1932

Abstract

The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that () transcription is heterogeneous between cells and () transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062215-010838
2016-07-05
2024-12-11
Loading full text...

Full text loading...

/deliver/fulltext/biophys/45/1/annurev-biophys-062215-010838.html?itemId=/content/journals/10.1146/annurev-biophys-062215-010838&mimeType=html&fmt=ahah

Literature Cited

  1. Almer A, Rudolph H, Hinnen A, Hörz W. 1.  1986. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5:102689–96 [Google Scholar]
  2. Armstrong R, Wen W, Meinkoth J, Taylor S, Montminy M. 2.  1995. A refractory phase in cyclic AMP-responsive transcription requires down regulation of protein kinase A. Mol. Cell. Biol. 15:31826–32 [Google Scholar]
  3. Bahar Halpern K, Tanami S, Landen S, Chapal M, Szlak L. 3.  et al. 2015. Bursty gene expression in the intact mammalian liver. Mol. Cell 58:1147–56 [Google Scholar]
  4. Balázsi G, van Oudenaarden A, Collins JJ. 4.  2011. Cellular decision making and biological noise: from microbes to mammals. Cell 144:6910–25 [Google Scholar]
  5. Bar-Even A, Paulsson J, Maheshri N, Carmi M, O'Shea E. 5.  et al. 2006. Noise in protein expression scales with natural protein abundance. Nat. Genet. 38:6636–43 [Google Scholar]
  6. Barrow J, Hay CW, Ferguson LA, Docherty HM, Docherty K. 6.  2006. Transcription factor cycling on the insulin promoter. FEBS Lett. 580:2711–15 [Google Scholar]
  7. Batenchuk C, St-Pierre S, Tepliakova L, Adiga S, Szuto A. 7.  et al. 2011. Chromosomal position effects are linked to Sir2-mediated variation in transcriptional burst size. Biophys. J. 100:10L56–58 [Google Scholar]
  8. Becker M, Baumann C, John S, Walker DA, Vigneron M. 8.  et al. 2002. Dynamic behavior of transcription factors on a natural promoter in living cells. EMBO Rep. 3:121188–94 [Google Scholar]
  9. Bentley DL.9.  2014. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 15:3163–75 [Google Scholar]
  10. Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM. 10.  1998. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2:4437–45 [Google Scholar]
  11. Birse CE, Minvielle-Sebastia L, Lee BA, Keller W, Proudfoot NJ. 11.  1998. Coupling termination of transcription to messenger RNA maturation in yeast. Science 280:5361298–301 [Google Scholar]
  12. Blake WJ, Balázsi G, Kohanski MA, Isaacs FJ, Murphy KF. 12.  et al. 2006. Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24:6853–65 [Google Scholar]
  13. Blake WJ, KÆrn M, Cantor CR, Collins JJ. 13.  2003. Noise in eukaryotic gene expression. Nature 422:6932633–37 [Google Scholar]
  14. Boireau S, Maiuri P, Basyuk E, de la Mata M, Knezevich A. 14.  et al. 2007. The transcriptional cycle of HIV-1 in real-time and live cells. J. Cell Biol. 179:2291–304 [Google Scholar]
  15. Bothma JP, Garcia HG, Esposito E, Schlissel G, Gregor T, Levine M. 15.  2014. Dynamic regulation of eve stripe 2 expression reveals transcriptional bursts in living Drosophila embryos. PNAS 111:2910598–603 [Google Scholar]
  16. Braberg H, Jin H, Moehle EA, Chan YA, Wang S. 16.  et al. 2013. From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II. Cell 154:4775–88 [Google Scholar]
  17. Bratu DP, Cha B-J, Mhlanga MM, Kramer FR, Tyagi S. 17.  2003. Visualizing the distribution and transport of mRNAs in living cells. PNAS 100:2313308–13 [Google Scholar]
  18. Brown CR, Boeger H. 18.  2014. Nucleosomal promoter variation generates gene expression noise. PNAS 111:5017893–98 [Google Scholar]
