1932

Abstract

Efforts to combine theory and experiment to advance our knowledge of molecular processes relevant to biophysics have been considerably enhanced by the contribution of statistical-mechanics simulations. Key to the understanding of such molecular processes is the underlying free-energy change. Being able to accurately predict this change from first principles represents an appealing prospect. Over the past decades, the synergy between steadily growing computational resources and unrelenting methodological developments has brought free-energy calculations into the arsenal of tools commonly utilized to tackle important questions that experiment alone has left unresolved. The continued emergence of new options to determine free energies has also bred confusion amid the community of users, who may find it difficult to choose the best-suited algorithm to address the problem at hand. In an attempt to clarify the current landscape, this review recounts how the field has been shaped and how the broad gamut of methods available today is rooted in a few foundational principles laid down many years ago.Three examples of molecular processes central to biophysics illustrate where free-energy calculations stand and what are the conceptual and practical obstacles that we must overcome to increase their predictive power.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062722-093258
2023-05-09
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/biophys/52/1/annurev-biophys-062722-093258.html?itemId=/content/journals/10.1146/annurev-biophys-062722-093258&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC et al. 2015. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25
    [Google Scholar]
  2. 2.
    Abrams C, Bussi G. 2014. Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy 16:163–99
    [Google Scholar]
  3. 3.
    Ahmad M, Helms V, Kalinina OV, Lengauer T. 2019. Relative principal components analysis: application to analyzing biomolecular conformational changes. J. Chem. Theory Comput. 15:2166–78
    [Google Scholar]
  4. 4.
    Aldeghi M, Heifetz A, Bodkin MJ, Knapp S, Biggin PC. 2016. Accurate calculation of the absolute free energy of binding for drug molecules. Chem. Sci. 7:1207–18
    [Google Scholar]
  5. 5.
    Alder BJ, Wainwright TE. 1957. Phase transition for a hard sphere systems. J. Chem. Phys. 27:1208–9
    [Google Scholar]
  6. 6.
    Amadei A, Linssen AB, Berendsen HJ. 1993. Essential dynamics of proteins. Proteins 17:412–25
    [Google Scholar]
  7. 7.
    Ando T. 2014. High-speed AFM imaging. Curr. Opin. Struct. Biol. 28:63–68
    [Google Scholar]
  8. 8.
    Artursson P, Palm K, Luthman K. 2001. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46:27–43
    [Google Scholar]
  9. 9.
    Awoonor-Williams E, Rowley CN 2015. Molecular simulation of nonfacilitated membrane permeation. Biochim. Biophys. Acta Biomembr. 1858:1672–87
    [Google Scholar]
  10. 10.
    Barducci A, Bussi G, Parrinello M. 2008. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100:020603
    [Google Scholar]
  11. 11.
    Bartels C, Karplus M. 1997. Multidimensional adaptive umbrella sampling: applications to main chain and side chain peptide conformations. J. Comput. Chem. 18:1450–62
    [Google Scholar]
  12. 12.
    Bash PA, Singh UC, Langridge R, Kollman PA. 1987. Free energy calculations by computer simulation. Science 236:564–68
    [Google Scholar]
  13. 13.
    Belkacemi Z, Gkeka P, Lelièvre T, Stoltz G. 2022. Chasing collective variables using autoencoders and biased trajectories. J. Chem. Theory Comput. 18:159–78
    [Google Scholar]
  14. 14.
    Bemporad D, Luttmann C, Essex JW. 2004. Computer simulation of small molecule permeation across a lipid bilayer: dependence on bilayer properties and solute volume, size, and cross-sectional area. Biophys. J. 87:1–13
    [Google Scholar]
  15. 15.
    Bennett CH. 1976. Efficient estimation of free energy differences from Monte Carlo data. J. Comp. Phys. 22:245–68
    [Google Scholar]
  16. 16.
    Bešker N, Gervasio FL. 2012. Using metadynamics and path collective variables to study ligand binding and induced conformational transitions. Methods Mol. Biol. 819:501–13
    [Google Scholar]
  17. 17.
    Blazhynska M, Goulard Coderc de Lacam E, Chen H, Roux B, Chipot C 2022. Hazardous shortcuts in standard binding free-energy calculations. J. Phys. Chem. Lett. 13:276250–58
    [Google Scholar]
  18. 18.
    Bolhuis PG, Chandler D, Dellago C, Geissler P. 2002. Transition path sampling: throwing ropes over mountain passes, in the dark. Ann. Rev. Phys. Chem. 59:291–318
    [Google Scholar]
  19. 19.
    Bolhuis PG, Dellago C, Chandler D. 2000. Reaction coordinates of biomolecular isomerization. PNAS 97:5877–82
    [Google Scholar]
  20. 20.
    Boresch S, Tettinger F, Leitgeb M, Karplus M. 2003. Absolute binding free energies: a quantitative approach to their calculation. J. Phys. Chem. B 107:9535–51
    [Google Scholar]
  21. 21.
    Bowman GR, Pande VS, Noé F. 2013. An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation Adv. Exp. Med. Biol. 797 Berlin: Springer
  22. 22.
    Boyce SE, Mobley DL, Rocklin GJ, Graves AP, Dill KA, Shoichet BK. 2009. Predicting ligand binding affinity with alchemical free energy methods in a polar model binding site. J. Mol. Biol. 394:747–63
    [Google Scholar]
  23. 23.
    Branduardi D, Gervasio FL, Parrinello M. 2007. From A to B in free energy space. J. Chem. Phys. 126:054103
    [Google Scholar]
  24. 24.
