1932

Abstract

The formation of the autophagosome, a landmark event in autophagy, is accomplished by the concerted actions of Atg proteins. The initial step of starvation-induced autophagy in yeast is the assembly of the Atg1 complex, which, with the help of other Atg groups, recruits Atg conjugation systems and initiates the formation of the autophagosome. In this review, we describe from a structural-biological point of view the structure, interaction, and molecular roles of Atg proteins, especially those in the Atg1 complex and in the Atg conjugation systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-060414-034248
2015-06-22
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/biophys/44/1/annurev-biophys-060414-034248.html?itemId=/content/journals/10.1146/annurev-biophys-060414-034248&mimeType=html&fmt=ahah

Literature Cited

  1. Araki Y, Ku WC, Akioka M, May AI, Hayashi Y. 1.  et al. 2013. Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J. Cell Biol. 203:299–313 [Google Scholar]
  2. Aravind L, Koonin EV. 2.  1998. The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem. Sci. 23:284–86 [Google Scholar]
  3. Baskaran S, Ragusa MJ, Boura E, Hurley JH. 3.  2012. Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol. Cell 47:339–48 [Google Scholar]
  4. Bodenmiller B, Wanka S, Kraft C, Urban J, Campbell D. 4.  et al. 2010. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci. Signal. 3:rs4 [Google Scholar]
  5. Budovskaya YV, Stephan JS, Deminoff SJ, Herman PK. 5.  2005. An evolutionary proteomics approach identifies substrates of the cAMP-dependent protein kinase. PNAS 102:13933–38 [Google Scholar]
  6. Chan EY, Longatti A, McKnight NC, Tooze SA. 6.  2009. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol. Cell. Biol. 29:157–71 [Google Scholar]
  7. Cheong H, Nair U, Geng J, Klionsky DJ. 7.  2008. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell 19:668–81 [Google Scholar]
  8. Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang CW, Klionsky DJ. 8.  2005. Atg17 regulates the magnitude of the autophagic response. Mol. Biol. Cell 16:3438–53 [Google Scholar]
  9. Chew LH, Setiaputra D, Klionsky DJ, Yip CK. 9.  2013. Structural characterization of the Saccharomyces cerevisiae autophagy regulatory complex Atg17-Atg31-Atg29. Autophagy 9:1467–74 [Google Scholar]
  10. Dooley HC, Razi M, Polson HEJ, Girardin SE, Wilson MI, Tooze SA. 10.  2014. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12–5-16L1. Mol. Cell 55:238–52 [Google Scholar]
  11. Fujioka Y, Noda NN, Fujii K, Yoshimoto K, Ohsumi Y, Inagaki F. 11.  2008. In vitro reconstitution of plant Atg8 and Atg12 conjugation systems essential for autophagy. J. Biol. Chem. 283:1921–28 [Google Scholar]
  12. Fujioka Y, Noda NN, Nakatogawa H, Ohsumi Y, Inagaki F. 12.  2010. Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J. Biol. Chem. 285:1508–15 [Google Scholar]
  13. Fujioka Y, Suzuki SW, Yamamoto H, Kondo-Kakuta C, Kimura Y. 13.  et al. 2014. Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat. Struct. Mol. Biol. 21:513–21 [Google Scholar]
  14. Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. 14.  2008. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19:2092–100 [Google Scholar]
  15. Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X. 15.  2009. ULK1·ATG13·FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284:12297–305 [Google Scholar]
  16. Gnad F, de Godoy LMF, Cox J, Neuhauser N, Ren S. 16.  et al. 2009. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics 9:4642–52 [Google Scholar]
  17. Hain AU, Weltzer RR, Hammond H, Jayabalasingham B, Dinglasan RR. 17.  et al. 2012. Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction. J. Struct. Biol. 180:551–62 [Google Scholar]
  18. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y. 18.  et al. 2007. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282:37298–302 [Google Scholar]
  19. Hanada T, Satomi Y, Takao T, Ohsumi Y. 19.  2009. The amino-terminal region of Atg3 is essential for association with phosphatidylethanolamine in Atg8 lipidation. FEBS Lett. 583:1078–83 [Google Scholar]
  20. Hara T, Takamura A, Kishi C, Iemura S, Natsume T. 20.  et al. 2008. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181:497–510 [Google Scholar]