  19. Brown CR, Mao C, Falkovskaia E, Jurica MS, Boeger H. 19.  2013. Linking stochastic fluctuations in chromatin structure and gene expression. PLOS Biol. 11:8e1001621 [Google Scholar]
  20. Cai L, Dalal CK, Elowitz MB. 20.  2008. Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455:485–90 [Google Scholar]
  21. Cai L, Friedman N, Xie XS. 21.  2006. Stochastic protein expression in individual cells at the single molecule level. Nature 440:7082358–62 [Google Scholar]
  22. Cairns BR.22.  2009. The logic of chromatin architecture and remodelling at promoters. Nature 461:193–98 [Google Scholar]
  23. Calvo O, Manley JL. 23.  2001. Evolutionarily conserved interaction between Cstf-64 and PC4 links transcription, polyadenylation, and termination. Mol. Cell 7:51013–23 [Google Scholar]
  24. Campbell PD, Chao JA, Singer RH, Marlow FL. 24.  2015. Dynamic visualization of transcription and RNA subcellular localization in zebrafish. Development 142:71368–74 [Google Scholar]
  25. Carey LB, van Dijk D, Sloot PMA, Kaandorp JA, Segal E. 25.  2013. Promoter sequence determines the relationship between expression level and noise. PLOS Biol. 11:4e1001528 [Google Scholar]
  26. Chao JA, Patskovsky Y, Almo SC, Singer RH. 26.  2008. Structural basis for the coevolution of a viral RNA–protein complex. Nat. Struct. Mol. Biol. 15:1103–5 [Google Scholar]
  27. Choi PJ, Cai L, Frieda K, Xie XS. 27.  2008. A stochastic single-molecule event triggers phenotype switching of a bacterial cell. Science 322:5900442–46 [Google Scholar]
  28. Chong S, Chen C, Ge H, Xie XS. 28.  2014. Mechanism of transcriptional bursting in bacteria. Cell 158:2314–26 [Google Scholar]
  29. Chubb JR, Trcek T, Shenoy SM, Singer RH. 29.  2006. Transcriptional pulsing of a developmental gene. Curr. Biol. 16:101018–25 [Google Scholar]
  30. Churchman LS, Weissman JS. 30.  2011. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469:7330368–73 [Google Scholar]
  31. Cisse II, Izeddin I, Causse SZ, Boudarene L, Senecal A. 31.  et al. 2013. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341:6146664–67 [Google Scholar]
  32. Core LJ, Waterfall JJ, Lis JT. 32.  2008. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:59091845–48 [Google Scholar]
  33. Cosma MP, Tanaka T, Nasmyth K. 33.  1999. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle– and developmentally regulated promoter. Cell 97:3299–311 [Google Scholar]
  34. Coulon A, Chow CC, Singer RH, Larson DR. 34.  2013. Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nat. Rev. Genet. 14:8572–84 [Google Scholar]
  35. Coulon A, Ferguson ML, de Turris V, Palangat M, Chow CC, Larson DR. 35.  2014. Kinetic competition during the transcription cycle results in stochastic RNA processing. eLife 3:e03939 [Google Scholar]
  36. Csárdi G, Franks A, Choi DS, Airoldi EM, Drummond DA. 36.  2015. Accounting for experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state protein levels in yeast. PLOS Genet. 11:5e1005206 [Google Scholar]
  37. Danko CG, Hah N, Luo X, Martins AL, Core L. 37.  et al. 2013. Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol. Cell 50:2212–22 [Google Scholar]
  38. Dar RD, Razooky BS, Singh A, Trimeloni TV, McCollum JM. 38.  et al. 2012. Transcriptional burst frequency and burst size are equally modulated across the human genome. PNAS 109:4317454–59 [Google Scholar]
  39. Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy SM. 39.  et al. 2007. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14:9796–806 [Google Scholar]
