At the onset of division, the cell forms a spindle, a precise self-constructed micromachine composed of microtubules and the associated proteins, which divides the chromosomes between the two nascent daughter cells. The spindle arises from self-organization of microtubules and chromosomes, whose different types of motion help them explore the space and eventually approach and interact with each other. Once the interactions between the chromosomes and the microtubules have been established, the chromosomes are moved to the equatorial plane of the spindle and ultimately toward the opposite spindle poles. These transport processes rely on directed forces that are precisely regulated in space and time. In this review, we discuss how microtubule dynamics and their rotational movement drive spindle self-organization, as well as how the forces acting in the spindle are generated, balanced, and regulated.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Barisic M, Aguiar P, Geley S, Maiato H. 1.  2014. Kinetochore motors drive congression of peripheral polar chromosomes by overcoming random arm-ejection forces. Nat. Cell Biol. 16:1249–56 [Google Scholar]
  2. Barisic M, Silva e Sousa R, Tripathy SK, Magiera MM, Zaytsev AV. 2.  et al. 2015. Mitosis. Microtubule detyrosination guides chromosomes during mitosis. Science 348:799–803 [Google Scholar]
  3. Baumgartner S, Tolić IM. 3.  2014. Astral microtubule pivoting promotes their search for cortical anchor sites during mitosis in budding yeast. PLOS ONE 9:e93781 [Google Scholar]
  4. Bergen LG, Kuriyama R, Borisy GG. 4.  1980. Polarity of microtubules nucleated by centrosomes and chromosomes of Chinese hamster ovary cells in vitro. J. Cell Biol. 84:151–59 [Google Scholar]
  5. Bieling P, Telley IA, Surrey T. 5.  2010. A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142:420–32 [Google Scholar]
  6. Bischoff FR, Ponstingl H. 6.  1991. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354:80–82 [Google Scholar]
  7. Bloom K, Joglekar A. 7.  2010. Towards building a chromosome segregation machine. Nature 463:446–56 [Google Scholar]
  8. Brugues J, Needleman D. 8.  2014. Physical basis of spindle self-organization. PNAS 111:18496–500 [Google Scholar]
  9. Brust-Mascher I, Sommi P, Cheerambathur DK, Scholey JM. 9.  2009. Kinesin-5-dependent poleward flux and spindle length control in Drosophila embryo mitosis. Mol. Biol. Cell 20:1749–62 [Google Scholar]
  10. Burbank KS, Groen AC, Perlman ZE, Fisher DS, Mitchison TJ. 10.  2006. A new method reveals microtubule minus ends throughout the meiotic spindle. J. Cell Biol. 175:369–75 [Google Scholar]
  11. Burbank KS, Mitchison TJ, Fisher DS. 11.  2007. Slide-and-cluster models for spindle assembly. Curr. Biol. 17:1373–83 [Google Scholar]
  12. Burrack LS, Berman J. 12.  2012. Flexibility of centromere and kinetochore structures. Trends Genet. 28:204–12 [Google Scholar]
  13. Cai S, Weaver LN, Ems-McClung SC, Walczak CE. 13.  2009. Kinesin-14 family proteins HSET/XCTK2 control spindle length by cross-linking and sliding microtubules. Mol. Biol. Cell 20:1348–59 [Google Scholar]
  14. Cameron LA, Yang G, Cimini D, Canman JC, Kisurina-Evgenieva O. 14.  et al. 2006. Kinesin 5-independent poleward flux of kinetochore microtubules in PtK1 cells. J. Cell Biol. 173:173–79 [Google Scholar]
  15. Campas O, Sens P. 15.  2006. Chromosome oscillations in mitosis. Phys. Rev. Lett. 97:128102 [Google Scholar]
  16. Carazo-Salas RE, Gruss OJ, Mattaj IW, Karsenti E. 16.  2001. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nat. Cell Biol. 3:228–34 [Google Scholar]
  17. Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW. 17.  1999. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400:178–81 [Google Scholar]
