The actin cytoskeleton is essential for diverse processes in mammalian cells; these processes range from establishing cell polarity to powering cell migration to driving cytokinesis to positioning intracellular organelles. How these many functions are carried out in a spatiotemporally regulated manner in a single cytoplasm has been the subject of much study in the cytoskeleton field. Recent work has identified a host of actin nucleation factors that can build architecturally diverse actin structures. The biochemical properties of these factors, coupled with their cellular location, likely define the functional properties of actin structures. In this article, we describe how recent advances in cell biology and biochemistry have begun to elucidate the role of individual actin nucleation factors in generating distinct cellular structures. We also consider how the localization and orientation of actin nucleation factors, in addition to their kinetic properties, are critical to their ability to build a functional actin cytoskeleton.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abu Taha A, Taha M, Seebach J, Schnittler H-J. 1.  2014. ARP2/3-mediated junction-associated lamellipodia control VE-cadherin–based cell junction dynamics and maintain monolayer integrity. Mol. Biol. Cell 25:245–56 [Google Scholar]
  2. Akin O, Mullins RD. 2.  2008. Capping protein increases the rate of actin-based motility by promoting filament nucleation by the Arp2/3 complex. Cell 133:841–51 [Google Scholar]
  3. Amann KJ, Pollard TD. 3.  2001. The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments. Nat. Cell Biol. 3:306–10 [Google Scholar]
  4. Anderson TW, Vaughan AN, Cramer LP. 4.  2008. Retrograde flow and myosin II activity within the leading cell edge deliver F-actin to the lamella to seed the formation of graded polarity actomyosin II filament bundles in migrating fibroblasts. Mol. Biol. Cell 19:5006–18 [Google Scholar]
  5. Ang S-F, Zhao Z, Lim L, Manser E. 5.  2010. DAAM1 is a formin required for centrosome re-orientation during cell migration. PLOS ONE 5:e13064 [Google Scholar]
  6. Baarlink C, Wang H, Grosse R. 6.  2013. Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340:864–67 [Google Scholar]
  7. Bamburg JR. 7.  1987. Distribution and cellular localization of actin depolymerizing factor. J. Cell Biol. 105:2817–25 [Google Scholar]
  8. Barzik M, McClain LM, Gupton SL, Gertler FB. 8.  2014. Ena/VASP regulates mDia2-initiated filopodial length, dynamics, and function. Mol. Biol. Cell 25:2604–19 [Google Scholar]
  9. Batchelder EM, Yarar D. 9.  2010. Differential requirements for clathrin-dependent endocytosis at sites of cell–substrate adhesion. Mol. Biol. Cell 21:3070–79 [Google Scholar]
  10. Belin BJ, Mullins RD. 10.  2013. What we talk about when we talk about nuclear actin. Nucleus 4:291–97 [Google Scholar]
  11. Bereiter-Hahn J, Vöth M, Mai S, Jendrach M. 11.  2008. Structural implications of mitochondrial dynamics. Biotechnol. J. 3:765–80 [Google Scholar]
  12. Bershadsky AD, Ballestrem C, Carramusa L, Zilberman Y, Gilquin B. 12.  et al. 2006. Assembly and mechanosensory function of focal adhesions: experiments and models. Eur. J. Cell Biol. 85:165–73 [Google Scholar]
  13. Bilancia CG, Winkelman JD, Tsygankov D, Nowotarski SH, Sees JA. 13.  et al. 2014. Enabled negatively regulates Diaphanous-driven actin dynamics in vitro and in vivo. Dev. Cell 28:394–408 [Google Scholar]
  14. Blanchoin L, Pollard TD, Hitchcock-DeGregori SE. 14.  2001. Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin. Curr. Biol. 11:1300–304 [Google Scholar]