  40. Darzacq X, Yao J, Larson DR, Causse SZ, Bosanac L. 40.  et al. 2009. Imaging transcription in living cells. Annu. Rev. Biophys. 38:173–96 [Google Scholar]
  41. das Neves RP, Jones NS, Andreu L, Gupta R, Enver T, Iborra FJ. 41.  2010. Connecting variability in global transcription rate to mitochondrial variability. PLOS Biol. 8:12e1000560 [Google Scholar]
  42. de la Mata M, Alonso CR, Kadener S, Fededa JP, Blaustein M. 42.  et al. 2003. A slow RNA polymerase II affects alternative splicing in vivo. Mol. Cell 12:2525–32 [Google Scholar]
  43. Dengl S, Cramer P. 43.  2009. Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro. J. Biol. Chem. 284:3221270–79 [Google Scholar]
  44. Femino AM, Fay FS, Fogarty K, Singer RH. 44.  1998. Visualization of single RNA transcripts in situ. Science 280:5363585–90 [Google Scholar]
  45. Fong N, Brannan K, Erickson B, Kim H, Cortazar MA. 45.  et al. 2015. Effects of transcription elongation rate and Xrn2 exonuclease activity on RNA polymerase II termination suggest widespread kinetic competition. Mol. Cell 60:2256–67 [Google Scholar]
  46. Garas M, Dichtl B, Keller W. 46.  2008. The role of the putative 3′ end processing endonuclease Ysh1p in mRNA and snoRNA synthesis. RNA 14:122671–84 [Google Scholar]
  47. Garcia HG, Tikhonov M, Lin A, Gregor T. 47.  2013. Quantitative imaging of transcription in living Drosophila embryos links polymerase activity to patterning. Curr. Biol. 23:212140–45 [Google Scholar]
  48. Golding I, Paulsson J, Zawilski SM, Cox EC. 48.  2005. Real-time kinetics of gene activity in individual bacteria. Cell 123:61025–36 [Google Scholar]
  49. Gu W, Wind M, Reines D. 49.  1996. Increased accommodation of nascent RNA in a product site on RNA polymerase II during arrest. PNAS 93:146935–40 [Google Scholar]
  50. Hager GL, McNally JG, Misteli T. 50.  2009. Transcription dynamics. Mol. Cell 35:741–53 [Google Scholar]
  51. Hao N, O'Shea EK. 51.  2012. Signal-dependent dynamics of transcription factor translocation controls gene expression. Nat. Struct. Mol. Biol. 19:131–39 [Google Scholar]
  52. Harper CV, Finkenstädt B, Woodcock DJ, Friedrichsen S, Semprini S. 52.  et al. 2011. Dynamic analysis of stochastic transcription cycles. PLOS Biol. 9:4e1000607 [Google Scholar]
  53. Hawley DK, Roeder RG. 53.  1987. Functional steps in transcription initiation and reinitiation from the major late promoter in a HeLa nuclear extract. J. Biol. Chem. 262:83452–61 [Google Scholar]
  54. Hazelbaker DZ, Marquardt S, Wlotzka W, Buratowski S. 54.  2013. Kinetic competition between RNA polymerase II and Sen1-dependent transcription termination. Mol. Cell 49:155–66 [Google Scholar]
  55. Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH. 55.  2013. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat. Methods 10:2119–21 [Google Scholar]
  56. Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ. 56.  et al. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:5717–28 [Google Scholar]
  57. Hornung G, Bar-Ziv R, Rosin D, Tokuriki N, Tawfik DS. 57.  et al. 2012. Noise-mean relationship in mutated promoters. Genome Res. 22:122409–17 [Google Scholar]
  58. Huh D, Paulsson J. 58.  2011. Non-genetic heterogeneity from stochastic partitioning at cell division. Nat. Genet. 43:295–100 [Google Scholar]
  59. Jacob F, Monod J. 59.  1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:3318–56 [Google Scholar]
  60. Janicki SM, Tsukamoto T, Salghetti SE, Tansey WP, Sachidanandam R. 60.  et al. 2004. From silencing to gene expression: real-time analysis in single cells. Cell 116:5683–98 [Google Scholar]