  18. Carazo-Salas RE, Karsenti E. 18.  2003. Long-range communication between chromatin and microtubules in Xenopus egg extracts. Curr. Biol. 13:1728–33 [Google Scholar]
  19. Cheeseman IM, Desai A. 19.  2008. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 9:33–46 [Google Scholar]
  20. Civelekogluscholey G, Sharp D, Mogilner A, Scholey J. 20.  2006. Model of chromosome motility in Drosophila embryos: adaptation of a general mechanism for rapid mitosis. Biophys. J. 90:3966–82 [Google Scholar]
  21. Clarke PR, Zhang C. 21.  2008. Spatial and temporal coordination of mitosis by Ran GTPase. Nat. Rev. Mol. Cell Biol. 9:464–77 [Google Scholar]
  22. Cojoc G, Roscioli E, Zhang L, García-Ulloa A, Shah JV. 22.  et al. 2016. Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore. J. Cell Biol. 212:767–76 [Google Scholar]
  23. Coue M, Lombillo VA, McIntosh JR. 23.  1991. Microtubule depolymerization promotes particle and chromosome movement in vitro. J. Cell Biol. 112:1165–75 [Google Scholar]
  24. Cytrynbaum EN, Scholey JM, Mogilner A. 24.  2003. A force balance model of early spindle pole separation in Drosophila embryos. Biophys. J. 84:757–69 [Google Scholar]
  25. Cytrynbaum EN, Sommi P, Brust-Mascher I, Scholey JM, Mogilner A. 25.  2005. Early spindle assembly in Drosophila embryos: role of a force balance involving cytoskeletal dynamics and nuclear mechanics. Mol. Biol. Cell 16:4967–81 [Google Scholar]
  26. De Brabander M, Geuens G, De Mey J, Joniau M. 26.  1981. Nucleated assembly of mitotic microtubules in living PTK2 cells after release from nocodazole treatment. Cell Motil. 1:469–83 [Google Scholar]
  27. Desai A, Maddox PS, Mitchison TJ, Salmon ED. 27.  1998. Anaphase A chromosome movement and poleward spindle microtubule flux occur at similar rates in Xenopus extract spindles. J. Cell Biol. 141:703–13 [Google Scholar]
  28. Desai A, Verma S, Mitchison TJ, Walczak CE. 28.  1999. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96:69–78 [Google Scholar]
  29. Ding R, McDonald KL, McIntosh JR. 29.  1993. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J. Cell Biol. 120:141–51 [Google Scholar]
  30. Dogterom M, Yurke B. 30.  1997. Measurement of the force-velocity relation for growing microtubules. Science 278:856–60 [Google Scholar]
  31. Dumont S, Mitchison TJ. 31.  2009. Force and length in the mitotic spindle. Curr. Biol. 19:R749–61 [Google Scholar]
  32. Duncan T, Wakefield JG. 32.  2011. 50 ways to build a spindle: the complexity of microtubule generation during mitosis. Chromosome Res. 19:321–33 [Google Scholar]
  33. Endow SA, Henikoff S, Soler-Niedziela L. 33.  1990. Mediation of meiotic and early mitotic chromosome segregation in Drosophila by a protein related to kinesin. Nature 345:81–83 [Google Scholar]
  34. Erent M, Drummond DR, Cross RA. 34.  2012. S. pombe kinesins-8 promote both nucleation and catastrophe of microtubules. PLOS ONE 7:e30738 [Google Scholar]
  35. Euteneuer U, McIntosh JR. 35.  1981. Structural polarity of kinetochore microtubules in PtK1 cells. J. Cell Biol. 89:338–45 [Google Scholar]
  36. Ganem NJ, Upton K, Compton DA. 36.  2005. Efficient mitosis in human cells lacking poleward microtubule flux. Curr. Biol. 15:1827–32 [Google Scholar]
  37. Garcia MA, Koonrugsa N, Toda T. 37.  2002. Two kinesin-like Kin I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr. Biol. 12:610–21 [Google Scholar]
  38. Gardner MK, Pearson CG, Sprague BL, Zarzar TR, Bloom K. 38.  et al. 2005. Tension-dependent regulation of microtubule dynamics at kinetochores can explain metaphase congression in yeast. Mol. Biol. Cell 16:3764–75 [Google Scholar]