  21. He C, Baba M, Cao Y, Klionsky DJ. 21.  2008. Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol. Biol. Cell 19:5506–16 [Google Scholar]
  22. Hecker C-M, Rabiller M, Haglund K, Bayer P, Dikic I. 22.  2006. Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281:16117–27 [Google Scholar]
  23. Hegedűs K, Ńagy P, Gáspári Z, Juhász G. 23.  2014. The putative HORMA domain protein Atg101 dimerizes and is required for starvation-induced and selective autophagy in Drosophila. BioMed Res. Int. 2014:470482 [Google Scholar]
  24. Helbig AO, Rosati S, Pijnappel PW, van Breukelen B, Timmers MH. 24.  et al. 2010. Perturbation of the yeast N-acetyltransferase NatB induces elevation of protein phosphorylation levels. BMC Genomics 11:685 [Google Scholar]
  25. Hong SB, Kim BW, Kim JH, Song HK. 25.  2012. Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr. D 68:1409–17 [Google Scholar]
  26. Hong SB, Kim BW, Lee KE, Kim SW, Jeon H. 26.  et al. 2011. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat. Struct. Mol. Biol. 18:1323–30 [Google Scholar]
  27. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A. 27.  et al. 2009. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20:1981–91 [Google Scholar]
  28. Hosokawa N, Hara Y, Mizushima N. 28.  2006. Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett. 580:2623–29 [Google Scholar]
  29. Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N. 29.  2009. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5:973–79 [Google Scholar]
  30. Hu C, Zhang X, Teng YB, Hu HX, Li WF. 30.  2010. Structure of autophagy-related protein Atg8 from the silkworm Bombyx mori. Acta Crystallogr. F 66:787–90 [Google Scholar]
  31. Huang DT, Paydar A, Zhuang M, Waddell MB, Holton JM, Schulman BA. 31.  2005. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Mol. Cell 17:341–50 [Google Scholar]
  32. Huber A, Bodenmiller B, Uotila A, Stahl M, Wanka S. 32.  et al. 2009. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 23:1929–43 [Google Scholar]
  33. Hurley JH, Schulman BA. 33.  2014. Atomistic autophagy: the structures of cellular self-digestion. Cell 157:300–11 [Google Scholar]
  34. Hurley JH, Yang D. 34.  2008. MIT domainia. Dev. Cell 14:6–8 [Google Scholar]
  35. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y. 35.  et al. 2000. A ubiquitin-like system mediates protein lipidation. Nature 408:488–92 [Google Scholar]
  36. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J. 36.  et al. 2008. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283:22847–57 [Google Scholar]
  37. Jao CC, Ragusa MJ, Stanley RE, Hurley JH. 37.  2013. A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. PNAS 110:5486–91 [Google Scholar]
  38. Jung CH, Jun CB, Ro S-H, Kim Y-M, Otto NM. 38.  et al. 2009. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20:1992–2003 [Google Scholar]
  39. Kabeya Y, Kamada Y, Baba M, Takikawa H, Sasaki M, Ohsumi Y. 39.  2005. Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol. Biol. Cell 16:2544–53 [Google Scholar]
  40. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T. 40.  2004. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117:2805–12 [Google Scholar]
  41. Kabeya Y, Noda NN, Fujioka Y, Suzuki K, Inagaki F, Ohsumi Y. 41.  2009. Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 389:612–15 [Google Scholar]
  42. Kaiser SE, Mao K, Taherbhoy AM, Yu S, Olszewski JL. 42.  et al. 2012. Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat. Struct. Mol. Biol. 19:1242–49 [Google Scholar]
  43. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. 43.  2000. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150:1507–13 [Google Scholar]
  44. Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N. 44.  et al. 2010. Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol. Cell. Biol. 30:1049–58 [Google Scholar]
  45. Kaufmann A, Beier V, Franquelim HG, Wollert T. 45.  2014. Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell 156:469–81 [Google Scholar]
  46. Kawamata T, Kamada Y, Kabeya Y, Sekito T, Ohsumi Y. 46.  2008. Organization of the pre-autophagosomal structure responsible for autophagosome formation. Mol. Biol. Cell 19:2039–50 [Google Scholar]
  47. Kihara A, Noda T, Ishihara N, Ohsumi Y. 47.  2001. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152:519–30 [Google Scholar]