  61. Jonkers I, Kwak H, Lis JT. 61.  2014. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3:e02407 [Google Scholar]
  62. Kang Z, Pirskanen A, Jänne OA, Palvimo JJ. 62.  2002. Involvement of proteasome in the dynamic assembly of the androgen receptor transcription complex. J. Biol. Chem. 277:5048366–71 [Google Scholar]
  63. Kaplan CD, Jin H, Zhang IL, Belyanin A. 63.  2012. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. PLOS Genet. 8:4e1002627 [Google Scholar]
  64. Karpova TS, Kim MJ, Spriet C, Nalley K, Stasevich TJ. 64.  et al. 2008. Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter. Science 319:5862466–69 [Google Scholar]
  65. Kim M, Ahn S-H, Krogan NJ, Greenblatt JF, Buratowski S. 65.  2004. Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J. 23:2354–64 [Google Scholar]
  66. Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E. 66.  et al. 2004. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432:7016517–22 [Google Scholar]
  67. Kim S, Shevde NK, Pike JW. 67.  2005. 1,25-dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts. J. Bone Miner. Res. 20:2305–17 [Google Scholar]
  68. Kimura H, Sugaya K, Cook PR. 68.  2002. The transcription cycle of RNA polymerase II in living cells. J. Cell Biol. 159:5777–82 [Google Scholar]
  69. Ko MS.69.  1991. A stochastic model for gene induction. J. Theor. Biol. 153:2181–94 [Google Scholar]
  70. Ko MS, Nakauchi H, Takahashi N. 70.  1990. The dose dependence of glucocorticoid-inducible gene expression results from changes in the number of transcriptionally active templates. EMBO J. 9:92835–42 [Google Scholar]
  71. Kwak H, Fuda NJ, Core LJ, Lis JT. 71.  2013. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339:6122950–53 [Google Scholar]
  72. Larson DR, Fritzsch C, Sun L, Meng X, Lawrence DS, Singer RH. 72.  2013. Direct observation of frequency modulated transcription in single cells using light activation. eLife 2:e00750 [Google Scholar]
  73. Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH. 73.  2011. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332:6028475–78 [Google Scholar]
  74. Lenstra TL, Coulon A, Chow CC, Larson DR. 74.  2015. Single-molecule imaging reveals a switch between spurious and functional ncRNA transcription. Mol. Cell 60:4597–610 [Google Scholar]
  75. Levine JH, Lin Y, Elowitz MB. 75.  2013. Functional roles of pulsing in genetic circuits. Science 342:61631193–200 [Google Scholar]
  76. Lin Y, Sohn CH, Dalal CK, Cai L, Elowitz MB. 76.  2015. Combinatorial gene regulation by modulation of relative pulse timing. Nature 527:757654–58 [Google Scholar]
  77. Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells AL. 77.  et al. 2011. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat. Methods 8:2165–70 [Google Scholar]
  78. Little SC, Tikhonov M, Gregor T. 78.  2013. Precise developmental gene expression arises from globally stochastic transcriptional activity. Cell 154:4789–800 [Google Scholar]
  79. Lo MYM, Rival-Gervier S, Pasceri P, Ellis J. 79.  2012. Rapid transcriptional pulsing dynamics of high expressing retroviral transgenes in embryonic stem cells. PLOS ONE 7:5e37130 [Google Scholar]
  80. Lucas T, Ferraro T, Roelens B, De Las Chanes Heras J, Walczak AM. 80.  et al. 2013. Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr. Biol. 23:212135–39 [Google Scholar]
  81. Luo W, Johnson AW, Bentley DL. 81.  2006. The role of Rat1 in coupling mRNA 3′-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev. 20:8954–65 [Google Scholar]