  39. Gay G, Courtheoux T, Reyes C, Tournier S, Gachet Y. 39.  2012. A stochastic model of kinetochore-microtubule attachment accurately describes fission yeast chromosome segregation. J. Cell Biol. 196:757–74 [Google Scholar]
  40. Gluncic M, Maghelli N, Krull A, Krstic V, Ramunno-Johnson D. 40.  et al. 2015. Kinesin-8 motors improve nuclear centering by promoting microtubule catastrophe. Phys. Rev. Lett. 114:078103 [Google Scholar]
  41. Gopalakrishnan M, Govindan BS. 41.  2011. A first-passage-time theory for search and capture of chromosomes by microtubules in mitosis. Bull. Math. Biol. 73:2483–506 [Google Scholar]
  42. Gorbsky GJ, Sammak PJ, Borisy GG. 42.  1987. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J. Cell Biol. 104:9–18 [Google Scholar]
  43. Goshima G, Mayer M, Zhang N, Stuurman N, Vale RD. 43.  2008. Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J. Cell Biol. 181:421–29 [Google Scholar]
  44. Grishchuk EL, Molodtsov MI, Ataullakhanov FI, McIntosh JR. 44.  2005. Force production by disassembling microtubules. Nature 438:384–88 [Google Scholar]
  45. Grissom P, Fielder T, Grishchuk E, Nicastro D, West RR, Mcintosh RJ. 45.  2008. Kinesin-8 from fission yeast: a heterodimeric, plus end-directed motor that can couple microtubule depolymerization to cargo movement. Mol. Biol. Cell 20:963–72 [Google Scholar]
  46. Gupta ML Jr., Carvalho P, Roof DM, Pellman D. 46.  2006. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat. Cell Biol. 8:913–23 [Google Scholar]
  47. Hagan I, Yanagida M. 47.  1990. Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene. Nature 347:563–66 [Google Scholar]
  48. Hepperla AJ, Willey PT, Coombes CE, Schuster BM, Gerami-Nejad M. 48.  et al. 2014. Minus-end-directed kinesin-14 motors align antiparallel microtubules to control metaphase spindle length. Dev. Cell 31:61–72 [Google Scholar]
  49. Hill TL.49.  1985. Theoretical problems related to the attachment of microtubules to kinetochores. PNAS 82:4404–8 [Google Scholar]
  50. Holy TE, Leibler S. 50.  1994. Dynamic instability of microtubules as an efficient way to search in space. PNAS 91:5682–85 [Google Scholar]
  51. Jensen CG.51.  1982. Dynamics of spindle microtubule organization: kinetochore fiber microtubules of plant endosperm. J. Cell Biol. 92:540–58 [Google Scholar]
  52. Jiang W, Jimenez G, Wells NJ, Hope TJ, Wahl GM. 52.  et al. 1998. PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol. Cell 2:877–85 [Google Scholar]
  53. Joglekar AP, Hunt AJ. 53.  2002. A simple, mechanistic model for directional instability during mitotic chromosome movements. Biophys. J. 83:42–58 [Google Scholar]
  54. Kajtez J, Solomatina A, Novak M, Polak B, Vukušić K. 54.  et al. 2016. Overlap microtubules link sister k-fibers and balance the forces on bi-oriented kinetochores. Nat. Commun. 7:10298 [Google Scholar]
  55. Kalab P, Pu RT, Dasso M. 55.  1999. The Ran GTPase regulates mitotic spindle assembly. Curr. Biol. 9:481–84 [Google Scholar]
  56. Kalab P, Weis K, Heald R. 56.  2002. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295:2452–56 [Google Scholar]
  57. Kalinina I, Nandi A, Delivani P, Chacon MR, Klemm AH. 57.  et al. 2013. Pivoting of microtubules around the spindle pole accelerates kinetochore capture. Nat. Cell Biol. 15:82–87 [Google Scholar]
  58. Kapitein LC, Peterman EJG, Kwok BH, Kim JH, Kapoor TM, Schmidt CF. 58.  2005. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435:114–18 [Google Scholar]
  59. Kapoor TM.59.  2006. Chromosomes can congress to the metaphase plate before biorientation. Science 311:388–91 [Google Scholar]