    Buch I, Giorgino T, Fabritiis GD. 2011. Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. PNAS 108:10184–89
    [Google Scholar]
  25. 25.
    Bussi G, Gervasio FL, Laio A, Parrinello M. 2006. Free-energy landscape for β hairpin folding from combined parallel tempering and metadynamics. J. Am. Chem. Soc. 128:4113435–41
    [Google Scholar]
  26. 26.
    Carpenter TS, Kirshner DA, Lau EY, Wong SE, Nilmeier JP, Lightstone FC. 2014. A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophys. J. 107:3630–41
    [Google Scholar]
  27. 27.
    Chen H, Fu H, Chipot C, Shao X, Cai W. 2021. Overcoming free-energy barriers with a seamless combination of a biasing force and collective variable-independent boost potential. J. Chem. Theory Comput. 17:3886–94
    [Google Scholar]
  28. 28.
    Chen H, Liu H, Feng H, Fu H, Cai W et al. 2022. MLCV: bridging machine-learning-based dimensionality reduction and free-energy calculation. J. Chem. Inf. Model. 62:1–8
    [Google Scholar]
  29. 29.
    Chen H, Ogden D, Pant S, Roux B, Moradi M et al. 2022. A companion guide to the string method with swarms of trajectories, characterization, performance, and pitfalls. J. Chem. Theory Comput. 18:1406–22
    [Google Scholar]
  30. 30.
    Chen W, Tan AR, Ferguson AL. 2018. Collective variable discovery and enhanced sampling using autoencoders: innovations in network architecture and error function design. J. Chem. Phys. 149:7072312
    [Google Scholar]
  31. 31.
    Chipot C. 2014. Frontiers in free-energy calculations of biological systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4:71–89
    [Google Scholar]
  32. 32.
    Chipot C, Comer J. 2016. Subdiffusion in membrane permeation of small molecules. Sci. Rep. 6:35913
    [Google Scholar]
  33. 33.
    Chipot C, Lelièvre T. 2011. Enhanced sampling of multidimensional free-energy landscapes using adaptive biasing forces. SIAM J. Appl. Math. 71:1673–95
    [Google Scholar]
  34. 34.
    Chipot C, Pohorille A, eds. 2007. Free Energy Calculations: Theory and Applications in Chemistry and Biology Berlin: Springer
  35. 35.
    Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS. 2011. Alchemical free energy methods for drug discovery: progress and challenges. Curr. Opin. Struct. Biol. 21:150–60
    [Google Scholar]
  36. 36.
    Chodera JD, Noé F. 2014. Markov state models of biomolecular conformational dynamics. Curr. Opin. Struct. Biol. 25:135–44
    [Google Scholar]
  37. 37.
    Christ CD, van Gunsteren WF. 2007. Enveloping distribution sampling: a method to calculate free energy differences from a single simulation. J. Chem. Phys. 126:184110
    [Google Scholar]
  38. 38.
    Comer J, Chipot C, González-Nilo FD. 2013. Calculating position-dependent diffusivity in biased molecular dynamics simulations. J. Chem. Theor. Comput. 9:876–82
    [Google Scholar]
  39. 39.
    Comer J, Gumbart JC, Hénin J, Lelièvre T, Pohorille A, Chipot C. 2015. The adaptive biasing force method: everything you always wanted to know, but were afraid to ask. J. Phys. Chem. B 119:1129–51
    [Google Scholar]
  40. 40.
    Comer J, Phillips J, Schulten K, Chipot C. 2014. Multiple-replica strategies for free-energy calculations in NAMD: multiple-walker adaptive biasing force and walker selection rules. J. Chem. Theor. Comput. 10:5276–85
    [Google Scholar]
  41. 41.
    Comer J, Schulten K, Chipot C. 2014. Calculation of lipid-bilayer permeabilities using an average force. J. Chem. Theory Comput. 10:554–64
    [Google Scholar]
  42. 42.
    Comer JR, Schulten K, Chipot C. 2014. Diffusive models of membrane permeation with explicit orientational freedom. J. Chem. Theory Comput. 10:2710–18
    [Google Scholar]
  43. 43.
    Comer J, Schulten K, Chipot C. 2017. Permeability of a fluid lipid bilayer to short-chain alcohols from first principles. J. Chem. Theory Comput. 13:62523–32
    [Google Scholar]
  44. 44.
    Cournia Z, Allen B, Sherman W. 2017. Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J. Chem. Inf. Model. 57:122911–37
    [Google Scholar]
  45. 45.
    Cournia Z, Chipot C, Roux B, York DM, Sherman W 2021. Free energy methods in drug discovery—introduction. Free Energy Methods in Drug Discovery: Current State and Future Directions K Armacost, D Thompson 267–87. ACS Symp. Ser. 1397 Washington, DC: Am. Chem. Soc.
    [Google Scholar]
  46. 46.
    Crooks G. 1998. Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys. 90:1481–87
    [Google Scholar]
  47. 47.
    Dama JF, Parrinello M, Voth GA. 2014. Well-tempered metadynamics converges asymptotically. Phys. Rev. Lett. 112:24240602
    [Google Scholar]
  48. 48.
    Darve E, Pohorille A. 2001. Calculating free energies using average force. J. Chem. Phys. 115:9169–83
    [Google Scholar]
  49. 49.
    De Donder T 1927. L'Affinité Paris: Gauthier–Villars
  50. 50.
    Deng Y, Roux B. 2006. Calculation of standard binding free energies: aromatic molecules in the T4 lysozyme L99A mutant. J. Chem. Theor. Comp. 2:1255–73
    [Google Scholar]
  51. 51.