  82. Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM. 82.  et al. 2013. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat. Biotechnol. 31:121137–42 [Google Scholar]
  83. Maiuri P, Knezevich A, De Marco A, Mazza D, Kula A. 83.  et al. 2011. Fast transcription rates of RNA polymerase II in human cells. EMBO Rep. 12:121280–85 [Google Scholar]
  84. McKnight SL, Miller OL. 84.  1977. Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell 12:3795–804 [Google Scholar]
  85. McNally JG, Müller WG, Walker D, Wolford R, Hager GL. 85.  2000. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287:54561262–65 [Google Scholar]
  86. Métivier R, Penot G, Hübner MR, Reid G, Brand H. 86.  et al. 2003. Estrogen receptor-α directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115:6751–63 [Google Scholar]
  87. Miller OL, Beatty BR. 87.  1969. Visualization of nucleolar genes. Science 164:3882955–57 [Google Scholar]
  88. Miller OL Jr., McKnight SL. 88.  1979. Post-replicative nonribosomal transcription units in D. melanogaster embryos. Cell 17:551–63 [Google Scholar]
  89. Molina N, Suter DM, Cannavo R, Zoller B, Gotic I, Naef F. 89.  2013. Stimulus-induced modulation of transcriptional bursting in a single mammalian gene. PNAS 110:5120563–68 [Google Scholar]
  90. Morgan JI, Cohen DR, Hempstead JL, Curran T. 90.  1987. Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:4811192–97 [Google Scholar]
  91. Mueller F, Mazza D, Stasevich TJ, McNally JG. 91.  2010. FRAP and kinetic modeling in the analysis of nuclear protein dynamics: What do we really know?. Curr. Opin. Cell Biol. 22:3403–11 [Google Scholar]
  92. Mueller F, Wach P, McNally JG. 92.  2008. Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching. Biophys. J. 94:83323–39 [Google Scholar]
  93. Muramoto T, Cannon D, Gierliński M, Corrigan A, Barton GJ, Chubb JR. 93.  2012. Live imaging of nascent RNA dynamics reveals distinct types of transcriptional pulse regulation. PNAS 109:197350–55 [Google Scholar]
  94. Muramoto T, Müller I, Thomas G, Melvin A, Chubb JR. 94.  2010. Methylation of H3K4 is required for inheritance of active transcriptional states. Curr. Biol. 20:5397–406 [Google Scholar]
  95. Nag A, Narsinh K, Kazerouninia A, Martinson HG. 95.  2006. The conserved AAUAAA hexamer of the poly(A) signal can act alone to trigger a stable decrease in RNA polymerase II transcription velocity. RNA 12:81534–44 [Google Scholar]
  96. Nelles DA, Fang MY, O'Connell MR, Xu JL, Markmiller SJ. 96.  et al. 2016. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165488–96 [Google Scholar]
  97. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M. 97.  et al. 2006. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441:7095840–46 [Google Scholar]
  98. Normanno D, Dahan M, Darzacq X. 98.  2012. Intra-nuclear mobility and target search mechanisms of transcription factors: a single-molecule perspective on gene expression. Biochim. Biophys. Acta 1819:6482–93 [Google Scholar]
  99. Ochiai H, Sugawara T, Sakuma T, Yamamoto T. 99.  2014. Stochastic promoter activation affects Nanog expression variability in mouse embryonic stem cells. Sci. Rep. 4:7125 [Google Scholar]
  100. Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S. 100.  et al. 2015. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol. Cell 58:2339–52 [Google Scholar]
  101. Paige JS, Wu KY, Jaffrey SR. 101.  2011. RNA mimics of green fluorescent protein. Science 333:6042642–46 [Google Scholar]
