Telomerase is an RNA–protein complex that extends the 3′ ends of linear chromosomes, using a unique telomerase reverse transcriptase (TERT) and template in the telomerase RNA (TR), thereby helping to maintain genome integrity. TR assembles with TERT and species-specific proteins, and telomerase function in vivo requires interaction with telomere-associated proteins. Over the past two decades, structures of domains of TR and TERT as well as other telomerase- and telomere-interacting proteins have provided insights into telomerase function. A recently reported 9-Å cryo–electron microscopy map of the telomerase holoenzyme has provided a framework for understanding how TR, TERT, and other proteins from ciliate as well as vertebrate telomerase fit and function together as well as unexpected insight into telomerase interaction at telomeres. Here we review progress in understanding the structural basis of human and telomerase activity, assembly, and interactions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akiyama BM, Gomez A, Stone MD. 1.  2013. A conserved motif in Tetrahymena thermophila telomerase reverse transcriptase is proximal to the RNA template and is essential for boundary definition. J. Biol. Chem. 288:22141–49 [Google Scholar]
  2. Akiyama BM, Parks JW, Stone MD. 2.  2015. The telomerase essential N-terminal domain promotes DNA synthesis by stabilizing short RNA–DNA hybrids. Nucleic Acids Res 43:5537–49 [Google Scholar]
  3. Alves D, Li H, Codrington R, Orte A, Ren X. 3.  et al. 2008. Single-molecule analysis of human telomerase monomer. Nat. Chem. Biol. 4:287–89 [Google Scholar]
  4. Armanios M, Blackburn EH. 4.  2012. The telomere syndromes. Nat. Rev. Genet. 13:693–704 [Google Scholar]
  5. Artandi SE, DePinho RA. 5.  2010. Telomeres and telomerase in cancer. Carcinogenesis 31:9–18 [Google Scholar]
  6. Autexier C, Lue NF. 6.  2006. The structure and function of telomerase reverse transcriptase. Annu. Rev. Biochem. 75:493–517 [Google Scholar]
  7. Bajon E, Laterreur N, Wellinger RJ. 7.  2015. A single templating RNA in yeast telomerase. Cell Rep 12:441–48 [Google Scholar]
  8. Berman AJ, Akiyama BM, Stone MD, Cech TR. 8.  2011. The RNA accordion model for template positioning by telomerase RNA during telomeric DNA synthesis. Nat. Struct. Mol. Biol. 18:1371–75 [Google Scholar]
  9. Bernardes de Jesus B, Blasco MA. 9.  2013. Telomerase at the intersection of cancer and aging. Trends Genet 29:513–20 [Google Scholar]
  10. Blackburn EH, Collins K. 10.  2011. Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb. Perspect. Biol. 3:a003558 [Google Scholar]
  11. Blackburn EH, Greider CW, Szostak JW. 11.  2006. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. 12:1133–38 [Google Scholar]
  12. Bley CJ, Qi X, Rand DP, Borges CR, Nelson RW, Chen JJ-L. 12.  2011. RNA–protein binding interface in the telomerase ribonucleoprotein. PNAS 108:20333–38 [Google Scholar]
  13. Bochkareva E, Korolev S, Lees-Miller SP, Bochkarev A. 13.  2002. Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J 21:1855–63 [Google Scholar]
  14. Brown AF, Podlevsky JD, Qi X, Chen Y, Xie M, Chen JJ-L. 14.  A self-regulating template in human telomerase. PNAS 111:11311–16 [Google Scholar]
  15. Bryan C, Rice C, Harkisheimer M, Schultz DC, Skordalakes E. 15.  2013. Structure of the human telomeric Stn1-Ten1 capping complex. PLOS ONE 8:e66756 [Google Scholar]
  16. Bryan TM, Goodrich KJ, Cech TR. 16.  2003. Tetrahymena telomerase is active as a monomer. Mol. Biol. Cell 14:4794–804 [Google Scholar]
  17. Cash DD, Cohen-Zontag O, Kim N-K, Shefer K, Brown Y. 17.  et al. 2013. Pyrimidine motif triple helix in the Kluyveromyces lactis telomerase RNA pseudoknot is essential for function in vivo. PNAS 110:10970–75 [Google Scholar]
  18. Cash DD, Feigon J. 18.  Structure and folding of the Tetrahymena telomerase RNA pseudoknot. Nucleic Acids Res 45:482–95 [Google Scholar]
  19. Casteel DE, Zhuang S, Zeng Y, Perrino FW, Boss GR. 19.  et al. 2009. A DNA polymerase α·primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells. J. Biol. Chem. 284:5807–18 [Google Scholar]
  20. Chen J-L, Blasco MA, Greider CW. 20.  2000. Secondary structure of vertebrate telomerase RNA. Cell 100:503–14 [Google Scholar]