  15. Block J, Breitsprecher D, Kühn S, Winterhoff M, Kage F. 15.  et al. 2012. FMNL2 drives actin-based protrusion and migration downstream of Cdc42. Curr. Biol. 22:1005–12 [Google Scholar]
  16. Bornschlögl T. 16.  2013. How filopodia pull: what we know about the mechanics and dynamics of filopodia. Cytoskeleton 70:590–603 [Google Scholar]
  17. Boulant S, Kural C, Zeeh J-C, Ubelmann F, Kirchhausen T. 17.  2011. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13:1124–31 [Google Scholar]
  18. Bovellan M, Romeo Y, Biro M, Boden A, Chugh P. 18.  et al. 2014. Cellular control of cortical actin nucleation. Curr. Biol. 24:1628–35 [Google Scholar]
  19. Bresnick AR. 19.  1999. Molecular mechanisms of nonmuscle myosin-II regulation. Curr. Opin. Cell Biol. 11:26–33 [Google Scholar]
  20. Burnette DT, Manley S, Sengupta P, Sougrat R, Davidson MW. 20.  et al. 2011. A role for actin arcs in the leading-edge advance of migrating cells. Nat. Cell Biol. 13:371–81 [Google Scholar]
  21. Burnette DT, Shao L, Ott C, Pasapera AM, Fischer RS. 21.  et al. 2014. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. J. Cell Biol. 205:83–96 [Google Scholar]
  22. Campellone KG, Welch MD. 22.  2010. A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11:237–51 [Google Scholar]
  23. Carramusa L, Ballestrem C, Zilberman Y, Bershadsky AD. 23.  2007. Mammalian diaphanous-related formin Dia1 controls the organization of E-cadherin-mediated cell-cell junctions. J. Cell Sci. 120:3870–82 [Google Scholar]
  24. Charras G, Paluch E. 24.  2008. Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9:730–36 [Google Scholar]
  25. Charras GT, Hu C-K, Coughlin M, Mitchison TJ. 25.  2006. Reassembly of contractile actin cortex in cell blebs. J. Cell Biol. 175:477–90 [Google Scholar]
  26. Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ. 26.  2005. Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435:365–69 [Google Scholar]
  27. Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR. 27.  2008. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. 10:1039–50 [Google Scholar]
  28. Co C, Wong DT, Gierke S, Chang V, Taunton J. 28.  2007. Mechanism of actin network attachment to moving membranes: barbed end capture by N-WASP WH2 domains. Cell 128:901–13 [Google Scholar]
  29. Collins A, Warrington A, Taylor KA, Svitkina T. 29.  2011. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr. Biol. 21:1167–75 [Google Scholar]
  30. Cramer LP, Siebert M, Mitchison TJ. 30.  1997. Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force. J. Cell Biol. 136:1287–305 [Google Scholar]
  31. Vos KJ, Allan VJ, Grierson AJ, Sheetz MP. 31.  De 2005. Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr. Biol. 15:678–83 [Google Scholar]
  32. Dent EW, Kwiatkowski AV, Mebane LM, Philippar U, Barzik M. 32.  et al. 2007. Filopodia are required for cortical neurite initiation. Nat. Cell Biol. 9:1347–59 [Google Scholar]
  33. Derivery E, Gautreau A. 33.  2010. Generation of branched actin networks: assembly and regulation of the N-WASP and WAVE molecular machines. Bioessays 32:119–31 [Google Scholar]
  34. Engel U. 34.  2014. Structured illumination superresolution imaging of the cytoskeleton. Methods Cell Biol. 123:315–33 [Google Scholar]
  35. Fehon RG, McClatchey AI, Bretscher A. 35.  2010. Organizing the cell cortex: the role of ERM proteins. Nat. Rev. Mol. Cell Biol. 11:276–87 [Google Scholar]
  36. Fujimoto LM, Roth R, Heuser JE, Schmid SL. 36.  2000. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis. Traffic 1:161–71 [Google Scholar]