  60. Karsenti E, Newport J, Kirschner M. 60.  1984. Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J. Cell Biol. 99:47s–54s [Google Scholar]
  61. Kirschner M, Mitchison T. 61.  1986. Beyond self-assembly: from microtubules to morphogenesis. Cell 45:329–42 [Google Scholar]
  62. Kitamura E, Tanaka K, Komoto S, Kitamura Y, Antony C, Tanaka TU. 62.  2010. Kinetochores generate microtubules with distal plus ends: their roles and limited lifetime in mitosis. Dev. Cell 18:248–59 [Google Scholar]
  63. Koshland DE, Mitchison TJ, Kirschner MW. 63.  1988. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331:499–504 [Google Scholar]
  64. Le Guellec R, Paris J, Couturier A, Roghi C, Philippe M. 64.  1991. Cloning by differential screening of a Xenopus cDNA that encodes a kinesin-related protein. Mol. Cell. Biol. 11:3395–98 [Google Scholar]
  65. Levesque AA, Compton DA. 65.  2001. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154:1135–46 [Google Scholar]
  66. Loughlin R, Heald R, Nedelec F. 66.  2010. A computational model predicts Xenopus meiotic spindle organization. J. Cell Biol. 191:1239–49 [Google Scholar]
  67. Mahoney NM, Goshima G, Douglass AD, Vale RD. 67.  2006. Making microtubules and mitotic spindles in cells without functional centrosomes. Curr. Biol. 16:564–69 [Google Scholar]
  68. Maiato H, Lince-Faria M. 68.  2010. The perpetual movements of anaphase. Cell. Mol. Life Sci. 67:2251–69 [Google Scholar]
  69. Maiato H, Rieder CL, Khodjakov A. 69.  2004. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. J. Cell Biol. 167:831–40 [Google Scholar]
  70. Mary H, Fouchard J, Gay G, Reyes C, Gauthier T. 70.  et al. 2015. Fission yeast kinesin-8 controls chromosome congression independently of oscillations. J. Cell Sci. 128:3720–30 [Google Scholar]
  71. Mastronarde DN, McDonald KL, Ding R, McIntosh JR. 71.  1993. Interpolar spindle microtubules in PTK cells. J. Cell Biol. 123:1475–89 [Google Scholar]
  72. Mayr MI, Hummer S, Bormann J, Gruner T, Adio S. 72.  et al. 2007. The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr. Biol. 17:488–98 [Google Scholar]
  73. McDonald HB, Stewart RJ, Goldstein LS. 73.  1990. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63:1159–65 [Google Scholar]
  74. McDonald KL, O'Toole ET, Mastronarde DN, McIntosh JR. 74.  1992. Kinetochore microtubules in PTK cells. J. Cell Biol. 118:369–83 [Google Scholar]
  75. Meadows JC, Shepperd LA, Vanoosthuyse V, Lancaster TC, Sochaj AM. 75.  et al. 2011. Spindle checkpoint silencing requires association of PP1 to both Spc7 and kinesin-8 motors. Dev. Cell 20:739–50 [Google Scholar]
  76. Mitchison T, Evans L, Schulze E, Kirschner M. 76.  1986. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell 45:515–27 [Google Scholar]
  77. Mitchison TJ.77.  1989. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109:637–52 [Google Scholar]
  78. Mitchison TJ, Salmon ED. 78.  1992. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J. Cell Biol. 119:569–82 [Google Scholar]
  79. Miyamoto DT, Perlman ZE, Burbank KS, Groen AC, Mitchison TJ. 79.  2004. The kinesin Eg5 drives poleward microtubule flux in Xenopus laevis egg extract spindles. J. Cell Biol. 167:813–18 [Google Scholar]
  80. Mogilner A, Craig E. 80.  2010. Towards a quantitative understanding of mitotic spindle assembly and mechanics. J. Cell Sci. 123:3435–45 [Google Scholar]
  81. Mollinari C, Kleman J-P, Jiang W, Schoehn G, Hunter T, Margolis RL. 81.  2002. PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J. Cell Biol. 157:1175–86 [Google Scholar]
  82. Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S. 82.  et al. 2005. Microtubule-dependent microtubule nucleation based on recruitment of γ-tubulin in higher plants. Nat. Cell Biol. 7:961–68 [Google Scholar]