    Deng Y, Roux B. 2009. Computations of standard binding free energies with molecular dynamics simulations. J. Phys. Chem. B 113:2234–46
    [Google Scholar]
  52. 52.
    Diamond JM, Katz Y. 1974. Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J. Membrane Biol. 17:121–54
    [Google Scholar]
  53. 53.
    Díaz Leines G, Ensing B 2012. Path finding on high-dimensional free energy landscapes. Phys. Rev. Lett. 109:2020601
    [Google Scholar]
  54. 54.
    Dickson BM, Huang H, Post CB. 2012. Unrestrained computation of free energy along a path. J. Phys. Chem. B 116:3611046–55
    [Google Scholar]
  55. 55.
    Dixit SB, Chipot C. 2001. Can absolute free energies of association be estimated from molecular mechanical simulations? The biotin–streptavidin system revisited. J. Phys. Chem. A 105:9795–99
    [Google Scholar]
  56. 56.
    Doudou S, Burton NA, Henchman RH. 2009. Standard free energy of binding from a one-dimensional potential of mean force. J. Chem. Theor. Comput. 5:909–18
    [Google Scholar]
  57. 57.
    Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE. 2012. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41:429–52
    [Google Scholar]
  58. 58.
    Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P et al. 2011. Pathway and mechanism of drug binding to G-protein-coupled receptors. PNAS 108:13118–23
    [Google Scholar]
  59. 59.
    Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y et al. 2017. Openmm 7: rapid development of high performance algorithms for molecular dynamics. PLOS Comput. Biol. 13:7e1005659
    [Google Scholar]
  60. 60.
    Fajer M, Meng Y, Roux B. 2017. The activation of c-Src tyrosine kinase: conformational transition pathway and free energy landscape. J. Phys. Chem. B 121:153352–63
    [Google Scholar]
  61. 61.
    Faradjian AK, Elber R. 2004. Computing time scales from reaction coordinates by milestoning. J. Chem. Phys. 120:10880–89
    [Google Scholar]
  62. 62.
    Forgac M. 2007. Vacuolar ATPases rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8:11917–29
    [Google Scholar]
  63. 63.
    Francés-Monerris A, Hognon C, Miclot T, García-Iriepa C, Iriepa I et al. 2020. Molecular basis of SARS-CoV-2 infection and rational design of potential antiviral agents: modeling and simulation approaches. J. Proteome Res. 19:114291–315
    [Google Scholar]
  64. 64.
    Frenkel D, Smit B. 1996. Understanding Molecular Simulations: From Algorithms to Applications San Diego: Acad. Press
  65. 65.
    Fu H, Chen H, Blazhynska M, Goulard Coderc De Lacam E, Szczepaniak F et al. 2022. Accurate determination of protein:ligand standard binding free energies from molecular dynamics simulations. Nat. Protoc. 17:1114–41
    [Google Scholar]
  66. 66.
    Fu H, Chen H, Cai W, Shao X, Chipot C. 2021. BFEE2: automated, streamlined and accurate absolute binding free-energy calculations. J. Chem. Inf. Model. 61:2116–23
    [Google Scholar]
  67. 67.
    Fu H, Gumbart JC, Chen H, Shao X, Cai W, Chipot C. 2018. BFEE: a user-friendly graphical interface facilitating absolute binding free-energy calculations. J. Chem. Inf. Model. 58:556–60
    [Google Scholar]
  68. 68.
    Fu H, Shao X, Cai W, Chipot C. 2019. Taming rugged free-energy landscapes using an average force. Acc. Chem. Res. 52:3254–64
    [Google Scholar]
  69. 69.
    Fu H, Shao X, Chipot C, Cai W. 2016. Extended adaptive biasing force algorithm: an on-the-fly implementation for accurate free-energy calculations. J. Chem. Theory Comput. 12:3506–13
    [Google Scholar]
  70. 70.
    Fujitani H, Tanida Y, Ito M, Jayachandran G, Snow CD et al. 2005. Direct calculation of the binding free energies of FKBP ligands. J. Chem. Phys. 123:084108
    [Google Scholar]
  71. 71.
    Gao J, Kuczera K, Tidor B, Karplus M. 1989. Hidden thermodynamics of mutant proteins: a molecular dynamics analysis. Science 244:1069–72
    [Google Scholar]
  72. 72.
    García-Iriepa C, Hognon C, Francés-Monerris A, Iriepa I, Miclot T et al. 2020. Thermodynamics of the interaction between the spike protein of severe acute respiratory syndrome coronavirus-2 and the receptor of human angiotensin-converting enzyme 2: effects of possible ligands. J. Phys. Chem. Lett. 11:219272–81
    [Google Scholar]
  73. 73.
    General IJ, Dragomirova R, Meirovitch H. 2011. Calculation of the absolute free energy of binding and related entropies with the HSMD-TI method: the FKBP12-L8 complex. J. Chem. Theory Comput. 7:4196–207
    [Google Scholar]
  74. 74.
    General IJ, Dragomirova R, Meirovitch H. 2011. New method for calculating the absolute free energy of binding: the effect of a mobile loop on the avidin/biotin complex. J. Phys. Chem. B 115:168–75
    [Google Scholar]
  75. 75.
    General IJ, Dragomirova R, Meirovitch H. 2012. Absolute free energy of binding of avidin/biotin, revisited. J. Phys. Chem. B 116:6628–36
    [Google Scholar]
  76. 76.