  37. Gaillard J, Ramabhadran V, Neumanne E, Gurel P, Blanchoin L. 37.  et al. 2011. Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules. Mol. Biol. Cell 22:4575–87 [Google Scholar]
  38. Galbraith CG, Yamada KM, Galbraith JA. 38.  2007. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315:992–95 [Google Scholar]
  39. Gomes ER, Jani S, Gundersen GG. 39.  2005. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121:451–63 [Google Scholar]
  40. Gundersen GG, Worman HJ. 40.  2013. Nuclear positioning. Cell 152:1376–89 [Google Scholar]
  41. Gupton SL, Eisenmann K, Alberts AS, Waterman-Storer CM. 41.  2007. mDia2 regulates actin and focal adhesion dynamics and organization in the lamella for efficient epithelial cell migration. J. Cell Sci. 120:3475–87 [Google Scholar]
  42. Han Y, Eppinger E, Schuster IG, Weigand LU, Liang X. 42.  et al. 2009. Formin-like 1 (FMNL1) is regulated by N-terminal myristoylation and induces polarized membrane blebbing. J. Biol. Chem. 284:33409–17 [Google Scholar]
  43. Hansen SD, Mullins RD. 43.  2010. VASP is a processive actin polymerase that requires monomeric actin for barbed end association. J. Cell Biol. 191:571–84 [Google Scholar]
  44. Harris ES, Gauvin TJ, Heimsath EG, Higgs HN. 44.  2010. Assembly of filopodia by the formin FRL2 (FMNL3). Cytoskeleton 67:755–72 [Google Scholar]
  45. Hatch AL, Gurel PS, Higgs HN. 45.  2014. Novel roles for actin in mitochondrial fission. J. Cell Sci. 127:4549–60 [Google Scholar]
  46. Heath JP, Holifield BF. 46.  1993. On the mechanisms of cortical actin flow and its role in cytoskeletal organisation of fibroblasts. Symp. Soc. Exp. Biol. 47:35–56 [Google Scholar]
  47. Hoelzle MK, Svitkina T. 47.  2012. The cytoskeletal mechanisms of cell–cell junction formation in endothelial cells. Mol. Biol. Cell 23:310–23 [Google Scholar]
  48. Hotulainen P, Lappalainen P. 48.  2006. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173:383–94 [Google Scholar]
  49. Iskratsch T, Yu C-H, Mathur A, Liu S, Stévenin V. 49.  et al. 2013. FHOD1 is needed for directed forces and adhesion maturation during cell spreading and migration. Dev. Cell 27:545–59 [Google Scholar]
  50. Jaiswal R, Breitsprecher D, Collins A, Corrêa IR Jr, Xu M-Q, Goode BL. 50.  2013. The formin Daam1 and fascin directly collaborate to promote filopodia formation. Curr. Biol. 23:1373–79 [Google Scholar]
  51. Jégou A, Carlier M-F, Romet-Lemonne G. 51.  2013. Formin mDia1 senses and generates mechanical forces on actin filaments. Nat. Commun. 4:1883 [Google Scholar]
  52. Johnson M, East DA, Mulvihill DP. 52.  2014. Formins determine the functional properties of actin filaments in yeast. Curr. Biol. 24:1525–30 [Google Scholar]
  53. Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW. 53.  et al. 2010. Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–84 [Google Scholar]
  54. Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL. 54.  et al. 2009. A perinuclear actin cap regulates nuclear shape. PNAS 106:19017–22 [Google Scholar]
  55. Khatau SB, Kim D-H, Hale CM, Bloom RJ, Wirtz D. 55.  2010. The perinuclear actin cap in health and disease. Nucleus 1:337–42 [Google Scholar]
  56. Kim D-H, Khatau SB, Feng Y, Walcott S, Sun SX. 56.  et al. 2012. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci. Rep. 2:555 [Google Scholar]
  57. Kobielak A, Pasolli HA, Fuchs E. 57.  2004. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat. Cell Biol. 6:21–30 [Google Scholar]
  58. Korobova F, Gauvin TJ, Higgs HN. 58.  2014. A role for myosin II in mammalian mitochondrial fission. Curr. Biol. 24:409–14 [Google Scholar]
