arbitrary geometry and stiffness. Adv. Mater. 21:463–69 [Google Scholar]
  96. Pusey PN. 96.  2011. Brownian motion goes ballistic. Science 332:802–03 [Google Scholar]
  97. Qian B, Montiel D, Bregulla A, Cichos F, Yang H. 97.  2013. Harnessing thermal fluctuations for purposeful activities: the manipulation of single micro-swimmers by adaptive photon nudging. Chem. Sci. 4:1420–29 [Google Scholar]
  98. Reinmüller A, Oğuz EC, Messina R, Löwen H, Schöpe HJ, Palberg T. 98.  2012. Colloidal crystallization in the quasi-two-dimensional induced by electrolyte gradients. J. Chem. Phys. 136:164505–10 [Google Scholar]
  99. Restrepo-Peréz L, Soler L, Martínez-Cisneros C, Sánchez S, Schmidt OG. 99.  2014. Biofunctionalized self-propelled micromotors as an alternative on-chip concentrating system. Lab Chip 14:2914–17 [Google Scholar]
  100. Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA. 100.  2013. Functions and mechanics of dynein motor proteins. Nat. Rev. Molec. Cell Biol. 14:713–26 [Google Scholar]
  101. Saha S, Golestanian R, Ramaswamy S. 101.  2014. Clusters, asters, and collective oscillations in chemotactic colloids. Phys. Rev. E 89:062316 [Google Scholar]
  102. Sakaue T, Kapral R, Mikhailov AS. 102.  2010. Nanoscale swimmers: hydrodynamic interactions and propulsion of molecular machines. Eur. Phys. J. B 75:381–87 [Google Scholar]
  103. Sanchez S, Solovev AA, Schulze S, Schmidt OG. 103.  2011. Controlled manipulation of multiple cells using catalytic microbots. Chem. Commun. 47:698–700 [Google Scholar]
  104. Sanchez T, Welch D, Nicastro D, Dogic Z. 104.  2011. Cilia-like beating of active microtubule bundles. Science 333:456–59 [Google Scholar]
  105. Sen A, Ibele M, Hong Y, Velegol D. 105.  2009. Chemo and phototactic nano/microbots. Faraday Discuss. 143:15–27 [Google Scholar]
  106. Sengupta S, Dey KK, Muddana HS, Tabouillot T, Ibele ME. 106.  et al. 2013. Enzyme molecules as nanomotors. J. Am. Chem. Soc. 135:1406–14 [Google Scholar]
  107. Sengupta S, Ibele ME, Sen A. 107.  2012. Fantastic voyage: designing self-powered nanorobots. Angew. Chem. Int. Ed. 51:8434–45 [Google Scholar]
  108. Sengupta S, Patra D, Rivera IO, Agrawal A, Dey KK. 108.  et al. 2014. Self-powered enzyme micropumps. Nat. Chem. 6:415–22 [Google Scholar]
  109. Sengupta S, Spiering MM, Dey KK, Duan W, Patra D. 109.  et al. 2014. DNA polymerase as a molecular motor and pump. ACS Nano 8:2410–18 [Google Scholar]
  110. Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ. 110.  2009. Motile cilia of human airway epithelia are chemosensor. Science 325:1131–34 [Google Scholar]
  111. Shields AR, Fiser BL, Evans BA, Falvo MR, Washburn S, Superfine R. 111.  2010. Biomimetic cilia arrays generate simultaneous pumping and mixing regimes. PNAS 107:15670–75 [Google Scholar]
  112. Sidorenko A, Krupenkin T, Taylor A, Fratzl P, Aizenberg J. 112.  2007. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315:487–90 [Google Scholar]
  113. Sigrist-Nelson K. 113.  1975. Dipeptide transport in isolated intestinal brush border membrane. Biochim. Biophys. Acta 394:220–26 [Google Scholar]
  114. Skou JC. 114.  1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. Biophys. Acta 23:394–401 [Google Scholar]
  115. Skou JC. 115.  1965. Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 45:596–617 [Google Scholar]
  116. Sleigh MA, Aiello E. 116.  1972. The movement of water by cilia. Acta Protozool. 11:265–77 [Google Scholar]
  117. Solomentsev Y, Anderson JL. 117.  1994. Electrophoresis of slender particles. J. Fluid Mech. 279:197–215 [Google Scholar]
  118. Solovev AA, Mei Y, Bermúdez Ureña E, Huang G, Schmidt OG. 118.  2009. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5:1688–92 [Google Scholar]
  119. Solovev AA, Sanchez S, Pumera M, Mei YF, Schmidt OG. 119.  2010. Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Adv. Funct. Mater. 20:2430–35 [Google Scholar]
  120. Spudich J, Rice SE, Rock RS, Purcell TJ, Warrick HM. 120.  2011. Optical traps to study properties of molecular motors. Cold Spring Harb. Protoc. 11:1305–18 [Google Scholar]