  83. Musacchio A, Salmon ED. 83.  2007. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8:379–93 [Google Scholar]
  84. Nabeshima K, Nakagawa T, Straight AF, Murray A, Chikashige Y. 84.  et al. 1998. Dynamics of centromeres during metaphase-anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase bipolar spindle. Mol. Biol. Cell 9:3211–25 [Google Scholar]
  85. Nédélec F.85.  2002. Computer simulations reveal motor properties generating stable antiparallel microtubule interactions. J. Cell Biol. 158:1005–15 [Google Scholar]
  86. Nezi L, Musacchio A. 86.  2009. Sister chromatid tension and the spindle assembly checkpoint. Curr. Opin. Cell Biol. 21:785–95 [Google Scholar]
  87. Nicklas RB, Arana P. 87.  1992. Evolution and the meaning of metaphase. J. Cell Sci. 102:Pt. 4681–90 [Google Scholar]
  88. O'Connell CB, Khodjakov AL. 88.  2007. Cooperative mechanisms of mitotic spindle formation. J. Cell Sci. 120:1717–22 [Google Scholar]
  89. Ohba T, Nakamura M, Nishitani H, Nishimoto T. 89.  1999. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284:1356–58 [Google Scholar]
  90. Ohi R, Coughlin ML, Lane WS, Mitchison TJ. 90.  2003. An inner centromere protein that stimulates the microtubule depolymerizing activity of a KinI kinesin. Dev. Cell 5:309–21 [Google Scholar]
  91. Paul R, Wollman R, Silkworth WT, Nardi IK, Cimini D, Mogilner A. 91.  2009. Computer simulations predict that chromosome movements and rotations accelerate mitotic spindle assembly without compromising accuracy. PNAS 106:15708–13 [Google Scholar]
  92. Pavin N, Tolić-Nørrelykke IM. 92.  2014. Swinging a sword: how microtubules search for their targets. Syst. Synth. Biol. 8:179–86 [Google Scholar]
  93. Pellman D, Bagget M, Tu YH, Fink GR, Tu H. 93.  1995. Two microtubule-associated proteins required for anaphase spindle movement in Saccharomyces cerevisiae. J. Cell Biol. 130:1373–85 [Google Scholar]
  94. Petry S, Groen AC, Ishihara K, Mitchison TJ, Vale RD. 94.  2013. Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152:768–77 [Google Scholar]
  95. Poirier MG, Marko JF. 95.  2003. Micromechanical studies of mitotic chromosomes. Curr. Top. Dev. Biol. 55:75–141 [Google Scholar]
  96. Reber SB, Baumgart J, Widlund PO, Pozniakovsky A, Howard J. 96.  et al. 2013. XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules. Nat. Cell Biol. 15:1116–22 [Google Scholar]
  97. Rieder CL, Davison EA, Jensen LC, Cassimeris L, Salmon ED. 97.  1986. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103:581–91 [Google Scholar]
  98. Rieder CL, Salmon ED. 98.  1998. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8:310–18 [Google Scholar]
  99. Rogers GC, Rogers SL, Schwimmer TA, Ems-McClung SC, Walczak CE. 99.  et al. 2004. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427:364–70 [Google Scholar]
  100. Rubinstein B, Larripa K, Sommi P, Mogilner A. 100.  2009. The elasticity of motor-microtubule bundles and shape of the mitotic spindle. Phys. Biol. 6:016005 [Google Scholar]
  101. Sawin KE, LeGuellec K, Philippe M, Mitchison TJ. 101.  1992. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature 359:540–43 [Google Scholar]
  102. Sharp DJ, Rogers GC, Scholey JM. 102.  2000. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat. Cell Biol. 2:922–30 [Google Scholar]
  103. Sprague BL, Pearson CG, Maddox PS, Bloom KS, Salmon ED, Odde DJ. 103.  2003. Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophys. J. 84:3529–46 [Google Scholar]
  104. Stumpff J, von Dassow G, Wagenbach M, Asbury C, Wordeman L. 104.  2008. The kinesin-8 motor Kif18A suppresses kinetochore movements to control mitotic chromosome alignment. Dev. Cell 14:252–62 [Google Scholar]