  21. Chen J-L, Greider CW. 21.  2003. Template boundary definition in mammalian telomerase. Genes Dev 17:2747–52 [Google Scholar]
  22. Chen L-Y, Lingner J. 22.  2013. CST for the grand finale of telomere replication. Nucleus 4:277–82 [Google Scholar]
  23. Chen L-Y, Majerská J, Lingner J. 23.  2013. Molecular basis of telomere syndrome caused by CTC1 mutations. Genes Dev 27:2099–108 [Google Scholar]
  24. Chen L-Y, Redon S, Lingner J. 24.  2012. The human CST complex is a terminator of telomerase activity. Nature 488:540–44 [Google Scholar]
  25. Chen Y, Fender J, Legassie JD, Jarstfer MB, Bryan TM, Varani G. 25.  2006. Structure of stem-loop IV of Tetrahymena telomerase RNA. EMBO J 25:3156–66 [Google Scholar]
  26. Chu TW, D'Souza Y, Autexier C. 26.  2016. The insertion in fingers domain in human telomerase can mediate enzyme processivity and telomerase recruitment to telomeres in a TPP1-dependent manner. Mol. Cell. Biol. 36:210–22 [Google Scholar]
  27. Chu TW, MacNeil DE, Autexier C. 27.  2016. Multiple mechanisms contribute to the cell growth defects imparted by human telomerase insertion in fingers domain mutations associated with premature aging diseases. J. Biol. Chem. 291:8374–86 [Google Scholar]
  28. Churikov D, Corda Y, Luciano P, Géli V. 28.  2013. Cdc13 at a crossroads of telomerase action. Front. Oncol. 3:39 [Google Scholar]
  29. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR. 29.  2007. Protein composition of catalytically active human telomerase from immortal cells. Science 315:1850–53 [Google Scholar]
  30. Cole DI, Legassie JD, Bonifacio LN, Sekaran VG, Ding F. 30.  et al. 2012. New models of Tetrahymena telomerase RNA from experimentally derived constraints and modeling. J. Am. Chem. Soc. 134:20070–80 [Google Scholar]
  31. Collins K. 31.  2006. The biogenesis and regulation of telomerase holoenzymes. Nat. Rev. Mol. Cell Biol. 7:484–94 [Google Scholar]
  32. Cristofari G, Lingner J. 32.  2006. Telomere length homeostasis requires that telomerase levels are limiting. EMBO J 25:565–74 [Google Scholar]
  33. Dalby AB, Hofr C, Cech TR. 33.  2015. Contributions of the TEL-patch amino acid cluster on TPP1 to telomeric DNA synthesis by human telomerase. J. Mol. Biol. 427:1291–303 [Google Scholar]
  34. de Lange T. 34.  2005. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–10 [Google Scholar]
  35. Duan J, Li L, Lu J, Wang W, Ye K. 35.  2009. Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase. Mol. Cell 34:427–39 [Google Scholar]
  36. Eckert B, Collins K. 36.  2012. Roles of telomerase reverse transcriptase N-terminal domain in assembly and activity of Tetrahymena telomerase holoenzyme. J. Biol. Chem. 287:12805–14 [Google Scholar]
  37. Egan ED, Collins K. 37.  2010. Specificity and stoichiometry of subunit interactions in the human telomerase holoenzyme assembled in vivo. Mol. Cell. Biol. 30:2775–86 [Google Scholar]
  38. Egan ED, Collins K. 38.  2012. An enhanced H/ACA RNP assembly mechanism for human telomerase RNA. Mol. Cell. Biol. 32:2428–39 [Google Scholar]
  39. Egan ED, Collins K. 39.  2012. Biogenesis of telomerase ribonucleoproteins. RNA 18:1747–59 [Google Scholar]
  40. Errington TM, Fu D, Wong JM, Collins K. 40.  2008. Disease-associated human telomerase RNA variants show loss of function for telomere synthesis without dominant-negative interference. Mol. Cell. Biol. 28:6510–20 [Google Scholar]
  41. Feigon J, Chan H, Jiang J. 41.  2016. Integrative structural biology of Tetrahymena telomerase—insights into catalytic mechanism and interaction at telomeres. FEBS J 283:2044–50 [Google Scholar]
  42. Fogarty PF, Yamaguchi H, Wiestner A, Baerlocher GM, Sloand E. 42.  et al. 2003. Late presentation of dyskeratosis congenita as apparently acquired aplastic anaemia due to mutations in telomerase RNA. Lancet 362:1628–30 [Google Scholar]
  43. Froelich-Ammon SJ, Dickinson BA, Bevilacqua JM, Schultz SC, Cech TR. 43.  1998. Modulation of telomerase activity by telomere DNA-binding proteins in Oxytricha. Genes Dev 12:1504–14 [Google Scholar]
  44. Fujii H, Shao L, Colmegna I, Goronzy JJ, Weyand CM. 44.  2009. Telomerase insufficiency in rheumatoid arthritis. PNAS 106:4360–65 [Google Scholar]
  45. Gao H, Cervantes RB, Mandell EK, Otero JH, Lundblad V. 45.  2007. RPA-like proteins mediate yeast telomere function. Nat. Struct. Mol. Biol. 14:208–14 [Google Scholar]