    Ghaemi Z, Alberga D, Carloni P, Laio A, Lattanzi G. 2016. Permeability coefficients of lipophilic compounds estimated by computer simulations. J. Chem. Theory Comput. 12:84093–99
    [Google Scholar]
  77. 77.
    Ghaemi Z, Minozzi M, Carloni P, Laio A. 2012. A novel approach to the investigation of passive molecular permeation through lipid bilayers from atomistic simulations. J. Phys. Chem. B 116:8714–21
    [Google Scholar]
  78. 78.
    Gilson MK, Given JA, Bush BL, McCammon JA. 1997. The statistical–thermodynamic basis for computation of binding affinities: a critical review. Biophys. J. 72:1047–69
    [Google Scholar]
  79. 79.
    Grosjean H, Işik M, Aimon A, Mobley D, Chodera J et al. 2022. SAMPL7 protein-ligand challenge: a community-wide evaluation of computational methods against fragment screening and pose-prediction. J. Comput.-Aided Mol. Des. 36:4291–311
    [Google Scholar]
  80. 80.
    Grubmüller H. 1995. Predicting slow structural transitions in macromolecular systems: conformational flooding. Phys. Rev. E 52:32893–906
    [Google Scholar]
  81. 81.
    Grubmüller H, Heymann B, Tavan P. 1996. Ligand binding: molecular mechanics calculation of the streptavidin–biotin rupture force. Science 271:997–99
    [Google Scholar]
  82. 82.
    Gumbart JC, Roux B, Chipot C. 2013. Efficient determination of protein-protein standard binding free energies from first principles. J. Chem. Theor. Comput. 9:3789–98
    [Google Scholar]
  83. 83.
    Gumbart JC, Roux B, Chipot C. 2013. Standard binding free energies from computer simulations: What is the best strategy?. J. Chem. Theor. Comput. 9:794–802
    [Google Scholar]
  84. 84.
    Hansch C, Dunn WJ III 1972. Linear relationships between lipophilic character and biological activity of drugs. J. Pharm. Sci. 61:1–19
    [Google Scholar]
  85. 85.
    Harger M, Li D, Wang Z, Dalby K, Lagardère L et al. 2017. Tinker-OpenMM: absolute and relative alchemical free energies using AMOEBA on GPUs. J. Comput. Chem. 38:232047–55
    [Google Scholar]
  86. 86.
    Heinzelmann G, Henriksen NM, Gilson MK. 2017. Attach-pull-release calculations of ligand binding and conformational changes on the first BRD4 bromodomain. J. Chem. Theory Comput. 13:73260–75
    [Google Scholar]
  87. 87.
    Hénin J. 2021. Fast and accurate multidimensional free energy integration. J. Chem. Theory Comput. 17:116789–98
    [Google Scholar]
  88. 88.
    Hénin J, Chipot C. 2004. Overcoming free energy barriers using unconstrained molecular dynamics simulations. J. Chem. Phys. 121:2904–14
    [Google Scholar]
  89. 89.
    Hermans J, Shankar S. 1986. The free energy of xenon binding to myoglobin from molecular-dynamics simulation. Isr. J. Chem. 27:225–27
    [Google Scholar]
  90. 90.
    Hermans J, Wang L. 1997. Inclusion of loss of translational and rotational freedom in theoretical estimates of free energies of binding: application to a complex of benzene and mutant T4 lysozyme. J. Am. Chem. Soc. 119:2707–14
    [Google Scholar]
  91. 91.
    Hernández-Alvarez L, Oliveira AB, Hernández-González JE, Chahine J, Pascutti PG et al. 2021. Computational study on the allosteric mechanism of Leishmania major IF4E-1 by 4E-interacting protein-1: unravelling the determinants of m7GTP cap recognition. Comput. Struct. Biotechnol. J. 19:2027–44
    [Google Scholar]
  92. 92.
    Hovan L, Comitani F, Gervasio FL. 2019. Defining an optimal metric for the path collective variables. J. Chem. Theory Comput. 15:125–32
    [Google Scholar]
  93. 93.
    Hu F, Liu XT, Zhang JL, Zheng QC, Eglitis RI, Zhang HX. 2019. MD simulation investigation on the binding process of smoke-derived germination stimulants to its receptor. J. Chem. Inf. Model. 59:41554–62
    [Google Scholar]
  94. 94.
    Huang D, Caflisch A. 2004. Efficient evaluation of binding free energy using continuum electrostatics solvation. J. Med. Chem. 47:5791–97
    [Google Scholar]
  95. 95.
    Huber GA, Kim S 1996. Weighted-ensemble Brownian dynamics simulations for protein association reactions. Biophys. J. 70:197–110
    [Google Scholar]
  96. 96.
    Huber T, Torda AE, van Gunsteren WF. 1994. Local elevation: a method for improving the searching properties of molecular dynamics simulation. J. Comput.-Aided Mol. Des. 8:695–708
    [Google Scholar]
  97. 97.
    Invernizzi M, Parrinello M. 2020. Rethinking metadynamics: from bias potentials to probability distributions. J. Phys. Chem. Lett. 11:72731–36
    [Google Scholar]
  98. 98.
    Izrailev S, Stepaniants S, Isralewitz B, Kosztin D, Lu H et al. 1998. Steered molecular dynamics. Computational Molecular Dynamics: Challenges, Methods, Ideas P Deuflhard, J Hermans, B Leimkuhler, AE Mark, R Skeel, S Reich 39–65. Lect. Notes Comput. Sci. Eng. 4 Berlin: Springer
    [Google Scholar]
  99. 99.