  48. Kijanska M, Dohnal I, Reiter W, Kaspar S, Stoffel I. 48.  et al. 2010. Activation of Atg1 kinase in autophagy by regulated phosphorylation. Autophagy 6:1168–78 [Google Scholar]
  49. Kim J, Kamada Y, Stromhaug PE, Guan J, Hefner-Gravink A. 49.  et al. 2001. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J. Cell Biol. 153:381–96 [Google Scholar]
  50. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N. 50.  et al. 2000. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol. 151:263–76 [Google Scholar]
  51. Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y. 51.  et al. 2003. A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5:539–45 [Google Scholar]
  52. Klionsky DJ, Schulman BA. 52.  2014. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat. Struct. Mol. Biol. 21:336–45 [Google Scholar]
  53. Kondo-Okamoto N, Noda NN, Suzuki SW, Nakatogawa H, Takahashi I. 53.  et al. 2012. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem. 287:10631–38 [Google Scholar]
  54. Koopmann R, Muhammad K, Perbandt M, Betzel C, Duszenko M. 54.  2009. Trypanosoma brucei ATG8: structural insights into autophagic-like mechanisms in protozoa. Autophagy 5:1085–91 [Google Scholar]
  55. Kraft C, Kijanska M, Kalie E, Siergiejuk E, Lee SS. 55.  et al. 2012. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J. 31:3691–703 [Google Scholar]
  56. Krick R, Busse RA, Scacioc A, Stephan M, Janshoff A. 56.  et al. 2012. Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family. PNAS 109:E2042–49 [Google Scholar]
  57. Kumanomidou T, Mizushima T, Komatsu M, Suzuki A, Tanida I. 57.  et al. 2006. The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J. Mol. Biol. 355:612–18 [Google Scholar]
  58. Kumeta H, Watanabe M, Nakatogawa H, Yamaguchi M, Ogura K. 58.  et al. 2010. The NMR structure of the autophagy-related protein Atg8. J. Biomol. NMR 47:237–41 [Google Scholar]
  59. Lamb CA, Yoshimori T, Tooze SA. 59.  2013. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14:759–74 [Google Scholar]
  60. Levine B, Mizushima N, Virgin HW. 60.  2011. Autophagy in immunity and inflammation. Nature 469:323–35 [Google Scholar]
  61. Li X, Gerber SA, Rudner AD, Beausoleil SA, Haas W. 61.  et al. 2007. Large-scale phosphorylation analysis of α-factor-arrested Saccharomyces cerevisiae. J. Proteome Res. 6:1190–97 [Google Scholar]
  62. Lu K, Psakhye I, Jentsch S. 62.  2014. Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158:549–63 [Google Scholar]
  63. Luo X, Yu H. 63.  2008. Protein metamorphosis: the two-state behavior of Mad2. Structure 16:1616–25 [Google Scholar]
  64. Lynch-Day MA, Klionsky DJ. 64.  2010. The Cvt pathway as a model for selective autophagy. FEBS Lett. 584:1359–66 [Google Scholar]
  65. Mao K, Chew LH, Inoue-Aono Y, Cheong H, Nair U. 65.  et al. 2013. Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. PNAS 110:E2875–84 [Google Scholar]
  66. Matsushita M, Suzuki NN, Obara K, Fujioka Y, Ohsumi Y, Inagaki F. 66.  2007. Structure of Atg5·Atg16, a complex essential for autophagy. J. Biol. Chem. 282:6763–72 [Google Scholar]
  67. Mercer CA, Kaliappan A, Dennis PB. 67.  2009. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:649–62 [Google Scholar]
  68. Metlagel Z, Otomo C, Takaesu G, Otomo T. 68.  2013. Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. PNAS 110:18844–49 [Google Scholar]
  69. Mizushima N. 69.  2010. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22:132–39 [Google Scholar]
  70. Mizushima N, Komatsu M. 70.  2011. Autophagy: renovation of cells and tissues. Cell 147:728–41 [Google Scholar]
  71. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M. 71.  et al. 2003. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J. Cell Sci. 116:1679–88 [Google Scholar]
  72. Mizushima N, Noda T, Ohsumi Y. 72.  1999. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J. 18:3888–96 [Google Scholar]
  73. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T. 73.  et al. 1998. A protein conjugation system essential for autophagy. Nature 395:395–98 [Google Scholar]
  74. Mizushima N, Yoshimori T, Ohsumi Y. 74.  2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27:107–32 [Google Scholar]
  75. Motley AM, Nuttall JM, Hettema EH. 75.  2012. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J 31:2852–68 [Google Scholar]
  76. Nair U, Cao Y, Xie Z, Klionsky DJ. 76.  2010. Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. J. Biol. Chem. 285:11476–88 [Google Scholar]
