1932

Abstract

The three-dimensional organization of the genome plays important roles in regulating the functional output of the genome and even in the maintenance of epigenetic inheritance and genome stability. Here, we review and compare a number of newly developed methods—especially those that utilize the CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated protein 9) system—that enable the direct visualization of specific, endogenous DNA sequences in living cells. We also discuss the practical considerations in implementing the CRISPR imaging technique to achieve sufficient signal-to-background levels, high specificity, and high labeling efficiency. These DNA labeling methods enable tracking of the copy number, localization, and movement of genomic elements, and we discuss the potential applications of these methods in understanding the searching and targeting mechanism of the Cas9-sgRNA complex, investigating chromosome organization, and visualizing genome instability and rearrangement.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062215-010830
2016-07-05
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/biophys/45/1/annurev-biophys-062215-010830.html?itemId=/content/journals/10.1146/annurev-biophys-062215-010830&mimeType=html&fmt=ahah

Literature Cited

  1. Anton T, Bultmann S, Leonhardt H, Markaki Y. 1.  2014. Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5:163–72 [Google Scholar]
  2. Avner P, Heard E. 2.  2001. X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet. 2:59–67 [Google Scholar]
  3. Bancaud A, Huet S, Daigle N, Mozziconacci J, Beaudouin J, Ellenberg J. 3.  2009. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J. 28:3785–98 [Google Scholar]
  4. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P. 4.  et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–12 [Google Scholar]
  5. Beerli RR, Barbas CF 3rd. 5.  2002. Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20:135–41 [Google Scholar]
  6. Beliveau BJ, Boettiger AN, Avendano MS, Jungmann R, McCole RB. 6.  et al. 2015. Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes. Nat. Commun. 6:7147 [Google Scholar]
  7. Belmont AS.7.  2001. Visualizing chromosome dynamics with GFP. Trends Cell Biol. 11:250–57 [Google Scholar]
  8. Belmont AS, Braunfeld MB, Sedat JW, Agard DA. 8.  1989. Large-scale chromatin structural domains within mitotic and interphase chromosomes in vivo and in vitro. Chromosoma 98:129–43 [Google Scholar]
  9. Berger AB, Cabal GG, Fabre E, Duong T, Buc H. 9.  et al. 2008. High-resolution statistical mapping reveals gene territories in live yeast. Nat. Methods 5:1031–37 [Google Scholar]
  10. Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D. 10.  2006. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172:2391–403 [Google Scholar]
  11. Bibikova M, Beumer K, Trautman JK, Carroll D. 11.  2003. Enhancing gene targeting with designed zinc finger nucleases. Science 300:764 [Google Scholar]
  12. Bickmore WA, van Steensel B. 12.  2013. Genome architecture: domain organization of interphase chromosomes. Cell 152:1270–84 [Google Scholar]
  13. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S. 13.  et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–12 [Google Scholar]
  14. Boettiger AN, Bintu B, Moffitt JR, Wang S, Beliveau BJ. 14.  et al. 2016. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states. Nature 529:418–22 [Google Scholar]
  15. Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K. 15.  et al. 2005. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLOS Biol. 3:826–42 [Google Scholar]
  16. Branzei D, Foiani M. 16.  2008. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9:297–308 [Google Scholar]
  17. Briggs AW, Rios X, Chari R, Yang L, Zhang F. 17.  et al. 2012. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res. 40:e117 [Google Scholar]
  18. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ. 18.  et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–64 [Google Scholar]
  19. Bultmann S, Morbitzer R, Schmidt CS, Thanisch K, Spada F. 19.  et al. 2012. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res. 40:5368–77 [Google Scholar]
  20. Casas-Delucchi CS, Becker A, Bolius JJ, Cardoso MC. 20.  2012. Targeted manipulation of heterochromatin rescues MeCP2 Rett mutants and re-establishes higher order chromatin organization. Nucleic Acids Res. 40:e176 [Google Scholar]