    Jarzynski C. 1997. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78:2690–93
    [Google Scholar]
  100. 100.
    Jiang W, Hodoscek M, Roux B. 2009. Computation of absolute hydration and binding free energy with free energy perturbation distributed replica-exchange molecular dynamics. J. Chem. Theory Comput. 5:2583–88
    [Google Scholar]
  101. 101.
    Jiang W, Phillips J, Huang L, Fajer M, Meng Y et al. 2014. Generalized scalable multiple copy algorithms for molecular dynamics simulations in NAMD. Comput. Phys. Commun. 185:908–16
    [Google Scholar]
  102. 102.
    Jiang W, Roux B. 2010. Free energy perturbation Hamiltonian replica-exchange molecular dynamics (FEP/H–REMD) for absolute ligand binding free energy calculations. J. Chem. Theory Comput. 6:2559–65
    [Google Scholar]
  103. 103.
    Jiao D, Golubkov PA, Darden TA, Ren P. 2008. Calculation of protein-ligand binding free energy by using a polarizable potential. PNAS 105:6290–95
    [Google Scholar]
  104. 104.
    Jin X, Bai Q, Xue W, Liu H, Yao X. 2015. Computational study on the inhibition mechanism of a cyclic peptide MaD5 to PfMATE: insight from molecular dynamics simulation, free energy calculation and dynamical network analysis. Chemom. Intell. Lab. Syst. 149:81–88
    [Google Scholar]
  105. 105.
    Jorgensen WL. 1989. Free-energy calculations: a breakthrough for modeling organic chemistry in solutions. Acc. Chem. Res. 22:184–89
    [Google Scholar]
  106. 106.
    Jorgensen WL, Buckner JK, Boudon S, Tirado-Rives J. 1988. Efficient computation of absolute free energies of binding by computer simulations: application to the methane dimer in water. J. Chem. Phys. 89:3742–46
    [Google Scholar]
  107. 107.
    Jorgensen WL, Ravimohan C. 1985. Monte Carlo simulation of differences in free energies of hydration. J. Chem. Phys. 83:3050–54
    [Google Scholar]
  108. 108.
    Jorgensen WL, Thomas LL. 2008. Perspective on free-energy perturbation calculations for chemical equilibria. J. Chem. Theory Comput. 4:6869–76
    [Google Scholar]
  109. 109.
    Kansy M, Senner F, Gubernator K. 1998. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem. 41:1007–10
    [Google Scholar]
  110. 110.
    Ke M, Yuan Y, Jiang X, Yan N, Gong H. 2017. Molecular determinants for the thermodynamic and functional divergence of uniporter GLUT1 and proton symporter XylE. PLOS Comput. Biol. 13:6e1005603
    [Google Scholar]
  111. 111.
    Kirkwood JG. 1935. Statistical mechanics of fluid mixtures. J. Chem. Phys. 3:300–13
    [Google Scholar]
  112. 112.
    Kollman PA. 1993. Free energy calculations: applications to chemical and biochemical phenomena. Chem. Rev. 93:2395–417
    [Google Scholar]
  113. 113.
    Krämer A, Ghysels A, Wang E, Venable RM, Klauda JB et al. 2020. Membrane permeability of small molecules from unbiased molecular dynamics simulations. J. Chem. Phys. 153:12124107
    [Google Scholar]
  114. 114.
    Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM. 1992. The weighted histogram analysis method for free energy calculations on biomolecules. I. The method. J. Comput. Chem. 13:1011–21
    [Google Scholar]
  115. 115.
    Laio A, Parrinello M. 2002. Escaping free energy minima. PNAS 99:12562–65
    [Google Scholar]
  116. 116.
    Landau LD. 1938. Statistical Physics Oxford, UK: Clarendon Press
  117. 117.
    Lapelosa M. 2018. Conformational dynamics and free energy of BHRF1 binding to Bim BH3. Biophys. Chem. 232:22–28
    [Google Scholar]
  118. 118.
    Lee CT, Comer J, Herndon C, Leung N, Pavlova A et al. 2016. Simulation-based approaches for determining membrane permeability of small compounds. J. Chem. Inf. Model. 56:721–33
    [Google Scholar]
  119. 119.
    Lee EH, Hsin J, Sotomayor M, Comellas G, Schulten K. 2009. Discovery through the computational microscope. Structure 17:1295–306
    [Google Scholar]
  120. 120.
    Lelièvre T, Stoltz G, Rousset M. 2010. Free Energy Computations: A Mathematical Perspective London: Imp. Coll. Press
  121. 121.
    Lemkul JA, Huang J, Roux B, MacKerell AD. 2016. An empirical polarizable force field based on the classical Drude oscillator model: development history and recent applications. Chem. Rev. 116:94983–5013
    [Google Scholar]
  122. 122.
    Lesage A, Lelièvre T, Stoltz G, Hénin J. 2017. Smoothed biasing forces yield unbiased free energies with the extended-system adaptive biasing force method. J. Phys. Chem. B 121:153676–85
    [Google Scholar]
  123. 123.
    Lev B, Murail S, Poitevin F, Cromer BA, Baaden M et al. 2017. String method solution of the gating pathways for a pentameric ligand-gated ion channel. PNAS 114:21E4158–67
    [Google Scholar]
  124. 124.
    Limongelli V, Bonomi M, Parrinello M. 2013. Funnel metadynamics as accurate binding free-energy method. PNAS 110:166358–63
    [Google Scholar]
  125. 125.
    Loeffler HH, Michel J, Woods C. 2015. FESetup: automating setup for alchemical free energy simulations. J. Chem. Inf. Model. 55:122485–90
    [Google Scholar]
  126. 126.