  59. Korobova F, Ramabhadran V, Higgs HN. 59.  2013. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339:464–67 [Google Scholar]
  60. Kovacs EM, Goodwin M, Ali RG, Paterson AD, Yap AS. 60.  2002. Cadherin-directed actin assembly. Curr. Biol. 12:379–82 [Google Scholar]
  61. Kovar DR, Pollard TD. 61.  2004. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. PNAS 101:14725–30 [Google Scholar]
  62. Kozlov MM, Bershadsky AD. 62.  2004. Processive capping by formin suggests a force-driven mechanism of actin polymerization. J. Cell Biol. 167:1011–17 [Google Scholar]
  63. Kühn S, Geyer M. 63.  2014. Formins as effector proteins of Rho GTPases. Small GTPases 5:e29513 [Google Scholar]
  64. Kutscheidt S, Zhu R, Antoku S, Luxton GWG, Stagljar I. 64.  et al. 2014. FHOD1 interaction with nesprin-2G mediates TAN line formation and nuclear movement. Nat. Cell Biol. 16:708–15 [Google Scholar]
  65. Liu AP, Loerke D, Schmid SL, Danuser G. 65.  2009. Global and local regulation of clathrin-coated pit dynamics detected on patterned substrates. Biophys. J. 97:1038–47 [Google Scholar]
  66. Loisel TP, Boujemaa R, Pantaloni D, Carlier M-F. 66.  1999. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401:613–16 [Google Scholar]
  67. Lorenzo DN, Badea A, Davis J, Hostettler J, He J. 67.  et al. 2014. A PIK3C3–Ankyrin-B–Dynactin pathway promotes axonal growth and multiorganelle transport. J. Cell Biol. 207:735–52 [Google Scholar]
  68. Luo W, Yu C, Lieu ZZ, Allard J, Mogilner A. 68.  et al. 2013. Analysis of the local organization and dynamics of cellular actin networks. J. Cell Biol. 202:1057–73 [Google Scholar]
  69. Luxton GWG, Gomes ER, Folker ES, Vintinner E, Gundersen GG. 69.  2010. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329:956–59 [Google Scholar]
  70. Machesky LM, Reeves E, Wientjes F, Mattheyse FJ, Grogan A. 70.  et al. 1997. Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins. Biochem. J. 328:105–12 [Google Scholar]
  71. Maciver SK, Weeds AG. 71.  1994. Actophorin preferentially binds monomeric ADP-actin over ATP-bound actin: consequences for cell locomotion. FEBS Lett. 347:251–56 [Google Scholar]
  72. Mejillano MR, Kojima S, Applewhite DA, Gertler FB, Svitkina TM, Borisy GG. 72.  2004. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118:363–73 [Google Scholar]
  73. Merrifield CJ. 73.  2004. Seeing is believing: imaging actin dynamics at single sites of endocytosis. Trends Cell Biol. 14:352–58 [Google Scholar]
  74. Merrifield CJ, Qualmann B, Kessels MM, Almers W. 74.  2004. Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol. 83:13–18 [Google Scholar]
  75. Messa M, Fernández-Busnadiego R, Sun EW, Chen H, Czapla H. 75.  et al. 2014. Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits. eLife 3:e03311 [Google Scholar]
  76. Michael M, Yap AS. 76.  2013. The regulation and functional impact of actin assembly at cadherin cell–cell adhesions. Semin. Cell Dev. Biol. 24:298–307 [Google Scholar]
  77. Michaille JJ, Gouy M, Blanchet S, Duret L. 77.  1995. Isolation and characterization of a cDNA encoding a chicken actin-like protein. Gene 154:205–9 [Google Scholar]
  78. Miller AL. 78.  2011. The contractile ring. Curr. Biol. 21:R976–78 [Google Scholar]
  79. Mooren OL, Galletta BJ, Cooper JA. 79.  2012. Roles for actin assembly in endocytosis. Annu. Rev. Biochem. 81:661–86 [Google Scholar]
  80. Morone N, Fujiwara T, Murase K, Kasai RS, Ike H. 80.  et al. 2006. Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J. Cell Biol. 174:851–62 [Google Scholar]
  81. Mullins RD, Heuser JA, Pollard TD. 81.  1998. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. PNAS 95:6181–86 [Google Scholar]