  46. Gasparyan HJ, Xu L, Petreaca RC, Rex AE, Small VY. 46.  et al. 2009. Yeast telomere capping protein Stn1 overrides DNA replication control through the S phase checkpoint. PNAS 106:2206–11 [Google Scholar]
  47. Gavory G, Symmons MF, Krishnan Ghosh Y, Klenerman D, Balasubramanian S. 47.  2006. Structural analysis of the catalytic core of human telomerase RNA by FRET and molecular modeling. Biochemistry 45:13304–11 [Google Scholar]
  48. Gelinas AD, Paschini M, Reyes FE, Heroux A, Batey RT. 48.  et al. 2009. Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain. PNAS 106:19298–303 [Google Scholar]
  49. Gillis AJ, Schuller AP, Skordalakes E. 49.  2008. Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455:633–37 [Google Scholar]
  50. Grandin N, Damon C, Charbonneau M. 50.  2001. Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J 20:1173–83 [Google Scholar]
  51. Grandin N, Reed SI, Charbonneau M. 51.  1997. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev 11:512–27 [Google Scholar]
  52. Greider CW, Blackburn EH. 52.  1985. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–13 [Google Scholar]
  53. Greider CW, Blackburn EH. 53.  1987. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51:887–98 [Google Scholar]
  54. Greider CW, Blackburn EH. 54.  1989. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–37 [Google Scholar]
  55. Gu P, Chang S. 55.  2013. Functional characterization of human CTC1 mutations reveals novel mechanisms responsible for the pathogenesis of the telomere disease Coats plus. Aging Cell 12:1100–9 [Google Scholar]
  56. Hamma T, Ferré-D'Amaré AR. 56.  2004. Structure of protein L7Ae bound to a K-turn derived from an archaeal box H/ACA sRNA at 1.8 Å resolution. Structure 12:893–903 [Google Scholar]
  57. Hamma T, Ferré-D'Amaré AR. 57.  2010. The box H/ACA ribonucleoprotein complex: interplay of RNA and protein structures in post-transcriptional RNA modification. J. Biol. Chem. 285:805–9 [Google Scholar]
  58. Harkisheimer M, Mason M, Shuvaeva E, Skordalakes E. 58.  2013. A motif in the vertebrate telomerase N-terminal linker of TERT contributes to RNA binding and telomerase activity and processivity. Structure 21:1870–78 [Google Scholar]
  59. Hengesbach M, Kim N-K, Feigon J, Stone MD. 59.  2012. Single-molecule FRET reveals the folding dynamics of the human telomerase RNA pseudoknot domain. Angew. Chem. Int. Ed. 51:5876–79 [Google Scholar]
  60. Hockemeyer D, Collins K. 60.  2015. Control of telomerase action at human telomeres. Nat. Struct. Mol. Biol. 22:848–52 [Google Scholar]
  61. Hong K, Upton H, Miracco EJ, Jiang J, Zhou ZH. 61.  et al. 2013. Tetrahymena telomerase holoenzyme assembly, activation, and inhibition by domains of the p50 central hub. Mol. Cell. Biol. 33:3962–71 [Google Scholar]
  62. Horvath MP, Schweiker VL, Bevilacqua JM, Ruggles JA, Schultz SC. 62.  1998. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95:963–74 [Google Scholar]
  63. Huang J, Brown AF, Wu J, Xue J, Bley CJ. 63.  et al. 2014. Structural basis for protein-RNA recognition in telomerase. Nat. Struct. Mol. Biol. 21:507–12 [Google Scholar]
  64. Jacob NK, Lescasse R, Linger BR, Price CM. 64.  2007. Tetrahymena POT1a regulates telomere length and prevents activation of a cell cycle checkpoint. Mol. Cell. Biol. 27:1592–601 [Google Scholar]
  65. Jacob NK, Skopp R, Price CM. 65.  2001. G-overhang dynamics at Tetrahymena telomeres. EMBO J 20:4299–308 [Google Scholar]
  66. Jacobs SA, Podell ER, Cech TR. 66.  2006. Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat. Struct. Mol. Biol. 13:218–25 [Google Scholar]
  67. Jansson LI, Akiyama BM, Ooms A, Lu C, Rubin SM, Stone MD. 67.  2015. Structural basis of template-boundary definition in Tetrahymena telomerase. Nat. Struct. Mol. Biol. 22:883–88 [Google Scholar]
  68. Jaskelioff M, Muller FL, Paik J-H, Thomas E, Jiang S. 68.  et al. 2011. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469:102–6 [Google Scholar]
  69. Jiang J, Chan H, Cash DD, Miracco EJ, Ogorzalek Loo RR. 69.  et al. 2015. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions. Science 350:aab4070 [Google Scholar]
  70. Jiang J, Miracco EJ, Hong K, Eckert B, Chan H. 70.  et al. 2013. The architecture of Tetrahymena telomerase holoenzyme. Nature 496:187–92 [Google Scholar]
