We review the current knowledge on the use of single-molecule force spectroscopy techniques to extrapolate the elastic properties of nucleic acids. We emphasize the lesser-known elastic properties of single-stranded DNA. We discuss the importance of accurately determining the elastic response in pulling experiments, and we review the simplest models used to rationalize the experimental data as well as the experimental approaches used to pull single-stranded DNA. Applications used to investigate DNA conformational transitions and secondary structure formation are also highlighted. Finally, we provide an overview of the effects of salt and temperature and briefly discuss the effects of contour length and sequence dependence.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abels J, Moreno-Herrero F, Van der Heijden T, Dekker C, Dekker N. 1.  2005. Single-molecule measurements of the persistence length of double-stranded RNA. Biophys. J. 88:2737–44 [Google Scholar]
  2. Alemany A, Mossa A, Junier I, Ritort F. 2.  2012. Experimental free-energy measurements of kinetic molecular states using fluctuation theorems. Nat. Phys. 8:688–94 [Google Scholar]
  3. Alemany A, Ritort F. 3.  2014. Determination of the elastic properties of short ssDNA molecules by mechanically folding and unfolding DNA hairpins. Biopolymers 101:1193–99 [Google Scholar]
  4. Barrat JL, Joanny JF. 4.  1993. Persistence length of polyelectrolyte chains. Europhys. Lett. 24:333 [Google Scholar]
  5. Baumann CG, Bloomfield VA, Smith SB, Bustamante C, Wang MD, Block SM. 5.  2000. Stretching of single collapsed DNA molecules. Biophys. J. 78:1965–78 [Google Scholar]
  6. Baumann CG, Smith SB, Bloomfield VA, Bustamante C. 6.  1997. Ionic effects on the elasticity of single DNA molecules. PNAS 94:6185–90 [Google Scholar]
  7. Bell JC, Liu B, Kowalczykowski SC. 7.  2015. Imaging and energetics of single ssb-ssDNA molecules reveal intramolecular condensation and insight into RecOR function. eLife pii:e08646 [Google Scholar]
  8. Berndsen ZT, Keller N, Grimes S, Jardine PJ, Smith DE. 8.  2014. Nonequilibrium dynamics and ultraslow relaxation of confined DNA during viral packaging. PNAS 111:8345–50 [Google Scholar]
  9. Bizarro CV, Alemany A, Ritort F. 9.  2012. Non-specific binding of Na+ and Mg2+ to RNA determined by force spectroscopy methods. Nucleic Acids Res. 40:6922–35 [Google Scholar]
  10. Bockelmann U, Thomen P, Essevaz-Roulet B, Viasnoff V, Heslot F. 10.  2002. Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys. J. 82:1537–53 [Google Scholar]
  11. Bonnet G, Krichevsky O, Libchaber A. 11.  1998. Kinetics of conformational fluctuations in DNA hairpin-loops. PNAS 95:8602–6 [Google Scholar]
  12. Bosco A, Camunas-Soler J, Ritort F. 12.  2014. Elastic properties and secondary structure formation of single-stranded DNA at monovalent and divalent salt conditions. Nucleic Acids Res. 42:2064–74 [Google Scholar]
  13. Bouchiat C, Wang M, Allemand J, Strick T, Block S, Croquette V. 13.  1999. Estimating the persistence length of a worm-like chain molecule from force-extension measurements. Biophys. J. 76:409–13 [Google Scholar]
  14. Braun S, Humphreys C, Fraser E, Brancale A, Bochtler M, Dale T. 14.  2011. Amyloid-associated nucleic acid hybridisation. PLOS ONE 6:e19125 [Google Scholar]
  15. Brower-Toland BD, Smith CL, Yeh RC, Lis JT, Peterson CL, Wang MD. 15.  2002. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. PNAS 99:1960–65 [Google Scholar]
  16. Bryant Z, Oberstrass FC, Basu A. 16.  2012. Recent developments in single-molecule DNA mechanics. Curr. Opin. Struct. Biol. 22:304–12 [Google Scholar]
  17. Bustamante C, Bryant Z, Smith SB. 17.  2003. Ten years of tension: single-molecule DNA mechanics. Nature 421:423–27 [Google Scholar]