  82. Narita A, Mueller J, Urban E, Vinzenz M, Small JV, Maéda Y. 82.  2012. Direct determination of actin polarity in the cell. J. Mol. Biol. 419:359–68 [Google Scholar]
  83. Nishida E, Maekawa S, Muneyuki E, Sakai H. 83.  1984. Action of a 19K protein from porcine brain on actin polymerization: a new functional class of actin-binding proteins. J. Biochem. 95:387–98 [Google Scholar]
  84. Oakes PW, Beckham Y, Stricker J, Gardel ML. 84.  2012. Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. J. Cell Biol. 196:363–74 [Google Scholar]
  85. Oegema K, Savoian MS, Mitchison TJ, Field CM. 85.  2000. Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. J. Cell Biol. 150:539–52 [Google Scholar]
  86. Otomo T, Tomchick DR, Otomo C, Panchal SC, Machius M, Rosen MK. 86.  2005. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 433:488–94 [Google Scholar]
  87. Paluch E, Piel M, Prost J, Bornens M, Sykes C. 87.  2005. Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys. J. 89:724–33 [Google Scholar]
  88. Papp G, Bugyi B, Ujfalusi Z, Barkó S, Hild G. 88.  et al. 2006. Conformational changes in actin filaments induced by formin binding to the barbed end. Biophys. J. 91:2564–72 [Google Scholar]
  89. Piekny AJ, Glotzer M. 89.  2008. Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis. Curr. Biol. 18:30–36 [Google Scholar]
  90. Pollard TD, Borisy GG. 90.  2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453–65 [Google Scholar]
  91. Rebowski G, Boczkowska M, Hayes DB, Guo L, Irving TC, Dominguez R. 91.  2008. X-ray scattering study of actin polymerization nuclei assembled by tandem W domains. PNAS 105:10785–90 [Google Scholar]
  92. Reichstein E, Korn ED. 92.  1979. Acanthamoeba profilin. a protein of low molecular weight from Acanthamoeba castellanii that inhibits actin nucleation. J. Biol. Chem. 254:6174–79 [Google Scholar]
  93. Risca VI, Wang EB, Chaudhuri O, Chia JJ, Geissler PL, Fletcher DA. 93.  2012. Actin filament curvature biases branching direction. PNAS 109:2913–18 [Google Scholar]
  94. Robinson RC, Turbedsky K, Kaiser DA, Marchand JB, Higgs HN. 94.  et al. 2001. Crystal structure of Arp2/3 complex. Science 294:1679–84 [Google Scholar]
  95. Rossier OM, Gauthier N, Biais N, Vonnegut W, Fardin M-A. 95.  et al. 2010. Force generated by actomyosin contraction builds bridges between adhesive contacts. EMBO J. 29:1055–68 [Google Scholar]
  96. Rottner K, Hänisch J, Campellone KG. 96.  2010. WASH, WHAMM and JMY: regulation of Arp2/3 complex and beyond. Trends Cell Biol. 20:650–61 [Google Scholar]
  97. Salbreux G, Charras G, Paluch E. 97.  2012. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22:536–45 [Google Scholar]
  98. Schafer DA, Mooseker MS, Cooper JA. 98.  1992. Localization of capping protein in chicken epithelial cells by immunofluorescence and biochemical fractionation. J. Cell Biol. 118:335–46 [Google Scholar]
  99. Schirenbeck A, Arasada R, Bretschneider T, Stradal TEB, Schleicher M, Faix J. 99.  2006. The bundling activity of vasodilator-stimulated phosphoprotein is required for filopodium formation. PNAS 103:7694–99 [Google Scholar]
  100. Schirenbeck A, Bretschneider T, Arasada R, Schleicher M, Faix J. 100.  2005. The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat. Cell Biol. 7:619–25 [Google Scholar]
  101. Schönichen A, Mannherz HG, Behrmann E, Mazur AJ, Kühn S. 101.  et al. 2013. FHOD1 is a combined actin filament capping and bundling factor that selectively associates with actin arcs and stress fibers. J. Cell Sci. 126:1891–1901 [Google Scholar]