  71. Kelleher C, Teixeira MT, Forstemann K, Lingner J. 71.  2002. Telomerase: biochemical considerations for enzyme and substrate. Trends Biochem. Sci. 27:572–79 [Google Scholar]
  72. Kim N-K, Theimer CA, Mitchell JR, Collins K, Feigon J. 72.  2010. Effect of pseudouridylation on the structure and activity of the catalytically essential P6.1 hairpin in human telomerase RNA. Nucleic Acids Res 38:6746–56 [Google Scholar]
  73. Kim N-K, Zhang Q, Feigon J. 73.  2014. Structure and sequence elements of the CR4/5 domain of medaka telomerase RNA important for telomerase function. Nucleic Acids Res 42:3395–408 [Google Scholar]
  74. Kim N-K, Zhang Q, Zhou J, Theimer CA, Peterson RD, Feigon J. 74.  2008. Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA. J. Mol. Biol. 384:1249–61 [Google Scholar]
  75. Kiss T, Fayet-Lebaron E, Jády BE. 75.  2010. Box H/ACA small ribonucleoproteins. Mol. Cell 37:597–606 [Google Scholar]
  76. Koo B-K, Park C-J, Fernandez CF, Chim N, Ding Y. 76.  et al. 2011. Structure of H/ACA RNP protein Nhp2p reveals cis/trans isomerization of a conserved proline at the RNA and Nop10 binding interface. J. Mol. Biol. 411:927–42 [Google Scholar]
  77. Kupiec M. 77.  2014. Biology of telomeres: lessons from budding yeast. FEMS Microbiol. Rev. 38:144–71 [Google Scholar]
  78. Lai CK, Miller MC, Collins K. 78.  2002. Template boundary definition in Tetrahymena telomerase. Genes Dev 16:415–20 [Google Scholar]
  79. Lai CK, Mitchell JR, Collins K. 79.  2001. RNA binding domain of telomerase reverse transcriptase. Mol. Cell. Biol. 21:990–1000 [Google Scholar]
  80. Leehy KA, Lee JR, Song X, Renfrew KB, Shippen DE. 80.  2013. MERISTEM DISORGANIZATION1 encodes TEN1, an essential telomere protein that modulates telomerase processivity in Arabidopsis. . Plant Cell 25:1343–54 [Google Scholar]
  81. Lei M, Podell ER, Baumann P, Cech TR. 81.  2003. DNA self-recognition in the structure of Pot1 bound to telomeric single-stranded DNA. Nature 426:198–203 [Google Scholar]
  82. Lei M, Podell ER, Cech TR. 82.  2004. Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat. Struct. Mol. Biol. 11:1223–29 [Google Scholar]
  83. Lewis KA, Wuttke DS. 83.  2012. Telomerase and telomere-associated proteins: structural insights into mechanism and evolution. Structure 20:28–39 [Google Scholar]
  84. Li L, Ye K. 84.  2006. Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443:302–7 [Google Scholar]
  85. Li S, Duan J, Li D, Ma S, Ye K. 85.  2011. Structure of the Shq1–Cbf5–Nop10–Gar1 complex and implications for H/ACA RNP biogenesis and dyskeratosis congenita. EMBO J 30:5010–20 [Google Scholar]
  86. Li S, Duan J, Li D, Yang B, Dong M, Ye K. 86.  2011. Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase. Genes Dev 25:2409–21 [Google Scholar]
  87. Liang B, Xue S, Terns RM, Terns MP, Li H. 87.  2007. Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex. Nat. Struct. Mol. Biol. 14:1189–95 [Google Scholar]
  88. Lin J-J, Zakian VA. 88.  1996. The Saccharomyces CDC13 protein is a single-strand TG1–3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. PNAS 93:13760–65 [Google Scholar]
  89. Lin KW, Zakian VA. 89.  2015. 21st century genetics: mass spectrometry of yeast telomerase. Cold Spring Harb. Symp. Quant. Biol. 80:111–16 [Google Scholar]
  90. Linger BR, Morin GB, Price CM. 90.  2011. The Pot1a-associated proteins Tpt1 and Pat1 coordinate telomere protection and length regulation in Tetrahymena. Mol. Biol. Cell 22:4161–70 [Google Scholar]
  91. Linger BR, Price CM. 91.  2009. Conservation of telomere protein complexes: shuffling through evolution. Crit. Rev. Biochem. Mol. Biol. 44:434–46 [Google Scholar]
  92. Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR. 92.  1997. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–67 [Google Scholar]
  93. Liu D, Safari A, O'Connor MS, Chan DW, Laegeler A. 93.  et al. 2004. PTOP interacts with POT1 and regulates its localization to telomeres. Nat. Cell Biol. 6:673–80 [Google Scholar]
  94. Lloyd NR, Dickey TH, Hom RA, Wuttke DS. 94.  2016. Tying up the ends: plasticity in the recognition of single-stranded DNA at telomeres. Biochemistry 55:5326–40 [Google Scholar]