  21. Cavalli G, Misteli T. 21.  2013. Functional implications of genome topology. Nat. Struct. Mol. Biol. 20:290–99 [Google Scholar]
  22. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y. 22.  et al. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39:e82 [Google Scholar]
  23. Chapman JR, Taylor MR, Boulton SJ. 23.  2012. Playing the end game: DNA double-strand break repair pathway choice. Mol. Cell 47:497–510 [Google Scholar]
  24. Chari R, Mali P, Moosburner M, Church GM. 24.  2015. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat. Methods 12:823–26 [Google Scholar]
  25. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W. 25.  et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–91 [Google Scholar]
  26. Chen B, Hu J, Almeida R, Liu H, Balakrishnan S. 26.  et al. 2016. Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Res. doi: 10.1093/nar/gkv1533 [Google Scholar]
  27. Chen B, Huang B. 27.  2014. Imaging genomic elements in living cells using CRISPR/Cas9. Methods Enzymol. 546:337–54 [Google Scholar]
  28. Chen CY, Morris Q, Mitchell JA. 28.  2012. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features. BMC Genom. 13:152 [Google Scholar]
  29. Chen G, Mulla WA, Kucharavy A, Tsai HJ, Rubinstein B. 29.  et al. 2015. Targeting the adaptability of heterogeneous aneuploids. Cell 160:771–84 [Google Scholar]
  30. Cho SW, Kim S, Kim JM, Kim JS. 30.  2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31:230–32 [Google Scholar]
  31. Choo Y, Sánchez-García I, Klug A. 31.  1994. In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 372:642–45 [Google Scholar]
  32. Cong L, Ran FA, Cox D, Lin S, Barretto R. 32.  et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23 [Google Scholar]
  33. Das T, Payer B, Cayouette M, Harris WA. 33.  2003. In vivo time-lapse imaging of cell divisions during neurogenesis in the developing zebrafish retina. Neuron 37:597–609 [Google Scholar]
  34. de Wit E, de Laat W. 34.  2012. A decade of 3C technologies: insights into nuclear organization. Genes Dev. 26:11–24 [Google Scholar]
  35. Dekker J.35.  2014. Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture. Epigenetics Chromatin 7:25 [Google Scholar]
  36. Dekker J, Marti-Renom MA, Mirny LA. 36.  2013. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet. 14:390–403 [Google Scholar]
  37. Deng D, Yan C, Pan X, Mahfouz M, Wang J. 37.  et al. 2012. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–23 [Google Scholar]
  38. Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. 38.  2013. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12:393–94 [Google Scholar]
  39. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y. 39.  et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–80 [Google Scholar]
  40. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M. 40.  et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32:1262–67 [Google Scholar]
  41. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ. 41.  et al. 2010. A three-dimensional model of the yeast genome. Nature 465:363–67 [Google Scholar]
  42. Essers J, van Cappellen WA, Theil AF, van Drunen E, Jaspers NG. 42.  et al. 2005. Dynamics of relative chromosome position during the cell cycle. Mol. Biol. Cell 16:769–75 [Google Scholar]
  43. Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM. 43.  2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10:1116–21 [Google Scholar]
  44. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D. 44.  et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:822–26 [Google Scholar]
  45. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 45.  2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32:279–84 [Google Scholar]
  46. Gagnon JA, Valen E, Thyme SB, Huang P, Akhmetova L. 46.  et al. 2014. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLOS ONE 9:e98186 [Google Scholar]
  47. Gasiunas G, Barrangou R, Horvath P, Siksnys V. 47.  2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:E2579–86 [Google Scholar]
  48. Gasser SM.48.  2002. Visualizing chromatin dynamics in interphase nuclei. Science 296:1412–16 [Google Scholar]
  49. Gerlich D, Beaudouin J, Kalbfuss B, Daigle N, Eils R, Ellenberg J. 49.  2003. Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 112:751–64 [Google Scholar]
  50. Gibcus JH, Dekker J. 50.  2013. The hierarchy of the 3D genome. Mol. Cell 49:773–82 [Google Scholar]
  51. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y. 51.  et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–61 [Google Scholar]