  18. Bustamante C, Smith SB, Liphardt J, Smith D. 18.  2000. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol. 10:279–85 [Google Scholar]
  19. Camunas-Soler J, Frutos S, Bizarro CV, de Lorenzo S, Fuentes-Perez ME. 19.  et al. 2013. Electrostatic binding and hydrophobic collapse of peptide–nucleic acid aggregates quantified using force spectroscopy. ACS Nano 7:5102–13 [Google Scholar]
  20. Candelli A, Hoekstra TP, Farge G, Gross P, Peterman EJ, Wuite GJ. 20.  2013. A toolbox for generating single-stranded DNA in optical tweezers experiments. Biopolymers 99:611–20 [Google Scholar]
  21. Chen H, Meisburger SP, Pabit SA, Sutton JL, Webb WW, Pollack L. 21.  2012. Ionic strength-dependent persistence lengths of single-stranded RNA and DNA. PNAS 109:799–804 [Google Scholar]
  22. Chen YF, Wilson DP, Raghunathan K, Meiners JC. 22.  2009. Entropic boundary effects on the elasticity of short DNA molecules. Phys. Rev. E 80:020903 [Google Scholar]
  23. Clausen-Schaumann H, Rief M, Tolksdorf C, Gaub HE. 23.  2000. Mechanical stability of single DNA molecules. Biophys. J. 78:1997–2007 [Google Scholar]
  24. Cluzel P, Lebrun A, Heller C, Lavery R, Viovy JL. 24.  et al. 1996. DNA: an extensible molecule. Science 271:792–94 [Google Scholar]
  25. Dame RT, Noom MC, Wuite GJ. 25.  2006. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature 444:387–90 [Google Scholar]
  26. Danilowicz C, Coljee VW, Bouzigues C, Lubensky DK, Nelson DR, Prentiss M. 26.  2003. DNA unzipped under a constant force exhibits multiple metastable intermediates. PNAS 100:1694–99 [Google Scholar]
  27. Danilowicz C, Lee C, Coljee V, Prentiss M. 27.  2007. Effects of temperature on the mechanical properties of single stranded DNA. Phys. Rev. E 75:030902 [Google Scholar]
  28. de Lorenzo S, Ribezzi-Crivellari M, Arias-Gonzalez JR, Smith SB, Ritort F. 28.  2015. A temperature-jump optical trap for single-molecule manipulation. Biophys. J. 108:2854–64 [Google Scholar]
  29. Dessinges MN, Maier B, Zhang Y, Peliti M, Bensimon D, Croquette V. 29.  2002. Stretching single stranded DNA, a model polyelectrolyte. Phys. Rev. Lett. 89:248102 [Google Scholar]
  30. Dršata T, Špačková N, Jurečka P, Zgarbová M, Šponer J, Lankaš F.30.  2014. Mechanical properties of symmetric and asymmetric DNA A-tracts: implications for looping and nucleosome positioning. Nucleic Acids Res 42:7383–94 [Google Scholar]
  31. Forns N, de Lorenzo S, Manosas M, Hayashi K, Huguet JM, Ritort F. 31.  2011. Improving signal/noise resolution in single-molecule experiments using molecular constructs with short handles. Biophys. J. 100:1765–74 [Google Scholar]
  32. Forth S, Deufel C, Sheinin MY, Daniels B, Sethna JP, Wang MD. 32.  2008. Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules. Phys. Rev. Lett. 100:148301 [Google Scholar]
  33. Fu H, Chen H, Marko JF, Yan J. 33.  2010. Two distinct overstretched DNA states. Nucleic Acids Res. 38:165594–600 [Google Scholar]
  34. Fu H, Chen H, Zhang X, Qu Y, Marko JF, Yan J. 34.  2010. Transition dynamics and selection of the distinct s-DNA and strand unpeeling modes of double helix overstretching. Nucleic Acids Res. 39:83473–81 [Google Scholar]
  35. Goddard NL, Bonnet G, Krichevsky O, Libchaber A. 35.  2000. Sequence dependent rigidity of single stranded DNA. Phys. Rev. Lett. 85:2400 [Google Scholar]
  36. Gross P, Laurens N, Oddershede LB, Bockelmann U, Peterman EJ, Wuite GJ. 36.  2011. Quantifying how DNA stretches, melts and changes twist under tension. Nat. Phys. 7:731–36 [Google Scholar]
  37. Hall MA, Shundrovsky A, Bai L, Fulbright RM, Lis JT, Wang MD. 37.  2009. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat. Struct. Mol. Biol. 16:124–29 [Google Scholar]
  38. Hamon L, Pastre D, Dupaigne P, Le Breton C, Le Cam E, Pietrement O. 38.  2007. High-resolution AFM imaging of single-stranded DNA-binding (ssb) protein-DNA complexes. Nucleic Acids Res. 35:e58 [Google Scholar]