  102. Schulze N, Graessl M, Blancke Soares A, Geyer M, Dehmelt L, Nalbant P. 102.  2014. FHOD1 regulates stress fiber organization by controlling the dynamics of transverse arcs and dorsal fibers. J. Cell Sci. 127:1379–93 [Google Scholar]
  103. Skau CT, Neidt EM, Kovar DR. 103.  2009. Role of tropomyosin in formin-mediated contractile ring assembly in fission yeast. Mol. Biol. Cell 20:2160–73 [Google Scholar]
  104. Skau CT, Plotnikov SV, Doyle AD, Waterman CM. 103a.  2015. Inverted formin 2 in focal adhesions promotes dorsal stress fiber and fibrillar adhesion formation to drive extracellular matrix assembly. PNAS 112:E2447–56 [Google Scholar]
  105. Small JV, Rottner K, Kaverina I, Anderson KI. 104.  1998. Assembling an actin cytoskeleton for cell attachment and movement. Biochim. Biophys. Acta 1404:271–81 [Google Scholar]
  106. Small JV, Stradal T, Vignal E, Rottner K. 105.  2002. The lamellipodium: where motility begins. Trends Cell Biol. 12:112–20 [Google Scholar]
  107. Sroka J, von Gunten M, Dunn GA, Keller HU. 106.  2002. Phenotype modulation in non-adherent and adherent sublines of Walker carcinosarcoma cells: the role of cell-substratum contacts and microtubules in controlling cell shape, locomotion and cytoskeletal structure. Int. J. Biochem. Cell Biol. 34:882–99 [Google Scholar]
  108. Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A. 107.  et al. 2001. Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol. 2:138–45 [Google Scholar]
  109. Svitkina TM, Borisy GG. 108.  1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145:1009–26 [Google Scholar]
  110. Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S. 109.  et al. 2003. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160:409–21 [Google Scholar]
  111. Tang VW, Brieher WM. 110.  2012. α-Actinin-4/FSGS1 is required for Arp2/3-dependent actin assembly at the adherens junction. J. Cell Biol. 196:115–30 [Google Scholar]
  112. Tojkander S, Gateva G, Schevzov G, Hotulainen P, Naumanen P. 111.  et al. 2011. A molecular pathway for myosin II recruitment to stress fibers. Curr. Biol. 21:539–50 [Google Scholar]
  113. Ujfalusi Z, Kovács M, Nagy NT, Barkó S, Hild G. 112.  et al. 2012. Myosin and tropomyosin stabilize the conformation of formin-nucleated actin filaments. J. Biol. Chem. 287:31894–904 [Google Scholar]
  114. Vallenius T. 113.  2013. Actin stress fibre subtypes in mesenchymal-migrating cells. Open Biol. 3:130001 [Google Scholar]
  115. Van den Dries K, Schwartz SL, Byars J, Meddens MBM, Bolomini-Vittori M. 114.  et al. 2013. Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes. Mol. Biol. Cell 24:2112–23 [Google Scholar]
  116. Vartiainen MK, Guettler S, Larijani B, Treisman R. 115.  2007. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316:1749–52 [Google Scholar]
  117. Vavylonis D, Wu J-Q, Hao S, O'Shaughnessy B, Pollard TD. 116.  2008. Assembly mechanism of the contractile ring for cytokinesis by fission yeast. Science 319:97–100 [Google Scholar]
  118. Verkhovsky AB, Svitkina TM, Borisy GG. 117.  1999. Network contraction model for cell translocation and retrograde flow. Biochem. Soc. Symp. 65:207–22 [Google Scholar]
  119. Verma S, Shewan AM, Scott JA, Helwani FM, den Elzen NR. 118.  et al. 2004. Arp2/3 activity is necessary for efficient formation of E-cadherin adhesive contacts. J. Biol. Chem. 279:34062–70 [Google Scholar]
  120. Versaevel M, Braquenier J-B, Riaz M, Grevesse T, Lantoine J, Gabriele S. 119.  2014. Super-resolution microscopy reveals LINC complex recruitment at nuclear indentation sites. Sci. Rep. 4:7362 [Google Scholar]