  52. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA. 52.  et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–51 [Google Scholar]
  53. Giorgetti L, Galupa R, Nora EP, Piolot T, Lam F. 53.  et al. 2014. Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157:950–63 [Google Scholar]
  54. Green B, Bouchier C, Fairhead C, Craig NL, Cormack BP. 54.  2012. Insertion site preference of Mu, Tn5, and Tn7 transposons. Mob. DNA 3:3 [Google Scholar]
  55. Guilinger JP, Thompson DB, Liu DR. 55.  2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32:577–82 [Google Scholar]
  56. Heintzman ND, Ren B. 56.  2009. Finding distal regulatory elements in the human genome. Curr. Opin. Genet. Dev. 19:541–49 [Google Scholar]
  57. Holkers M, Maggio I, Liu J, Janssen JM, Miselli F. 57.  et al. 2013. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 41:e63 [Google Scholar]
  58. Horvath P, Barrangou R. 58.  2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–70 [Google Scholar]
  59. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF. 59.  et al. 2013. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. PNAS 110:15644–49 [Google Scholar]
  60. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S. 60.  et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:827–32 [Google Scholar]
  61. Jiang F, Doudna JA. 61.  2015. The structural biology of CRISPR-Cas systems. Curr. Opin. Struct. Biol. 30:100–11 [Google Scholar]
  62. Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. 62.  2015. A Cas9–guide RNA complex preorganized for target DNA recognition. Science 348:1477–81 [Google Scholar]
  63. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 63.  2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21 [Google Scholar]
  64. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. 64.  2013. RNA-programmed genome editing in human cells. eLife 2:e00471 [Google Scholar]
  65. Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA. 65.  2014. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 42:e147 [Google Scholar]
  66. Kalhor R, Tjong H, Jayathilaka N, Alber F, Chen L. 66.  2012. Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol. 30:90–98 [Google Scholar]
  67. Kamiyama D, Sekine S, Barsi-Rhyne B, Hu J, Chen B. 67.  et al. 2016. Versatile protein tagging in cells with split fluorescent protein. Nat. Comm. 7:11046 [Google Scholar]
  68. Kanda T, Sullivan KF, Wahl GM. 68.  1998. Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8:377–85 [Google Scholar]
  69. Kim H, Kim JS. 69.  2014. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15:321–34 [Google Scholar]
  70. Kim Y, Kweon J, Kim A, Chon JK, Yoo JY. 70.  et al. 2013. A library of TAL effector nucleases spanning the human genome. Nat. Biotechnol. 31:251–58 [Google Scholar]
  71. Kimura H, Cook PR. 71.  2001. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 153:1341–53 [Google Scholar]
  72. Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV. 72.  et al. 2015. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33:1293–98 [Google Scholar]
  73. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT. 73.  et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–85 [Google Scholar]
  74. Klug A.74.  1993. Co-chairman's remarks: protein designs for the specific recognition of DNA. Gene 135:83–92 [Google Scholar]
  75. Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB. 75.  et al. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:823–26 [Google Scholar]
  76. Koike-Yusa H, Li Y, Tan E-P, Velasco-Herrera MDC, Yusa K. 76.  2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32:267–73 [Google Scholar]
  77. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO. 77.  et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–88 [Google Scholar]
  78. Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. 78.  2014. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32:677–83 [Google Scholar]
  79. Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T. 79.  2007. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat. Rev. Genet. 8:104–15 [Google Scholar]
  80. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL. 80.  et al. 2014. Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360–63 [Google Scholar]
  81. Lesterlin C, Ball G, Schermelleh L, Sherratt DJ. 81.  2014. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506:249–53 [Google Scholar]