    Maragakis P, Spichty M, Karplus M. 2006. Optimal estimates of free energies from multistate nonequilibrium work data. Phys. Rev. Lett. 96:100602
    [Google Scholar]
  127. 127.
    Maragliano L, Vanden-Eijnden E. 2006. A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem. Phys. Lett. 426:168–75
    [Google Scholar]
  128. 128.
    Marsili S, Barducci A, Chelli R, Procacci P, Schettino V. 2006. Self–healing umbrella sampling: a non–equilibrium approach for quantitative free energy calculations. J. Phys. Chem. B 110:14011–13
    [Google Scholar]
  129. 129.
    McCammon JA, Gelin BR, Karplus M. 1977. Dynamics of folded proteins. Nature 267:585–90
    [Google Scholar]
  130. 130.
    McDonald IR, Singer K. 1967. Calculation of thermodynamic properties of liquid argon from Lennard-Jones parameters by a Monte Carlo method. Discuss. Faraday Soc. 43:40–49
    [Google Scholar]
  131. 131.
    Meng Y, Lin Y, Roux B. 2015. Computational study of the “DFG-flip'' conformational transition in c-Abl and c-Src tyrosine kinases. J. Phys. Chem. Bs 119:41443–56
    [Google Scholar]
  132. 132.
    Miao Y, Feher VA, McCammon JA. 2015. Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J. Chem. Theory Comput. 11:83584–95
    [Google Scholar]
  133. 133.
    Minoukadeh K, Chipot C, Lelièvre T. 2010. Potential of mean force calculations: a multiple-walker adaptive biasing force approach. J. Chem. Theory Comput. 6:1008–17
    [Google Scholar]
  134. 134.
    Mitsutake A, Sugita Y, Okamoto Y. 2001. Generalized-ensemble algorithms for molecular simulations of biopolymers. Biopolymers 60:296–123
    [Google Scholar]
  135. 135.
    Miyamoto S, Kollman PA. 1993. What determines the strength of noncovalent association of ligands to proteins in aqueous solution ?. PNAS 90:8402–6
    [Google Scholar]
  136. 136.
    Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, Dill KA. 2007. Predicting absolute ligand binding free energies to a simple model site. J. Mol. Biol. 371:1118–34
    [Google Scholar]
  137. 137.
    Moradi M, Enkavi G, Tajkhorshid E. 2015. Atomic-level characterization of transport cycle thermodynamics in the glycerol-3-phosphate:phosphate antiporter. Nat. Commun. 6:8393
    [Google Scholar]
  138. 138.
    Moradi M, Tajkhorshid E. 2013. Mechanistic picture for conformational transition of a membrane transporter at atomic resolution. PNAS 110:18916–21
    [Google Scholar]
  139. 139.
    Niu Y, Shi D, Li L, Guo J, Liu H, Yao X. 2017. Revealing inhibition difference between PFI-2 enantiomers against SETD7 by molecular dynamics simulations, binding free energy calculations and unbinding pathway analysis. Sci. Rep. 7:46547
    [Google Scholar]
  140. 140.
    Noé F, Olsson S, Köhler J, Wu H. 2019. Boltzmann generators: sampling equilibrium states of many-body systems with deep learning. Science 365:6457eaaw1147
    [Google Scholar]
  141. 141.
    Onsager L. 1938. Initial recombination of ions. Phys. Rev. 54:8554–57
    [Google Scholar]
  142. 142.
    Oshima H, Re S, Sugita Y. 2019. Replica-exchange umbrella sampling combined with Gaussian accelerated molecular dynamics for free-energy calculation of biomolecules. J. Chem. Theory Comput. 15:105199–208
    [Google Scholar]
  143. 143.
    Pan AC, Sezer D, Roux B. 2008. Finding transition pathways using the string method with swarms of trajectories. J. Phys. Chem. B 112:3432–40
    [Google Scholar]
  144. 144.
    Park S, Khalili-Araghi F, Tajkhorshid E, Schulten K 2003. Free energy calculation from steered molecular dynamics simulations using Jarzynski's equality. J. Chem. Phys. 119:3559–66
    [Google Scholar]
  145. 145.
    Patel JS, Ytreberg FM. 2018. Fast calculation of protein-protein binding free energies using umbrella sampling with a coarse-grained model. J. Chem. Theory Comput. 14:2991–97
    [Google Scholar]
  146. 146.
    Pérez-Hernández G, Paul F, Giorgino T, De Fabritiis G, Noé F. 2013. Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 139:015102
    [Google Scholar]
  147. 147.
    Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV et al. 2020. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153:044130
    [Google Scholar]
  148. 148.
    Piana S, Laio A. 2007. A bias-exchange approach to protein folding. J. Phys. Chem. B 111:174553–59
    [Google Scholar]
  149. 149.
    Plattner N, Doerr S, de Fabritiis G, Noé F. 2017. Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling. Nat. Chem. 9:1005–11
    [Google Scholar]
  150. 150.
    Pohorille A, Jarzynski C, Chipot C. 2010. Good practices in free-energy calculations. J. Phys. Chem. B 114:10235–53
    [Google Scholar]
  151. 151.
    Ponder JW, Wu C, Ren P, Pande VS, Chodera JD et al. 2010. Current status of the AMOEBA polarizable force field. J. Phys. Chem. B 114:2549–64
    [Google Scholar]
  152. 152.
    Postma JPM, Berendsen HJC, Haak JR. 1982. Thermodynamics of cavity formation in water: a molecular dynamics study. Faraday Symp. Chem. Soc. 17:55–67
    [Google Scholar]
  153. 153.