  39. Herrero-Galán E, Fuentes-Perez ME, Carrasco C, Valpuesta JM, Carrascosa JL. 39.  et al. 2012. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. J. Am. Chem. Soc. 135:122–31 [Google Scholar]
  40. Huguet JM, Bizarro CV, Forns N, Smith SB, Bustamante C, Ritort F. 40.  2010. Single-molecule derivation of salt dependent base-pair free energies in DNA. PNAS 107:15431–36 [Google Scholar]
  41. Ibarra B, Chemla YR, Plyasunov S, Smith SB, Lazaro JM. 41.  et al. 2009. Proofreading dynamics of a processive DNA polymerase. EMBO J. 28:2794–802 [Google Scholar]
  42. Jacobson DR, McIntosh DB, Saleh OA. 42.  2013. The snakelike chain character of unstructured RNA. Biophys. J. 105:2569–76 [Google Scholar]
  43. Kauert DJ, Kurth T, Liedl T, Seidel R. 43.  2011. Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Lett. 11:5558–63 [Google Scholar]
  44. Ke C, Humeniuk M, Hanna S, Marszalek PE. 44.  et al. 2007. Direct measurements of base stacking interactions in DNA by single-molecule atomic-force spectroscopy. Phys. Rev. Lett. 99:018302 [Google Scholar]
  45. Keyser UF, Koeleman BN, Van Dorp S, Krapf D, Smeets RM. 45.  et al. 2006. Direct force measurements on DNA in a solid-state nanopore. Nat. Phys. 2:473–77 [Google Scholar]
  46. Kim DN, Kilchherr F, Dietz H, Bathe M. 46.  2012. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 40:2862–68 [Google Scholar]
  47. Kratky O, Porod G. 47.  1949. Röntgenuntersuchung gelöster fadenmoleküle. Recl. Trav. Chim. Pays-Bas 68:1106–22 [Google Scholar]
  48. Landau LD, Lifshitz EM. 48.  1982. Mechanics, 1 Course of Theoretical Physics, 3rd Edition. Oxford, UK: Elsevier [Google Scholar]
  49. Lionnet T, Dawid A, Bigot S, Barre FX, Saleh OA. 49.  et al. 2006. DNA mechanics as a tool to probe helicase and translocase activity. Nucleic Acids Res. 34:4232–44 [Google Scholar]
  50. Manosas M, Perumal SK, Croquette V, Benkovic SJ. 50.  2012. Direct observation of stalled fork restart via fork regression in the T4 replication system. Science 338:1217–20 [Google Scholar]
  51. Manosas M, Xi XG, Bensimon D, Croquette V. 51.  2010. Active and passive mechanisms of helicases. Nucleic Acids Res. 38:165518–26 [Google Scholar]
  52. Marko JF, Siggia ED. 52.  1995. Stretching DNA. Macromolecules 28:8759–70 [Google Scholar]
  53. Marszalek PE, Oberhauser AF, Pang YP, Fernandez JM. 53.  1998. Polysaccharide elasticity governed by chair–boat transitions of the glucopyranose ring. Nature 396:661–64 [Google Scholar]
  54. McGurn A, Scalapino D. 54.  1975. One-dimensional ferromagnetic classical-spin-field model. Phys. Rev. B 11:2552 [Google Scholar]
  55. McIntosh DB, Duggan G, Gouil Q, Saleh OA. 55.  2014. Sequence-dependent elasticity and electrostatics of single-stranded DNA: signatures of base-stacking. Biophys. J. 106:659–66 [Google Scholar]
  56. McIntosh DB, Saleh OA. 56.  2011. Salt species-dependent electrostatic effects on ssDNA elasticity. Macromolecules 44:2328–33 [Google Scholar]
  57. Murphy M, Rasnik I, Cheng W, Lohman TM, Ha T. 57.  2004. Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys. J. 86:2530–37 [Google Scholar]
  58. Nelson P.58.  2004. Biological Physics New York: Freeman [Google Scholar]
  59. Odijk T.59.  1977. Polyelectrolytes near the rod limit. J. Polymer Sci. 15:477–83 [Google Scholar]
  60. Pampaloni F, Lattanzi G, Jonáš A, Surrey T, Frey E, Florin EL. 60.  2006. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. PNAS 103:10248–53 [Google Scholar]
  61. Pfitzner E, Wachauf C, Kilchherr F, Pelz B, Shih WM. 61.  et al. 2013. Rigid DNA beams for high-resolution single-molecule mechanics. Angew. Chem. Int. Ed. Engl. 125:7920–25 [Google Scholar]