  82. Li G, Sudlow G, Belmont AS. 82.  1998. Interphase cell cycle dynamics of a late-replicating, heterochromatic homogeneously staining region: precise choreography of condensation/decondensation and nuclear positioning. J. Cell Biol. 140:975–89 [Google Scholar]
  83. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T. 83.  et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–93 [Google Scholar]
  84. Lindhout BI, Fransz P, Tessadori F, Meckel T, Hooykaas PJ, van der Zaal BJ. 84.  2007. Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res. 35:e107 [Google Scholar]
  85. Lucas JS, Zhang Y, Dudko OK, Murre C. 85.  2014. 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell 158:339–52 [Google Scholar]
  86. Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S, Pederson T. 86.  2015. Multicolor CRISPR labeling of chromosomal loci in human cells. PNAS 112:3002–7 [Google Scholar]
  87. Ma H, Reyes-Gutierrez P, Pederson T. 87.  2013. Visualization of repetitive DNA sequences in human chromosomes with transcription activator-like effectors. PNAS 110:21048–53 [Google Scholar]
  88. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. 88.  2013. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10:977–79 [Google Scholar]
  89. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM. 89.  et al. 2008. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31:294–301 [Google Scholar]
  90. Mahfouz MM, Li L, Piatek M, Fang X, Mansour H. 90.  et al. 2012. Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol. Biol. 78:311–21 [Google Scholar]
  91. Maizels N.91.  2005. Immunoglobulin gene diversification. Annu. Rev. Genet. 39:23–46 [Google Scholar]
  92. Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL. 92.  2012. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–19 [Google Scholar]
  93. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M. 93.  et al. 2013. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31:833–38 [Google Scholar]
  94. Mali P, Esvelt KM, Church GM. 94.  2013. Cas9 as a versatile tool for engineering biology. Nat. Methods 10:957–63 [Google Scholar]
  95. Marini B, Kertesz-Farkas A, Ali H, Lucic B, Lisek K. 95.  et al. 2015. Nuclear architecture dictates HIV-1 integration site selection. Nature 521:227–31 [Google Scholar]
  96. Martin RM, Leonhardt H, Cardoso MC. 96.  2005. DNA labeling in living cells. Cytom. A 67:45–52 [Google Scholar]
  97. Masui O, Bonnet I, Le Baccon P, Brito I, Pollex T. 97.  et al. 2011. Live-cell chromosome dynamics and outcome of X chromosome pairing events during ES cell differentiation. Cell 145:447–58 [Google Scholar]
  98. Matzke AJ, Huettel B, van der Winden J, Matzke M. 98.  2005. Use of two-color fluorescence-tagged transgenes to study interphase chromosomes in living plants. Plant Physiol. 139:1586–96 [Google Scholar]
  99. Miller J, McLachlan AD, Klug A. 99.  1985. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4:1609–14 [Google Scholar]
  100. Miller JC, Tan S, Qiao G, Barlow KA, Wang J. 100.  et al. 2011. A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29:143–48 [Google Scholar]
  101. Miyanari Y, Ziegler-Birling C, Torres-Padilla ME. 101.  2013. Live visualization of chromatin dynamics with fluorescent TALEs. Nat. Struct. Mol. Biol. 20:1321–24 [Google Scholar]
  102. Mora-Bermúdez F, Ellenberg J. 102.  2007. Measuring structural dynamics of chromosomes in living cells by fluorescence microscopy. Methods 41:158–67 [Google Scholar]
  103. Morbitzer R, Elsaesser J, Hausner J, Lahaye T. 103.  2011. Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. 39:5790–99 [Google Scholar]
  104. Moscou MJ, Bogdanove AJ. 104.  2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:1501 [Google Scholar]
  105. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E. 105.  et al. 2013. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64 [Google Scholar]
  106. Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR. 106.  et al. 2013. Organization of the mitotic chromosome. Science 342:948–53 [Google Scholar]
  107. Nguyen DK, Disteche CM. 107.  2006. Dosage compensation of the active X chromosome in mammals. Nat. Genet. 38:47–53 [Google Scholar]
  108. Nissim L, Perli SD, Fridkin A, Perez-Pinera P, Lu TK. 108.  2014. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 54:698–710 [Google Scholar]
  109. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I. 109.  et al. 2012. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–85 [Google Scholar]