  95. Lue NF, Chan J, Wright WE, Hurwitz J. 95.  2014. The CDC13-STN1-TEN1 complex stimulates Pol α activity by promoting RNA priming and primase-to-polymerase switch. Nat. Commun. 5:5762 [Google Scholar]
  96. Lue NF, Lin Y-C, Mian IS. 96.  2003. A conserved telomerase motif within the catalytic domain of telomerase reverse transcriptase is specifically required for repeat addition processivity. Mol. Cell. Biol. 23:8440–49 [Google Scholar]
  97. Mahmoudi S, Henriksson S, Weibrecht I, Smith S, Söderberg O. 97.  et al. 2010. WRAP53 is essential for Cajal body formation and for targeting the survival of motor neuron complex to Cajal bodies. PLOS Biol 8:e1000521 [Google Scholar]
  98. Malyavko AN, Parfenova YY, Zvereva MI, Dontsova OA. 98.  2014. Telomere length regulation in budding yeasts. FEBS Lett 588:2530–36 [Google Scholar]
  99. Manival X, Charron C, Fourmann J-B, Godard F, Charpentier B, Branlant C. 99.  2006. Crystal structure determination and site-directed mutagenesis of the Pyrococcus abyssi aCBF5–aNOP10 complex reveal crucial roles of the C-terminal domains of both proteins in H/ACA sRNP activity. Nucleic Acids Res 34:826–39 [Google Scholar]
  100. Marrone A, Walne A, Dokal I. 100.  2005. Dyskeratosis congenita: telomerase, telomeres and anticipation. Curr. Opin. Genet. Dev. 15:249–57 [Google Scholar]
  101. Martínez P, Blasco MA. 101.  2015. Replicating through telomeres: a means to an end. Trends Biochem. Sci. 40:504–15 [Google Scholar]
  102. Mason M, Schuller A, Skordalakes E. 102.  2011. Telomerase structure function. Curr. Opin. Struct. Biol. 21:92–100 [Google Scholar]
  103. Mason M, Wanat JJ, Harper S, Schultz DC, Speicher DW. 103.  et al. 2013. Cdc13 OB2 dimerization required for productive Stn1 binding and efficient telomere maintenance. Structure 21:109–20 [Google Scholar]
  104. Min B, Collins K. 104.  2009. An RPA-related sequence-specific DNA-binding subunit of telomerase holoenzyme is required for elongation processivity and telomere maintenance. Mol. Cell 36:609–19 [Google Scholar]
  105. Miracco EJ, Jiang J, Cash DD, Feigon J. 105.  2014. Progress in structural studies of telomerase. Curr. Opin. Struct. Biol. 24:115–24 [Google Scholar]
  106. Mitchell MT, Gillis A, Futahashi M, Fujiwara H, Skordalakes E. 106.  2010. Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat. Struct. Mol. Biol. 17:513–18 [Google Scholar]
  107. Mitchell MT, Smith JS, Mason M, Harper S, Speicher DW. 107.  et al. 2010. Cdc13 N-terminal dimerization, DNA binding, and telomere length regulation. Mol. Cell. Biol. 30:5325–34 [Google Scholar]
  108. Mitton-Fry RM, Anderson EM, Hughes TR, Lundblad V, Wuttke DS. 108.  2002. Conserved structure for single-stranded telomeric DNA recognition. Science 296:145–47 [Google Scholar]
  109. Mitton-Fry RM, Anderson EM, Theobald DL, Glustrom LW, Wuttke DS. 109.  2004. Structural basis for telomeric single-stranded DNA recognition by yeast Cdc13. J. Mol. Biol. 338:241–55 [Google Scholar]
  110. Miyake Y, Nakamura M, Nabetani A, Shimamura S, Tamura M. 110.  et al. 2009. RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol. Cell 36:193–206 [Google Scholar]
  111. Nandakumar J, Bell CF, Weidenfeld I, Zaug AJ, Leinwand LA, Cech TR. 111.  2012. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492:285–89 [Google Scholar]
  112. Nandakumar J, Cech TR. 112.  2013. Finding the end: recruitment of telomerase to telomeres. Nat. Rev. Mol. Cell Biol. 14:69–82 [Google Scholar]
  113. Nelson AD, Shippen DE. 113.  2015. Evolution of TERT-interacting lncRNAs: expanding the regulatory landscape of telomerase. Front. Genet. 6:277 [Google Scholar]
  114. Niederer RO, Zappulla DC. 114.  2015. Refined secondary-structure models of the core of yeast and human telomerase RNAs directed by SHAPE. RNA 21:254–61 [Google Scholar]
  115. Nugent CI, Hughes TR, Lue NF, Lundblad V. 115.  1996. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274:249–52 [Google Scholar]
  116. O'Connor CM, Collins K. 116.  2006. A novel RNA binding domain in Tetrahymena telomerase p65 initiates hierarchical assembly of telomerase holoenzyme. Mol. Cell. Biol. 26:2029–36 [Google Scholar]
  117. O'Connor CM, Lai CK, Collins K. 117.  2005. Two purified domains of telomerase reverse transcriptase reconstitute sequence-specific interactions with RNA. J. Biol. Chem. 280:17533–39 [Google Scholar]