  77. Nakatogawa H, Ichimura Y, Ohsumi Y. 77.  2007. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–78 [Google Scholar]
  78. Nakatogawa H, Ohbayashi S, Sakoh-Nakatogawa M, Kakuta S, Suzuki SW. 78.  et al. 2012. The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. J. Biol. Chem. 287:28503–7 [Google Scholar]
  79. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. 79.  2009. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10:458–67 [Google Scholar]
  80. Nath S, Dancourt J, Shteyn V, Puente G, Fong WM. 80.  et al. 2014. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat. Cell Biol. 16:415–24 [Google Scholar]
  81. Noda NN, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F. 81.  2013. Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep. 14:206–11 [Google Scholar]
  82. Noda NN, Kobayashi T, Adachi W, Fujioka Y, Ohsumi Y, Inagaki F. 82.  2012. Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J. Biol. Chem. 287:16256–66 [Google Scholar]
  83. Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W. 83.  et al. 2008. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211–18 [Google Scholar]
  84. Noda NN, Ohsumi Y, Inagaki F. 84.  2009. ATG systems from the protein structural point of view. Chem. Rev. 109:1587–98 [Google Scholar]
  85. Noda NN, Ohsumi Y, Inagaki F. 85.  2010. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584:1379–85 [Google Scholar]
  86. Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K. 86.  et al. 2011. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44:462–75 [Google Scholar]
  87. Noda T, Ohsumi Y. 87.  1998. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273:3963–66 [Google Scholar]
  88. Novak I, Kirkin V, McEwan DG, Zhang J, Wild P. 88.  et al. 2010. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11:45–51 [Google Scholar]
  89. Obara K, Sekito T, Ohsumi Y. 89.  2006. Assortment of phosphatidylinositol 3-kinase complexes–Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol. Biol. Cell 17:1527–39 [Google Scholar]
  90. Ohsumi Y. 90.  2001. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. 2:211–16 [Google Scholar]
  91. Otomo C, Metlagel Z, Takaesu G, Otomo T. 91.  2013. Structure of the human ATG12∼ATG5 conjugate required for LC3 lipidation in autophagy. Nat. Struct. Mol. Biol. 20:59–66 [Google Scholar]
  92. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A. 92.  et al. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282:24131–45 [Google Scholar]
  93. Papinski D, Schuschnig M, Reiter W, Wilhelm L, Barnes CA. 93.  et al. 2014. Early steps in autophagy depend on direct phosphorylation of Atg9 by the Atg1 kinase. Mol. Cell 53:471–83 [Google Scholar]
  94. Paz Y, Elazar Z, Fass D. 94.  2000. Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J. Biol. Chem. 275:25445–50 [Google Scholar]
  95. Qiu Y, Hofmann K, Coats JE, Schulman BA, Kaiser SE. 95.  2013. Binding to E1 and E3 is mutually exclusive for the human autophagy E2 Atg3. Protein Sci. 22:1691–97 [Google Scholar]
  96. Ragusa MJ, Stanley RE, Hurley JH. 96.  2012. Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151:1501–12 [Google Scholar]
  97. Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ. 97.  2004. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev. Cell 6:79–90 [Google Scholar]
  98. Rubinsztein DC, Shpilka T, Elazar Z. 98.  2012. Mechanisms of autophagosome biogenesis. Curr. Biol. 22:R29–34 [Google Scholar]
  99. Sakoh-Nakatogawa M, Matoba K, Asai E, Kirisako H, Ishii J. 99.  et al. 2013. Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat. Struct. Mol. Biol. 20:433–39 [Google Scholar]
  100. Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N. 100.  et al. 2009. The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J. 28:1341–50 [Google Scholar]
  101. Schulman BA, Harper JW. 101.  2009. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signaling pathways. Nat. Rev. Mol. Cell Biol. 10:319–31 [Google Scholar]
  102. Scott SV, Guan J, Hutchins MU, Kim J, Klionsky DJ. 102.  2001. Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol. Cell 7:1131–41 [Google Scholar]
  103. Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi Y. 103.  1999. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J. 18:5234–41 [Google Scholar]