  105. Telzer BR, Moses MJ, Rosenbaum JL. 105.  1975. Assembly of microtubules onto kinetochores of isolated mitotic chromosomes of HeLa cells. PNAS 72:4023–27 [Google Scholar]
  106. Tischer C, Brunner D, Dogterom M. 106.  2009. Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics. Mol. Syst. Biol. 5:250 [Google Scholar]
  107. Tokai N, Fujimoto-Nishiyama A, Toyoshima Y, Yonemura S, Tsukita S. 107.  et al. 1996. Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle. EMBO J. 15:457–67 [Google Scholar]
  108. Tolić IM, Pavin N. 108.  2016. Bridging the gap between sister kinetochores. Cell Cycle. 151169–70
  109. Tolić-Nørrelykke IM.109.  2008. Push-me-pull-you: how microtubules organize the cell interior. Eur. Biophys. J. 37:1271–78 [Google Scholar]
  110. Tulu US, Fagerstrom C, Ferenz NP, Wadsworth P. 110.  2006. Molecular requirements for kinetochore-associated microtubule formation in mammalian cells. Curr. Biol. 16:536–41 [Google Scholar]
  111. Varga V, Helenius J, Tanaka K, Hyman AA, Tanaka TU, Howard J. 111.  2006. Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat. Cell Biol. 8:957–62 [Google Scholar]
  112. Wang SZ, Adler R. 112.  1995. Chromokinesin: a DNA-binding, kinesin-like nuclear protein. J. Cell Biol. 128:761–68 [Google Scholar]
  113. Waters JC, Skibbens RV, Salmon ED. 113.  1996. Oscillating mitotic newt lung cell kinetochores are, on average, under tension and rarely push. J. Cell Sci. 109:Pt. 122823–31 [Google Scholar]
  114. West RR, Malmstrom T, Mcintosh RJ. 114.  2002. Kinesins klp5+ and klp6+ are required for normal chromosome movement in mitosis. J. Cell Sci. 115:931–40 [Google Scholar]
  115. Wilde A, Lizarraga SB, Zhang L, Wiese C, Gliksman NR. 115.  et al. 2001. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nat. Cell Biol. 3:221–27 [Google Scholar]
  116. Wilde A, Zheng Y. 116.  1999. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284:1359–62 [Google Scholar]
  117. Witt PL, Ris H, Borisy GG. 117.  1980. Origin of kinetochore microtubules in Chinese hamster ovary cells. Chromosoma 81:483–505 [Google Scholar]
  118. Witt PL, Ris H, Borisy GG. 118.  1981. Structure of kinetochore fibers: microtubule continuity and inter-microtubule bridges. Chromosoma 83:523–40 [Google Scholar]
  119. Wollman R, Civelekoglu-Scholey G, Scholey JM, Mogilner A. 119.  2008. Reverse engineering of force integration during mitosis in the Drosophila embryo. Mol. Syst. Biol. 4:195 [Google Scholar]
  120. Wollman R, Cytrynbaum EN, Jones JT, Meyer T, Scholey JM, Mogilner A. 120.  2005. Efficient chromosome capture requires a bias in the ‘search-and-capture’ process during mitotic-spindle assembly. Curr. Biol. 15:828–32 [Google Scholar]
  121. Wood KW, Sakowicz R, Goldstein LS, Cleveland DW. 121.  1997. CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 91:357–66 [Google Scholar]
  122. Wordeman L, Wagenbach M, von Dassow G. 122.  2007. MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. J. Cell Biol. 179:869–79 [Google Scholar]
  123. Yajima J, Edamatsu M, Watai-Nishii J, Tokai-Nishizumi N, Yamamoto T, Toyoshima YY. 123.  2003. The human chromokinesin Kid is a plus end-directed microtubule-based motor. EMBO J. 22:1067–74 [Google Scholar]
  124. Zhai Y, Kronebusch PJ, Borisy GG. 124.  1995. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J. Cell Biol. 131:721–34 [Google Scholar]
  125. Zhang C, Hughes M, Clarke PR. 125.  1999. Ran-GTP stabilises microtubule asters and inhibits nuclear assembly in Xenopus egg extracts. J. Cell Sci. 112:Pt. 142453–61 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error