  118. O'Sullivan RJ, Karlseder J. 118.  2010. Telomeres: protecting chromosomes against genome instability. Nat. Rev. Mol. Cell Biol. 11:171–81 [Google Scholar]
  119. Parks JW, Stone MD. 119.  Coordinated DNA dynamics during the human telomerase catalytic cycle. Nat Commun 5:4146 [Google Scholar]
  120. Pfeiffer V, Lingner J. 120.  2013. Replication of telomeres and the regulation of telomerase. Cold Spring Harb. Perspect. Biol. 5:a010405 [Google Scholar]
  121. Podlevsky JD, Bley CJ, Omana RV, Qi X, Chen JJ-L. 121.  2008. The telomerase database. Nucleic Acids Res 36:D339–43 [Google Scholar]
  122. Podlevsky JD, Chen JJ-L. 122.  2016. Evolutionary perspectives of telomerase RNA structure and function. RNA Biol 13:720–32 [Google Scholar]
  123. Prakash A, Borgstahl GE. 123.  2012. The structure and function of replication protein A in DNA replication. Subcell. Biochem. 62:171–96 [Google Scholar]
  124. Premkumar VL, Cranert S, Linger BR, Morin GB, Minium S, Price C. 124.  2014. The 3′ overhangs at Tetrahymena thermophila telomeres are packaged by four proteins, Pot1a, Tpt1, Pat1, and Pat2. Eukaryot. Cell 13:240–45 [Google Scholar]
  125. Price CM, Boltz KA, Chaiken MF, Stewart JA, Beilstein MA, Shippen DE. 125.  2010. Evolution of CST function in telomere maintenance. Cell Cycle 9:3157–65 [Google Scholar]
  126. Qi H, Zakian VA. 126.  2000. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase α and the telomerase-associated Est1 protein. Genes Dev 14:1777–88 [Google Scholar]
  127. Qiao F, Cech TR. 127.  2008. Triple-helix structure in telomerase RNA contributes to catalysis. Nat. Struct. Mol. Biol. 15:634–40 [Google Scholar]
  128. Qiao F, Goodrich KJ, Cech TR. 128.  2010. Engineering cis-telomerase RNAs that add telomeric repeats to themselves. PNAS 107:4914–18 [Google Scholar]
  129. Rajavel M, Mullins MR, Taylor DJ. 129.  2014. Multiple facets of TPP1 in telomere maintenance. Biochim. Biophys. Acta 1844:1550–59 [Google Scholar]
  130. Rashid R, Liang B, Baker DL, Youssef OA, He Y. 130.  et al. 2006. Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita. Mol. Cell 21:249–60 [Google Scholar]
  131. Rice C, Skordalakes E. 131.  2016. Structure and function of the telomeric CST complex. Comput. Struct. Biotechnol. J. 14:161–67 [Google Scholar]
  132. Richard P, Darzacq X, Bertrand E, Jády BE, Verheggen C, Kiss T. 132.  2003. A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs. EMBO J 22:4283–93 [Google Scholar]
  133. Richards RJ, Theimer CA, Finger LD, Feigon J. 133.  2006. Structure of the Tetrahymena thermophila telomerase RNA helix II template boundary element. Nucleic Acids Res 34:816–25 [Google Scholar]
  134. Richards RJ, Wu H, Trantirek L, O'Connor CM, Collins K, Feigon J. 134.  2006. Structural study of elements of Tetrahymena telomerase RNA stem-loop IV domain important for function. RNA 12:1475–85 [Google Scholar]
  135. Robart AR, Collins K. 135.  2010. Investigation of human telomerase holoenzyme assembly, activity, and processivity using disease-linked subunit variants. J. Biol. Chem. 285:4375–86 [Google Scholar]
  136. Rouda S, Skordalakes E. 136.  2007. Structure of the RNA-binding domain of telomerase: implications for RNA recognition and binding. Structure 15:1403–12 [Google Scholar]
  137. Sarek G, Marzec P, Margalef P, Boulton SJ. 137.  2015. Molecular basis of telomere dysfunction in human genetic diseases. Nat. Struct. Mol. Biol. 22:867–74 [Google Scholar]
  138. Sauerwald A, Sandin S, Cristofari G, Scheres SH, Lingner J, Rhodes D. 138.  2013. Structure of active dimeric human telomerase. Nat. Struct. Mol. Biol. 20:454–60 [Google Scholar]
  139. Savage SA, Bertuch AA. 139.  2010. The genetics and clinical manifestations of telomere biology disorders. Genet. Med. 12:753–64 [Google Scholar]
  140. Schmidt JC, Cech TR. 140.  2015. Human telomerase: biogenesis, trafficking, recruitment, and activation. Genes Dev 29:1095–105 [Google Scholar]
  141. Schmidt JC, Dalby AB, Cech TR. 141.  2014. Identification of human TERT elements necessary for telomerase recruitment to telomeres. eLife 3:e03563 [Google Scholar]
  142. Schnapp G, Rodi HP, Rettig WJ, Schnapp A, Damm K. 142.  1998. One-step affinity purification protocol for human telomerase. Nucleic Acids Res 26:3311–13 [Google Scholar]