  121. Wang K, Ash JF, Singer SJ. 120.  1975. Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells. PNAS 72:4483–86 [Google Scholar]
  122. Wang YL. 121.  1985. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol. 101:597–602 [Google Scholar]
  123. Watanabe S, Ando Y, Yasuda S, Hosoya H, Watanabe N. 122.  et al. 2008. mDia2 induces the actin scaffold for the contractile ring and stabilizes its position during cytokinesis in NIH 3T3 cells. Mol. Biol. Cell 19:2328–38 [Google Scholar]
  124. Waterman-Storer CM, Desai A, Bulinski JC, Salmon ED. 123.  1998. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8:1227–30 [Google Scholar]
  125. Welch MD, DePace AH, Verma S, Iwamatsu A, Mitchison TJ. 124.  1997. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138:375–84 [Google Scholar]
  126. Welch MD, Iwamatsu A, Mitchison TJ. 125.  1997. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385:265–69 [Google Scholar]
  127. Winkelman JD, Bilancia CG, Peifer M, Kovar DR. 126.  2014. Ena/VASP enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin. PNAS 11:4121–26 [Google Scholar]
  128. Wu C, Haynes EM, Asokan SB, Simon JM, Sharpless NE. 127.  et al. 2013. Loss of Arp2/3 induces an NF-κB–dependent, nonautonomous effect on chemotactic signaling. J. Cell Biol. 203:907–16 [Google Scholar]
  129. Wu J-Q, Sirotkin V, Kovar DR, Lord M, Beltzner CC. 128.  et al. 2006. Assembly of the cytokinetic contractile ring from a broad band of nodes in fission yeast. J. Cell Biol. 174:391–402 [Google Scholar]
  130. Wu Y, Kanchanawong P, Zaidel-Bar R. 129.  2015. Actin-delimited adhesion-independent clustering of E-cadherin forms the nanoscale building blocks of adherens junctions. Dev. Cell 32:139–54 [Google Scholar]
  131. Xu K, Babcock HP, Zhuang X. 130.  2012. Dual-objective storm reveals three-dimensional filament organization in the actin cytoskeleton. Nat. Methods 9:185–88 [Google Scholar]
  132. Xu Y, Moseley JB, Sagot I, Poy F, Pellman D. 131.  et al. 2004. Crystal structures of a formin homology-2 domain reveal a tethered dimer architecture. Cell 116:711–23 [Google Scholar]
  133. Xue B, Robinson RC. 132.  2013. Guardians of the actin monomer. Eur. J. Cell Biol. 92:316–32 [Google Scholar]
  134. Yamashiro S, Mizuno H, Watanabe N. 133.  2015. An easy-to-use single-molecule speckle microscopy enabling nanometer-scale flow and wide-range lifetime measurement of cellular actin filaments. Methods Cell Biol. 125:43–59 [Google Scholar]
  135. Yang C, Czech L, Gerboth S, Kojima S, Scita G, Svitkina T. 134.  2007. Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells. PLOS Biol. 5:e317 [Google Scholar]
  136. Yang C, Svitkina T. 135.  2011. Filopodia initiation: focus on the Arp2/3 complex and formins. Cell Adhes. Migr. 5:402–8 [Google Scholar]
  137. Yarar D, Waterman-Storer CM, Schmid SL. 136.  2005. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell 16:964–75 [Google Scholar]
  138. Yoo Y, Wu X, Guan J-L. 137.  2007. A novel role of the actin-nucleating Arp2/3 complex in the regulation of RNA polymerase II-dependent transcription. J. Biol. Chem. 282:7616–23 [Google Scholar]
  139. Zhu J, Mogilner A. 138.  2012. Mesoscopic model of actin-based propulsion. PLOS Comput. Biol. 8:e1002764 [Google Scholar]
  140. Zuchero JB, Coutts AS, Quinlan ME, La Thangue NB, Mullins RD. 139.  2009. p53-cofactor JMY is a multifunctional actin nucleation factor. Nat. Cell Biol. 11:451–59 [Google Scholar]
  141. Zuo Y, Oh W, Frost JA. 140.  2014. Controlling the switches: Rho GTPase regulation during animal cell mitosis. Cell. Signal. 26:2998–3006 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error