  102. Palangat M, Larson DR. 102.  2012. Complexity of RNA polymerase II elongation dynamics. Biochim. Biophys. Acta 1819:7667–72 [Google Scholar]
  103. Paré A, Lemons D, Kosman D, Beaver W, Freund Y, McGinnis W. 103.  2009. Visualization of individual Scr mRNAs during Drosophila embryogenesis yields evidence for transcriptional bursting. Curr. Biol. 19:232037–42 [Google Scholar]
  104. Park HY, Lim H, Yoon YJ, Follenzi A, Nwokafor C. 104.  et al. 2014. Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343:6169422–24 [Google Scholar]
  105. Peccoud J, Ycart B. 105.  1995. Markovian modeling of gene-product synthesis. Theor. Popul. Biol. 48:2222–34 [Google Scholar]
  106. Proudfoot NJ.106.  2011. Ending the message: poly(A) signals then and now. Genes Dev. 25:171770–82 [Google Scholar]
  107. Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S. 107.  et al. 2010. c-Myc regulates transcriptional pause release. Cell 141:3432–45 [Google Scholar]
  108. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. 108.  2006. Stochastic mRNA synthesis in mammalian cells. PLOS Biol. 4:10e309 [Google Scholar]
  109. Raser JM, O'Shea EK. 109.  2004. Control of stochasticity in eukaryotic gene expression. Science 304:56781811–14 [Google Scholar]
  110. Sasaki K, Cripe TP, Koch SR, Andreone TL, Petersen DD. 110.  et al. 1984. Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription. The dominant role of insulin. J. Biol. Chem. 259:2415242–51 [Google Scholar]
  111. Senecal A, Munsky B, Proux F, Ly N, Braye FE. 111.  et al. 2014. Transcription factors modulate c-Fos transcriptional bursts. Cell Rep. 8:175–83 [Google Scholar]
  112. Shandilya J, Roberts SGE. 112.  2012. The transcription cycle in eukaryotes: from productive initiation to RNA polymerase II recycling. Biochim. Biophys. Acta 1819:5391–400 [Google Scholar]
  113. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M. 113.  2000. Cofactor dynamics and sufficiency in estrogen receptor–regulated transcription. Cell 103:6843–52 [Google Scholar]
  114. Singer ZS, Yong J, Tischler J, Hackett JA, Altinok A. 114.  et al. 2014. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell 55:2319–31 [Google Scholar]
  115. Singh A, Razooky B, Cox CD, Simpson ML, Weinberger LS. 115.  2010. Transcriptional bursting from the HIV-1 promoter is a significant source of stochastic noise in HIV-1 gene expression. Biophys. J. 98:8L32–34 [Google Scholar]
  116. Singh J, Padgett RA. 116.  2009. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16:111128–33 [Google Scholar]
  117. Skupsky R, Burnett JC, Foley JE, Schaffer DV, Arkin AP. 117.  2010. HIV promoter integration site primarily modulates transcriptional burst size rather than frequency. PLOS Comput. Biol. 6:9e1000952 [Google Scholar]
  118. Small EC, Xi L, Wang J-P, Widom J, Licht JD. 118.  2014. Single-cell nucleosome mapping reveals the molecular basis of gene expression heterogeneity. PNAS 111:24E2462–71 [Google Scholar]
  119. So L-H, Ghosh A, Zong C, Sepúlveda LA, Segev R, Golding I. 119.  2011. General properties of transcriptional time series in Escherichia coli. Nat. Genet. 43:6554–60 [Google Scholar]
  120. Stasevich TJ, Hayashi-Takanaka Y, Sato Y, Maehara K, Ohkawa Y. 120.  et al. 2014. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516:7530272–75 [Google Scholar]
  121. Steinmetz EJ, Brow DA. 121.  2003. Ssu72 protein mediates both poly(A)-coupled and poly(A)-independent termination of RNA polymerase II transcription. Mol. Cell. Biol. 23:186339–49 [Google Scholar]