  110. Pabo CO, Peisach E, Grant RA. 110.  2001. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70:313–40 [Google Scholar]
  111. Parada LA, McQueen PG, Munson PJ, Misteli T. 111.  2002. Conservation of relative chromosome positioning in normal and cancer cells. Curr. Biol. 12:1692–97 [Google Scholar]
  112. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. 112.  2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31:839–43 [Google Scholar]
  113. Pavletich NP, Pabo CO. 113.  1991. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–17 [Google Scholar]
  114. Pennacchio LA, Bickmore W, Dean A, Nobrega MA, Bejerano G. 114.  2013. Enhancers: five essential questions. Nat. Rev. Genet. 14:288–95 [Google Scholar]
  115. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM. 115.  et al. 2013. RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat. Methods 10:973–76 [Google Scholar]
  116. Perez-Pinera P, Ousterout DG, Brunger JM, Farin AM, Glass KA. 116.  et al. 2013. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods 10:239–42 [Google Scholar]
  117. Petrie HT, Livak F, Burtrum D, Mazel S. 117.  1995. T cell receptor gene recombination patterns and mechanisms: cell death, rescue, and T cell production. J. Exp. Med. 182:121–27 [Google Scholar]
  118. Porteus MH, Baltimore D. 118.  2003. Chimeric nucleases stimulate gene targeting in human cells. Science 300:763 [Google Scholar]
  119. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS. 119.  et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–83 [Google Scholar]
  120. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS. 120.  et al. 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–91 [Google Scholar]
  121. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID. 121.  et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–80 [Google Scholar]
  122. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. 122.  2012. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 30:460–65 [Google Scholar]
  123. Robinett CC, Straight A, Li G, Willhelm C, Sudlow G. 123.  et al. 1996. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135:1685–700 [Google Scholar]
  124. Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D, Misteli T. 124.  2013. Spatial dynamics of chromosome translocations in living cells. Science 341:660–64 [Google Scholar]
  125. Saad H, Gallardo F, Dalvai M, Tanguy-le-Gac N, Lane D, Bystricky K. 125.  2014. DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLOS Genet. 10:e1004187 [Google Scholar]
  126. Sagai T, Amano T, Tamura M, Mizushina Y, Sumiyama K, Shiroishi T. 126.  2009. A cluster of three long-range enhancers directs regional Shh expression in the epithelial linings. Development 136:1665–74 [Google Scholar]
  127. Sakabe NJ, Savic D, Nobrega MA. 127.  2012. Transcriptional enhancers in development and disease. Genome Biol. 13:238 [Google Scholar]
  128. Sander JD, Joung JK. 128.  2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:347–55 [Google Scholar]
  129. Schmid-Burgk JL, Schmidt T, Kaiser V, Honing K, Hornung V. 129.  2013. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat. Biotechnol. 31:76–81 [Google Scholar]
  130. Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER. 130.  et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS 108:10098–103 [Google Scholar]
  131. Shachar S, Voss TC, Pegoraro G, Sciascia N, Misteli T. 131.  2015. Identification of gene positioning factors using high-throughput imaging mapping. Cell 162:911–23 [Google Scholar]
  132. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA. 132.  et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87 [Google Scholar]
  133. Shao S, Zhang W, Hu H, Xue B, Qin J. 133.  et al. 2016. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res. doi: 10.1093/nar/gkw066 [Google Scholar]
  134. Siegel JJ, Amon A. 134.  2012. New insights into the troubles of aneuploidy. Annu. Rev. Cell Dev. Biol. 28:189–214 [Google Scholar]
  135. Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A. 135.  et al. 2007. Positional stability of single double-strand breaks in mammalian cells. Nat. Cell Biol. 9:675–82 [Google Scholar]
  136. Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA. 136.  2005. Interchromosomal associations between alternatively expressed loci. Nature 435:637–45 [Google Scholar]
  137. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 137.  2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67 [Google Scholar]