  62. Ribezzi-Crivellari M, Ritort F. 62.  2012. Force spectroscopy with dual-trap optical tweezers: molecular stiffness measurements and coupled fluctuations analysis. Biophys. J. 103:1919–28 [Google Scholar]
  63. Rief M, Pascual J, Saraste M, Gaub HE. 63.  1999. Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J. Mol. Biol. 286:553–61 [Google Scholar]
  64. Ritort F, Mihardja S, Smith SB, Bustamante C. 64.  2006. Condensation transition in DNA-polyaminoamide dendrimer fibers studied using optical tweezers. Phys. Rev. Lett. 96:118301 [Google Scholar]
  65. Rivetti C, Walker C, Bustamante C. 65.  1998. Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. J. Mol. Biol. 280:41–59 [Google Scholar]
  66. Sakai A, Hizume K, Sutani T, Takeyasu K, Yanagida M. 66.  2003. Condensin but not cohesin SMC heterodimer induces DNA reannealing through protein–protein assembly. EMBO J. 22:2764–75 [Google Scholar]
  67. Saleh OA. 67.  2015. Single polymer mechanics across the force regimes. J. Chem. Phys. 142:194902 [Google Scholar]
  68. Saleh OA, McIntosh DB, Pincus P, Ribeck N. 68.  2009. Nonlinear low-force elasticity of single-stranded DNA molecules. Phys. Rev. Lett. 102:068301 [Google Scholar]
  69. SantaLucia J.69.  1998. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. PNAS 95:1460–65 [Google Scholar]
  70. Seol Y, Li J, Nelson PC, Perkins TT, Betterton M. 70.  2007. Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6–7 μm. Biophys. J. 93:4360–73 [Google Scholar]
  71. Seol Y, Skinner GM, Visscher K. 71.  2004. Elastic properties of a single-stranded charged homopolymeric ribonucleotide. Phys. Rev. Lett. 93:118102 [Google Scholar]
  72. Seol Y, Skinner GM, Visscher K, Buhot A, Halperin A. 72.  2007. Stretching of homopolymeric RNA reveals single-stranded helices and base-stacking. Phys. Rev. Lett. 98:158103 [Google Scholar]
  73. Shundrovsky A, Smith CL, Lis JT, Peterson CL, Wang MD. 73.  2006. Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules. Nat. Struct. Mol. Biol. 13:549–54 [Google Scholar]
  74. Skolnick J, Fixman M. 74.  1977. Electrostatic persistence length of a wormlike polyelectrolyte. Macromolecules 10:944–48 [Google Scholar]
  75. Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C. 75.  2001. The bacteriophage φ29 portal motor can package DNA against a large internal force. Nature 413:748–52 [Google Scholar]
  76. Smith SB, Cui Y, Bustamante C. 76.  1996. Overstretching b-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271:795–99 [Google Scholar]
  77. Smith SB, Finzi L, Bustamante C. 77.  1992. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122–26 [Google Scholar]
  78. Strick T, Allemand JF, Bensimon D, Bensimon A, Croquette V. 78.  1996. The elasticity of a single supercoiled DNA molecule. Science 271:1835–37 [Google Scholar]
  79. Todd BA, Rau DC. 79.  2008. Interplay of ion binding and attraction in DNA condensed by multivalent cations. Nucleic Acids Res. 36:501–10 [Google Scholar]
  80. van der Heijden T, Modesti M, Hage S, Kanaar R, Wyman C, Dekker C. 80.  2008. Homologous recombination in real time: DNA strand exchange by RECA. Mol. Cell 30:530–38 [Google Scholar]
  81. Wang MD, Yin H, Landick R, Gelles J, Block SM. 81.  1997. Stretching DNA with optical tweezers. Biophys. J. 72:1335 [Google Scholar]
  82. Williams MC, Rouzina I, Bloomfield VA. 82.  2002. Thermodynamics of DNA interactions from single molecule stretching experiments. Acc. Chem. Res. 35:159–66 [Google Scholar]
  83. Woodside MT, Anthony PC, Behnke-Parks WM, Larizadeh K, Herschlag D, Block SM. 83.  2006. Direct measurement of the full, sequence-dependent folding landscape of a nucleic acid. Science 314:1001–4 [Google Scholar]
  84. Woodside MT, Behnke-Parks WM, Larizadeh K, Travers K, Herschlag D, Block SM. 84.  2006. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. PNAS 103:6190–95 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error