    Provasi D, Artacho MC, Negri A, Mobarec JC, Filizola M. 2011. Ligand-induced modulation of the free-energy landscape of G protein-coupled receptors explored by adaptive biasing techniques. PLOS Comput. Biol. 7:e1002193
    [Google Scholar]
  154. 154.
    Raniolo S, Limongelli V. 2020. Ligand binding free-energy calculations with funnel metadynamics. Nat. Protoc. 15:92837–66
    [Google Scholar]
  155. 155.
    Riahi S, Rowley CN. 2014. Why can hydrogen sulfide permeate cell membranes?. J. Am. Chem. Soc. 136:4315111–13
    [Google Scholar]
  156. 156.
    Rodinger T, Howell PL, Pomès R. 2005. Absolute free energy calculations by thermodynamic integration in four spatial dimensions. J. Chem. Phys. 123:34104
    [Google Scholar]
  157. 157.
    Rodinger T, Howell PL, Pomès R. 2008. Calculation of absolute protein-ligand binding free energy using distributed replica sampling. J. Chem. Phys. 129:155102
    [Google Scholar]
  158. 158.
    Roh SH, Shekar M, Singharoy M, Chipot C, Chiu W, Wilkens S. 2020. Cryo-EM and MD infer water-mediated proton transport and autoinhibition mechanisms of Vo complex. Sci. Adv. 6:eabb9605
    [Google Scholar]
  159. 159.
    Rosta E, Hummer G. 2015. Free energies from dynamic weighted histogram analysis using unbiased Markov state model. J. Chem. Theory Comput. 11:1276–85
    [Google Scholar]
  160. 160.
    Roux B. 1995. The calculation of the potential of mean force using computer simulations. Comput. Phys. Commun. 91:275–82
    [Google Scholar]
  161. 161.
    Roux B, Nina M, Pomès R, Smith JC. 1996. Thermodynamic stability of water molecules in the Bacteriorhodopsin proton channel: a molecular dynamics and free energy perturbation study. Biophys. J. 71:670–81
    [Google Scholar]
  162. 162.
    Salomon-Ferrer R, Case DA, Walker RC. 2013. An overview of the Amber biomolecular simulation package. WIREs Comput. Mol. Sci. 3:198–210
    [Google Scholar]
  163. 163.
    Shaw D, Deneroff M, Dror R, Kuskin J, Larson R et al. 2007. Anton, a special-purpose machine for molecular dynamics simulation. ACM SIGARCH Comput. Archit. News 35:1–12
    [Google Scholar]
  164. 164.
    Shirts MR, Chodera JD. 2008. Statistically optimal analysis of samples from multiple equilibrium states. J. Chem. Phys. 129:124105
    [Google Scholar]
  165. 165.
    Shirts MR, Mobley DL, Chodera JD 2007. Alchemical free energy calculations: ready for prime time?. Annual Reports in Computational Chemistry, Vol. 3 DC Spellmeyer, R Wheeler 41–59. Amsterdam: Elsevier
    [Google Scholar]
  166. 166.
    Singh N, Warshel A. 2010. Absolute binding free energy calculations: on the accuracy of computational scoring of protein-ligand interactions. Proteins 78:71705–23
    [Google Scholar]
  167. 167.
    Singharoy A, Chipot C, Moradi M, Schulten K. 2017. Chemomechanical coupling in hexameric protein-protein interfaces harnesses energy within V–type ATPases. J. Am. Chem. Soc. 139:293–310
    [Google Scholar]
  168. 168.
    Sugita Y, Kitao A, Okamoto Y. 2000. Multidimensional replica-exchange method for free-energy calculations. J. Chem. Phys. 113:6042–51
    [Google Scholar]
  169. 169.
    Suh D, Jo S, Jiang W, Chipot C, Roux B 2019. String method for protein–protein binding free-energy calculation. J. Chem. Theory Comput. 15:5829–44
    [Google Scholar]
  170. 170.
    Suh D, Radak BK, Chipot C, Roux B. 2018. Enhanced configurational sampling with hybrid non-equilibrium molecular dynamics/Monte Carlo propagator. J. Chem. Phys. 148:014101
    [Google Scholar]
  171. 171.
    Swift RV, Amaro RE. 2013. Back to the future: Can physical models of passive membrane permeability help reduce drug candidate attrition and move us beyond QSPR?. Chem. Biol. Drug Des. 81:61–71
    [Google Scholar]
  172. 172.
    Szabo A, Schulten K, Schulten Z. 1980. First passage time approach to diffusion controlled reactions. J. Chem. Phys. 72:4350–57
    [Google Scholar]
  173. 173.
    Takada N, Futatsugi N, Narumi AST, Okimoto N, Kawai HHA et al. 2003. Parallelized simulation of molecular dynamics with a special-purpose computer: MDGRAPE–2. Genome Inform. 14:625–26
    [Google Scholar]
  174. 174.
    Tembe BL, McCammon JA. 1984. Ligand–receptor interactions. Comput. Chem. 8:281–83
    [Google Scholar]
  175. 175.
    Teo I, Mayne CG, Schulten K, Lelièvre T. 2016. Adaptive multilevel splitting method for molecular dynamics calculation of benzamidine-trypsin dissociation time. J. Chem. Theory Comput. 12:62983–89
    [Google Scholar]
  176. 176.
    Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM et al. 2022. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271:108171
    [Google Scholar]
  177. 177.