  138. Streblow RC, Dafferner AJ, Nelson M, Fletcher M, West WW. 138.  et al. 2007. Imbalances of chromosomes 4, 9, and 12 are recurrent in the thecoma-fibroma group of ovarian stromal tumors. Cancer Genet. Cytogenet. 178:135–40 [Google Scholar]
  139. Strickfaden H, Zunhammer A, van Koningsbruggen S, Kohler D, Cremer T. 139.  2010. 4D chromatin dynamics in cycling cells: Theodor Boveri's hypotheses revisited. Nucleus 1:284–97 [Google Scholar]
  140. Strukov YG, Belmont AS. 140.  2009. Mitotic chromosome structure: reproducibility of folding and symmetry between sister chromatids. Biophys. J. 96:1617–28 [Google Scholar]
  141. Sun N, Zhao H. 141.  2013. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol. Bioeng. 110:1811–21 [Google Scholar]
  142. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. 142.  2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–46 [Google Scholar]
  143. Terns MP, Terns RM. 143.  2011. CRISPR-based adaptive immune systems. Curr. Opin. Microbiol. 14:321–27 [Google Scholar]
  144. Thanisch K, Schneider K, Morbitzer R, Solovei I, Lahaye T. 144.  et al. 2014. Targeting and tracing of specific DNA sequences with dTALEs in living cells. Nucleic Acids Res. 42:e38 [Google Scholar]
  145. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V. 145.  et al. 2014. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32:569–76 [Google Scholar]
  146. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV. 146.  et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33:187–97 [Google Scholar]
  147. Tupler R, Perini G, Green MR. 147.  2001. Expressing the human genome. Nature 409:832–33 [Google Scholar]
  148. Tüzel E.148.  2011. Organelle dynamics: a tale of fusing nucleoli. Curr. Biol. 21:R395–97 [Google Scholar]
  149. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM. 149.  et al. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–51 [Google Scholar]
  150. van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A. 150.  et al. 2010. Hi-C: a method to study the three-dimensional architecture of genomes. J. Vis. Exp. 39:e1869 [Google Scholar]
  151. Vasuri F, Magrini E, Foschini MP, Eusebi V. 151.  2008. Trisomy of chromosome 6 in Merkel cell carcinoma within lymph nodes. Virchows Arch. 452:559–63 [Google Scholar]
  152. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R. 152.  et al. 2011. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–24 [Google Scholar]
  153. Wang T, Wei JJ, Sabatini DM, Lander ES. 153.  2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80–84 [Google Scholar]
  154. Wiedenheft B, Sternberg SH, Doudna JA. 154.  2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–38 [Google Scholar]
  155. Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K. 155.  et al. 2011. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. PNAS 108:10092–27 [Google Scholar]
  156. Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD. 156.  et al. 2014. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32:670–76 [Google Scholar]
  157. Yuan K, Shermoen AW, O’Farrell PH. 157.  2014. Illuminating DNA replication during Drosophila development using TALE-lights. Curr. Biol. 24:R144–45 [Google Scholar]
  158. Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH. 158.  et al. 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160:339–50 [Google Scholar]
  159. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS. 159.  et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–71 [Google Scholar]
  160. Zhang CZ, Spektor A, Cornils H, Francis JM, Jackson EK. 160.  et al. 2015. Chromothripsis from DNA damage in micronuclei. Nature 522:179–84 [Google Scholar]
  161. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. 161.  2011. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29:149–53 [Google Scholar]
  162. Zhang Y, Wong CH, Birnbaum RY, Li G, Favaro R. 162.  et al. 2013. Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504:306–10 [Google Scholar]
  163. Zhou Y, Zhu S, Cai C, Yuan P, Li C. 163.  et al. 2014. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509:487–91 [Google Scholar]
  164. Zink D, Sadoni N, Stelzer E. 164.  2003. Visualizing chromatin and chromosomes in living cells. Methods 29:42–50 [Google Scholar]
/content/journals/10.1146/annurev-biophys-062215-010830
Loading
/content/journals/10.1146/annurev-biophys-062215-010830
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error