  143. Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH. 143.  et al. 2014. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–62 [Google Scholar]
  144. Sexton AN, Regalado SG, Lai CS, Cost GJ, O'Neil CM. 144.  et al. 2014. Genetic and molecular identification of three human TPP1 functions in telomerase action: recruitment, activation, and homeostasis set point regulation. Genes Dev 28:1885–99 [Google Scholar]
  145. Sexton AN, Youmans DT, Collins K. 145.  2012. Specificity requirements for human telomere protein interaction with telomerase holoenzyme. J. Biol. Chem. 287:34455–64 [Google Scholar]
  146. Shay JW. 146.  2016. Role of telomeres and telomerase in aging and cancer. Cancer Discov 6:584–93 [Google Scholar]
  147. Shefer K, Brown Y, Gorkovoy V, Nussbaum T, Ulyanov NB, Tzfati Y. 147.  2007. A triple helix within a pseudoknot is a conserved and essential element of telomerase RNA. Mol. Cell. Biol. 27:2130–43 [Google Scholar]
  148. Shukla S, Schmidt JC, Goldfarb KC, Cech TR, Parker R. 148.  2016. Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. Nat. Struct. Mol. Biol. 23:286–92 [Google Scholar]
  149. Singh M, Wang Z, Koo B-K, Patel A, Cascio D. 149.  et al. 2012. Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65. Mol. Cell 47:16–26 [Google Scholar]
  150. Stewart JA, Chaiken MF, Wang F, Price CM. 150.  2012. Maintaining the end: roles of telomere proteins in end-protection, telomere replication and length regulation. Mutat. Res. 730:12–19 [Google Scholar]
  151. Stewart JA, Wang F, Chaiken MF, Kasbek C, Chastain PD II. 151.  et al. 2012. Human CST promotes telomere duplex replication and general replication restart after fork stalling. EMBO J 31:3537–49 [Google Scholar]
  152. Stone MD, Mihalusova M, O'Connor CM, Prathapam R, Collins K, Zhuang X. 152.  2007. Stepwise protein-mediated RNA folding directs assembly of telomerase ribonucleoprotein. Nature 446:458–61 [Google Scholar]
  153. Sugitani N, Chazin WJ. 153.  2015. Characteristics and concepts of dynamic hub proteins in DNA processing machinery from studies of RPA. Prog. Biophys. Mol. Biol. 117:206–11 [Google Scholar]
  154. Sun J, Yang Y, Wan K, Mao N, Yu T-Y. 154.  et al. 2011. Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α. Cell Res 21:258–74 [Google Scholar]
  155. Sun J, Yu EY, Yang Y, Confer LA, Sun SH. 155.  et al. 2009. Stn1–Ten1 is an Rpa2–Rpa3-like complex at telomeres. Genes Dev 23:2900–14 [Google Scholar]
  156. Surovtseva YV, Churikov D, Boltz KA, Song X, Lamb JC. 156.  et al. 2009. Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol. Cell 36:207–18 [Google Scholar]
  157. Theimer CA, Blois CA, Feigon J. 157.  2005. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol. Cell 17:671–82 [Google Scholar]
  158. Theimer CA, Feigon J. 158.  2006. Structure and function of telomerase RNA. Curr. Opin. Struct. Biol. 16:307–18 [Google Scholar]
  159. Theimer CA, Jády BE, Chim N, Richard P, Breece KE. 159.  et al. 2007. Structural and functional characterization of human telomerase RNA processing and Cajal body localization signals. Mol. Cell 27:869–81 [Google Scholar]
  160. Townsley DM, Dumitriu B, Young NS. 160.  2014. Bone marrow failure and the telomeropathies. Blood 124:2775–83 [Google Scholar]
  161. Tycowski KT, Shu M-D, Kukoyi A, Steitz JA. 161.  2009. A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Mol. Cell 34:47–57 [Google Scholar]
  162. Tzfati Y, Fulton TB, Roy J, Blackburn EH. 162.  2000. Template boundary in a yeast telomerase specified by RNA structure. Science 288:863–67 [Google Scholar]
  163. Tzfati Y, Knight Z, Roy J, Blackburn EH. 163.  2003. A novel pseudoknot element is essential for the action of a yeast telomerase. Genes Dev 17:1779–88 [Google Scholar]
  164. Upton HE, Chan H, Feigon J, Collins K. 164.  2017. Shared subunits of Tetrahymena telomerase holoenzyme and replication protein A have different functions in different cellular complexes. J. Biol. Chem. 292:217–28 [Google Scholar]
  165. Upton HE, Hong K, Collins K. 165.  2014. Direct single-stranded DNA binding by Teb1 mediates the recruitment of Tetrahymena thermophila telomerase to telomeres. Mol. Cell. Biol. 34:4200–12 [Google Scholar]
  166. Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM. 166.  et al. 2009. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323:644–48 [Google Scholar]