  104. Soufi B, Kelstrup CD, Stoehr G, Fröhlich F, Walther TC, Olsen JV. 104.  2009. Global analysis of the yeast osmotic stress response by quantitative proteomics. Mol. Biosyst. 5:1337–46 [Google Scholar]
  105. Soulard A, Cremonesi A, Moes S, Schütz F, Jenö P, Hall MN. 105.  2010. The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol. Biol. Cell 21:3475–86 [Google Scholar]
  106. Stephan JS, Yeh YY, Ramachandran V, Deminoff SJ, Herman PK. 106.  2009. The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. PNAS 106:17049–54 [Google Scholar]
  107. Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F. 107.  2004. The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 9:611–18 [Google Scholar]
  108. Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F. 108.  2005. Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J. Biol. Chem. 280:40058–65 [Google Scholar]
  109. Sun LL, Li M, Suo F, Liu XM, Shen EZ. 109.  et al. 2013. Global analysis of fission yeast mating genes reveals new autophagy factors. PLOS Genet. 9:e1003715 [Google Scholar]
  110. Suzuki H, Tabata K, Morita E, Kawasaki M, Kato R. 110.  et al. 2014. Structural basis of the autophagy-related LC3/Atg13 LIR complex: recognition and interaction mechanism. Structure 22:47–58 [Google Scholar]
  111. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. 111.  2001. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20:5971–81 [Google Scholar]
  112. Suzuki K, Kondo C, Morimoto M, Ohsumi Y. 112.  2010. Selective transport of α-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p. J. Biol. Chem. 285:30019–25 [Google Scholar]
  113. Suzuki K, Kubota Y, Sekito T, Ohsumi Y. 113.  2007. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–18 [Google Scholar]
  114. Suzuki K, Ohsumi Y. 114.  2010. Current knowledge of the pre-autophagosomal structure (PAS). FEBS Lett. 584:1280–86 [Google Scholar]
  115. Suzuki NN, Yoshimoto K, Fujioka Y, Ohsumi Y, Inagaki F. 115.  2005. The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy 1:119–26 [Google Scholar]
  116. Taherbhoy AM, Tait SW, Kaiser SE, Williams AH, Deng A. 116.  et al. 2011. Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol. Cell 44:451–61 [Google Scholar]
  117. Thumm M, Egner R, Koch B, Schlumpberger M, Straub M. 117.  et al. 1994. Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett. 349:275–80 [Google Scholar]
  118. Tsukada M, Ohsumi Y. 118.  1993. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333:169–74 [Google Scholar]
  119. Watanabe Y, Kobayashi T, Yamamoto H, Hoshida H, Akada R. 119.  et al. 2012. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J. Biol. Chem. 287:31681–90 [Google Scholar]
  120. Weidberg H, Shpilka T, Shvets E, Abada A, Shimron F, Elazar Z. 120.  2011. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 20:444–54 [Google Scholar]
  121. Xie Z, Nair U, Klionsky DJ. 121.  2008. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19:3290–98 [Google Scholar]
  122. Yamada Y, Suzuki NN, Hanada T, Ichimura Y, Kumeta H. 122.  et al. 2007. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J. Biol. Chem. 282:8036–43 [Google Scholar]
  123. Yamaguchi M, Matoba K, Sawada R, Fujioka Y, Nakatogawa H. 123.  et al. 2012. Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol. 19:1250–56 [Google Scholar]
  124. Yamaguchi M, Noda NN, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F. 124.  2010. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J. Biol. Chem. 285:29599–607 [Google Scholar]
  125. Yamaguchi M, Noda NN, Yamamoto H, Shima T, Kumeta H. 125.  et al. 2012. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure 20:1244–54 [Google Scholar]
  126. Yamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T. 126.  et al. 2012. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 198:219–33 [Google Scholar]
  127. Yeh YY, Shah KH, Herman PK. 127.  2011. An Atg13 protein-mediated self-association of the Atg1 protein kinase is important for the induction of autophagy. J. Biol. Chem. 286:28931–39 [Google Scholar]
  128. Yeh YY, Wrasman K, Herman PK. 128.  2010. Autophosphorylation within the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae. Genetics 185:871–82 [Google Scholar]
/content/journals/10.1146/annurev-biophys-060414-034248
Loading
/content/journals/10.1146/annurev-biophys-060414-034248
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error