  122. Stevense M, Muramoto T, Müller I, Chubb JR. 122.  2010. Digital nature of the immediate-early transcriptional response. Development 137:4579–84 [Google Scholar]
  123. Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F. 123.  2011. Mammalian genes are transcribed with widely different bursting kinetics. Science 332:6028472–74 [Google Scholar]
  124. Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M. 124.  et al. 2010. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329:5991533–38 [Google Scholar]
  125. Van Kampen NG. 125.  2011. Stochastic Processes in Physics and Chemistry Amsterdam: Elsevier, 3rd. [Google Scholar]
  126. Viñuelas J, Kaneko G, Coulon A, Vallin E, Morin V. 126.  et al. 2013. Quantifying the contribution of chromatin dynamics to stochastic gene expression reveals long, locus-dependent periods between transcriptional bursts. BMC Biol. 11:15 [Google Scholar]
  127. Voliotis M, Cohen N, Molina-París C, Liverpool TB. 127.  2008. Fluctuations, pauses, and backtracking in DNA transcription. Biophys. J. 94:2334–48 [Google Scholar]
  128. Walters MC, Fiering S, Eidemiller J, Magis W, Groudine M, Martin DI. 128.  1995. Enhancers increase the probability but not the level of gene expression. PNAS 92:157125–29 [Google Scholar]
  129. Weinberger L, Voichek Y, Tirosh I, Hornung G, Amit I, Barkai N. 129.  2012. Expression noise and acetylation profiles distinguish HDAC functions. Mol. Cell 47:2193–202 [Google Scholar]
  130. West S, Gromak N, Proudfoot NJ. 130.  2004. Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432:7016522–25 [Google Scholar]
  131. Wu B, Buxbaum AR, Katz ZB, Yoon YJ, Singer RH. 131.  2015. Quantifying protein-mRNA interactions in single live cells. Cell 162:1211–20 [Google Scholar]
  132. Yao J, Ardehali MB, Fecko CJ, Webb WW, Lis JT. 132.  2007. Intranuclear distribution and local dynamics of RNA polymerase II during transcription activation. Mol. Cell 28:6978–90 [Google Scholar]
  133. Yao J, Munson KM, Webb WW, Lis JT. 133.  2006. Dynamics of heat shock factor association with native gene loci in living cells. Nature 442:71061050–53 [Google Scholar]
  134. Yu J, Xiao J, Ren X, Lao K, Xie XS. 134.  2006. Probing gene expression in live cells, one protein molecule at a time. Science 311:57671600–3 [Google Scholar]
  135. Yudkovsky N, Ranish JA, Hahn S. 135.  2000. A transcription reinitiation intermediate that is stabilized by activator. Nature 408:6809225–29 [Google Scholar]
  136. Yunger S, Rosenfeld L, Garini Y, Shav-Tal Y. 136.  2010. Single-allele analysis of transcription kinetics in living mammalian cells. Nat. Methods 7:8631–33 [Google Scholar]
  137. Zenklusen D, Larson DR, Singer RH. 137.  2008. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15:121263–71 [Google Scholar]
  138. Zhang H, Rigo F, Martinson HG. 138.  2015. Poly(A) signal-dependent transcription termination occurs through a conformational change mechanism that does not require cleavage at the poly(A) site. Mol. Cell 59:3437–48 [Google Scholar]
  139. Zhang Z, Boskovic Z, Hussain MM, Hu W, Inouye C. 139.  et al. 2015. Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation. eLife 4:e07777 [Google Scholar]
  140. Zopf CJ, Quinn K, Zeidman J, Maheshri N. 140.  2013. Cell-cycle dependence of transcription dominates noise in gene expression. PLOS Comput. Biol. 9:7e1003161 [Google Scholar]
/content/journals/10.1146/annurev-biophys-062215-010838
Loading
/content/journals/10.1146/annurev-biophys-062215-010838
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error