  167. Vogan JM, Zhang X, Youmans DT, Regalado SG, Johnson JZ. 167.  et al. 2016. Minimized human telomerase maintains telomeres and resolves endogenous roles of H/ACA proteins, TCAB1, and Cajal bodies. eLife 5:e18221 [Google Scholar]
  168. Wan B, Tang T, Upton H, Shuai J, Zhou Y. 168.  et al. 2015. The Tetrahymena telomerase p75–p45–p19 subcomplex is a unique CST complex. Nat. Struct. Mol. Biol. 22:1023–26 [Google Scholar]
  169. Wang F, Podell ER, Zaug AJ, Yang Y, Baciu P. 169.  et al. 2007. The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445:506–10 [Google Scholar]
  170. Wang F, Stewart J, Price CM. 170.  2014. Human CST abundance determines recovery from diverse forms of DNA damage and replication stress. Cell Cycle 13:3488–98 [Google Scholar]
  171. Wang Y, Yesselman JD, Zhang Q, Kang M, Feigon J. 171.  2016. Structural conservation in the template/pseudoknot domain of vertebrate telomerase RNA from teleost fish to human. PNAS 113:E5125–34 [Google Scholar]
  172. Watson JM, Riha K. 172.  2010. Comparative biology of telomeres: where plants stand. FEBS Lett 584:3752–59 [Google Scholar]
  173. Wellinger RJ, Zakian VA. 173.  2012. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191:1073–105 [Google Scholar]
  174. Wenz C, Enenkel B, Amacker M, Kelleher C, Damm K, Lingner J. 174.  2001. Human telomerase contains two cooperating telomerase RNA molecules. EMBO J 20:3526–34 [Google Scholar]
  175. Wu RA, Collins K. 175.  2014. Human telomerase specialization for repeat synthesis by unique handling of primer-template duplex. EMBO J 33:921–35 [Google Scholar]
  176. Wu RA, Dagdas YS, Yilmaz ST, Yildiz A, Collins K. 176.  2015. Single-molecule imaging of telomerase reverse transcriptase in human telomerase holoenzyme and minimal RNP complexes. eLife 4:e08363 [Google Scholar]
  177. Wyatt HD, West SC, Beattie TL. 177.  2010. InTERTpreting telomerase structure and function. Nucleic Acids Res 38:5609–22 [Google Scholar]
  178. Xie M, Mosig A, Qi X, Li Y, Stadler PF, Chen JJ-L. 178.  2008. Structure and function of the smallest vertebrate telomerase RNA from teleost fish. J. Biol. Chem. 283:2049–59 [Google Scholar]
  179. Xie M, Podlevsky JD, Qi X, Bley CJ, Chen JJ-L. 179.  2010. A novel motif in telomerase reverse transcriptase regulates telomere repeat addition rate and processivity. Nucleic Acids Res 38:1982–96 [Google Scholar]
  180. Xin H, Liu D, Wan M, Safari A, Kim H. 180.  et al. 2007. TPP1 is a homologue of ciliate TEBP-β and interacts with POT1 to recruit telomerase. Nature 445:559–62 [Google Scholar]
  181. Ye JZ-S, Hockemeyer D, Krutchinsky AN, Loayza D, Hooper SM. 181.  et al. 2004. POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 18:1649–54 [Google Scholar]
  182. Yu EY, Sun J, Lei M, Lue NF. 182.  2012. Analyses of Candida Cdc13 orthologues revealed a novel OB fold dimer arrangement, dimerization-assisted DNA binding, and substantial structural differences between Cdc13 and RPA70. Mol. Cell. Biol. 32:186–98 [Google Scholar]
  183. Yu Y-T, Meier UT. 183.  2014. RNA-guided isomerization of uridine to pseudouridine—pseudouridylation. RNA Biol 11:1483–94 [Google Scholar]
  184. Zaug AJ, Podell ER, Cech TR. 184.  2008. Mutation in TERT separates processivity from anchor-site function. Nat. Struct. Mol. Biol. 15:870–72 [Google Scholar]
  185. Zaug AJ, Podell ER, Nandakumar J, Cech TR. 185.  2010. Functional interaction between telomere protein TPP1 and telomerase. Genes Dev 24:613–22 [Google Scholar]
  186. Zeng Z, Min B, Huang J, Hong K, Yang Y. 186.  et al. 2011. Structural basis for Tetrahymena telomerase processivity factor Teb1 binding to single-stranded telomeric-repeat DNA. PNAS 108:20357–61 [Google Scholar]
  187. Zhang Q, Kim N-K, Feigon J. 187.  2011. Architecture of human telomerase RNA. PNAS 108:20325–32 [Google Scholar]
  188. Zhang Q, Kim N-K, Peterson RD, Wang Z, Feigon J. 188.  2010. Structurally conserved five nucleotide bulge determines the overall topology of the core domain of human telomerase RNA. PNAS 107:18761–68 [Google Scholar]
  189. Zhong FL, Batista LF, Freund A, Pech MF, Venteicher AS, Artandi SE. 189.  2012. TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150:481–94 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error