  121. Stock C, Heureux N, Browne WR, Feringa BL. 121.  2008. Autonomous movement of silica and glass micro-objects based on a catalytic molecular propulsion system. Chem. Eur. J. 14:3146–53 [Google Scholar]
  122. Sundararajan S, Sengupta S, Ibele ME, Sen A. 122.  2010. Drop-off of colloidal cargo transported by catalytic Pt–Au nanomotors via photochemical stimuli. Small 6:1479–82 [Google Scholar]
  123. Tottori S, Zhang L, Qiu F, Krawczyk KK, Franco-Obregón A, Nelson BJ. 123.  2012. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24:811–16 [Google Scholar]
  124. van Oosten CL, Bastiaansen CWM, Broer DJ. 124.  2009. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 8:677–82 [Google Scholar]
  125. Vilfan M, Potočnik A, Kavčič B, Osterman N, Poberaj I. 125.  et al. 2010. Self-assembled artificial cilia. PNAS 107:1844–47 [Google Scholar]
  126. Wang H, Zhao G, Pumera M. 126.  2013. Blood electrolytes exhibit a strong influence on the mobility of artificial catalytic microengines. Phys. Chem. Chem. Phys. 15:17277–80 [Google Scholar]
  127. Wang J, Gao W. 127.  2012. Nano/microscale motors: biomedical opportunities and challenges. ACS Nano 6:5745–51 [Google Scholar]
  128. Wang N, Butler JP, Ingber DE. 128.  1993. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–27 [Google Scholar]
  129. Wang W, Castro LA, Hoyos M, Mallouk TE. 129.  2012. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6:6122–32 [Google Scholar]
  130. Wang W, Duan W, Ahmed S, Mallouk TE, Sen A. 130.  2013. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8:531–54 [Google Scholar]
  131. Wang W, Duan W, Sen A, Mallouk TE. 131.  2013. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. PNAS 110:17744–49 [Google Scholar]
  132. Wang W, Li S, Mair L, Ahmed S, Huang TJ, Mallouk TE. 132.  2014. Acoustic propulsion of nanorod motors inside living cells. Angew. Chem. 126:3265–68 [Google Scholar]
  133. Wang Y, Gao Y, Wyss H, Anderson P, den Toonder J. 133.  2013. Out of the cleanroom, self-assembled magnetic artificial cilia. Lab Chip 13:3360–66 [Google Scholar]
  134. Wheat PM, Marine NA, Moran JL, Posner JD. 134.  2010. Rapid fabrication of bimetallic spherical motors. Langmuir 26:13052–55 [Google Scholar]
  135. Wong T-S, Kang SH, Tang SKY, Smythe EJ, Hatton BD. 135.  et al. 2011. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477:443–47 [Google Scholar]
  136. Wu J, Balasubramanian S, Kagan D, Manesh KM, Campuzano S, Wang J. 136.  2010. Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 1:36 [Google Scholar]
  137. Yadav V, Freedman JD, Grinstaff M, Sen A. 137.  2013. Bone-crack detection, targeting and repair using ion gradients. Angew. Chem. Int. Ed. 52:10997–1001 [Google Scholar]
  138. Yadav V, Pavlick RA, Meckler SM, Sen A. 138.  2014. Triggered detection and deposition: toward the repair of microcracks. Chem. Mater. 26:4647–52 [Google Scholar]
  139. Yadav V, Zhang H, Pavlick R, Sen A. 139.  2012. Triggered “on/off” micropumps and colloidal photodiode. J. Am. Chem. Soc. 134:15688–91 [Google Scholar]
  140. Zhang H, Duan W, Liu L, Sen A. 140.  2013. Depolymerization-powered autonomous motors using biocompatible fuel. J. Am. Chem. Soc. 135:15734–37 [Google Scholar]
  141. Zhang H, Duan W, Lu M, Zhao X, Shklyaev S. 141.  et al. 2014. Self-powered glucose-responsive micropumps. ACS Nano 8:8537–42 [Google Scholar]
  142. Zhang H, Yeung K, Robbins JS, Pavlick RA, Wu M. 142.  et al. 2012. Self-powered microscale pumps based on analyte-initiated depolymerization reactions. Angew. Chem. Int. Ed. 51:2400–4 [Google Scholar]
  143. Zhang L, Peyer KE, Nelson BJ. 143.  2010. Artificial bacterial flagella for micromanipulation. Lab Chip 10:2203–15 [Google Scholar]
  144. Zhao G, Wang H, Khezri B, Webster RD, Pumera M. 144.  2013. Influence of real-world environments on the motion of catalytic bubble-propelled micromotors. Lab Chip 13:2937–41 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error