    Tiwary P, Berne BJ. 2016. Spectral gap optimization of order parameters for sampling complex molecular systems. PNAS 113:112839–44
    [Google Scholar]
  178. 178.
    Torrie GM, Valleau JP. 1977. Monte Carlo study of phase separating liquid mixture by umbrella sampling. J. Chem. Phys. 66:1402–8
    [Google Scholar]
  179. 179.
    Tse C, Wickstrom L, Kvaratskhelia M, Gallicchio E, Levy R, Deng N. 2020. Exploring the free-energy landscape and thermodynamics of protein-protein association. Biophys. J. 119:61226–38
    [Google Scholar]
  180. 180.
    Tse CH, Comer J, Sang Chu SK, Wang Y, Chipot C 2019. Affordable membrane permeability calculations: permeation of short-chain alcohols through pure-lipid bilayers and a mammalian cell membrane. J. Chem. Theory Comput. 15:52913–24
    [Google Scholar]
  181. 181.
    Tse CH, Comer J, Wang Y, Chipot C. 2018. Link between membrane composition and permeability to drugs. J. Chem. Theory Comput. 14:62895–909
    [Google Scholar]
  182. 182.
    Valleau JP, Card DN. 1972. Monte Carlo estimation of the free energy by multistage sampling. J. Chem. Phys. 57:5457–62
    [Google Scholar]
  183. 183.
    Valsson O, Parrinello M. 2014. Variational approach to enhanced sampling and free energy calculations. Phys. Rev. Lett. 113:9090601
    [Google Scholar]
  184. 184.
    van Duijneveldt S, Frenkel D. 1992. Computer-simulation study of free-energy barriers in crystal nucleation. J. Chem. Phys. 96:4655–68
    [Google Scholar]
  185. 185.
    Velez-Vega C, Gilson MK. 2013. Overcoming dissipation in the calculation of standard binding free energies by ligand extraction. J. Comput. Chem. 34:272360–71
    [Google Scholar]
  186. 186.
    Votapka LW, Jagger BR, Heyneman AL, Amaro RE. 2017. SEEKR: simulation enabled estimation of kinetic rates, a computational tool to estimate molecular kinetics and its application to trypsin-benzamidine binding. J. Phys. Chem. B 121:153597–606
    [Google Scholar]
  187. 187.
    Wang F, Landau DP. 2001. An efficient, multiple range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86:2050–53
    [Google Scholar]
  188. 188.
    Wang J, Deng Y, Roux B. 2006. Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials. Biophys. J. 91:2798–814
    [Google Scholar]
  189. 189.
    Wang Y, Harrison CB, Schulten K, McCammon JA. 2011. Implementation of accelerated molecular dynamics in NAMD. Comput. Sci. Discov. 4:015002
    [Google Scholar]
  190. 190.
    Wang Y, Ribeiro JML, Tiwary P. 2019. Past–future information bottleneck framework for sampling molecular reaction coordinate, thermodynamics and kinetics. Nat. Commun. 10:3573
    [Google Scholar]
  191. 191.
    Warshel A 1984. Simulating the energetics and dynamics of enzymatic reactions. Specificity in Biological Interactions C Chagas, B Pullman 59–81. Berlin: Springer
    [Google Scholar]
  192. 192.
    Wehmeyer C, Noé F. 2018. Time-lagged autoencoders: deep learning of slow collective variables for molecular kinetics. J. Chem. Phys. 148:24241703
    [Google Scholar]
  193. 193.
    E W, Ren W, Vanden-Eijnden E. 2002. String method for the study of rare events. Phys. Rev. B 66:052301
    [Google Scholar]
  194. 194.
    E W, Ren W, Vanden-Eijnden E. 2005. Transition pathways in complex systems: reaction coordinates, isocommittor surfaces, and transition tubes. Chem. Phys. Lett. 413:242–47
    [Google Scholar]
  195. 195.
    E W, Vanden-Eijnden E. 2010. Transition-path theory and path-finding algorithms for the study of rare events. Annu. Rev. Phys. Chem. 61:391–420
    [Google Scholar]
  196. 196.
    Widom B. 1963. Some topics in the theory of fluids. J. Chem. Phys. 39:2808–12
    [Google Scholar]
  197. 197.
    Widom B. 1982. Potential distribution theory and the statistical mechanics of fluids. J. Phys. Chem. 86:869–72
    [Google Scholar]
  198. 198.
    Wojtas-Niziurski W, Meng Y, Roux B, Bernèche S. 2013. Self-learning adaptive umbrella sampling method for the determination of free energy landscapes in multiple dimensions. J. Chem. Theory Comput. 9:1885–95
    [Google Scholar]
  199. 199.
    Woo HJ, Roux B. 2005. Calculation of absolute protein–ligand binding free energy from computer simulations. PNAS 102:6825–30
    [Google Scholar]
  200. 200.
    Woods CJ, Essex JW, King MA. 2003. The development of replica-exchange-based free-energy methods. J. Phys. Chem. B 107:13703–10
    [Google Scholar]
  201. 201.
    Ytreberg FM, Zuckerman DM. 2006. Simple estimation of absolute free energies for biomolecules. J. Chem. Phys. 124:104105
    [Google Scholar]
  202. 202.
    Zavitsanou S, Tsengenes A, Papadourakis M, Amendola G, Chatzigoulas A et al. 2021. FEPrepare: a web-based tool for automating the setup of relative binding free energy calculations. J. Chem. Inf. Model. 61:94131–38
    [Google Scholar]
  203. 203.
    Zhao T, Fu H, Lelièvre T, Shao X, Chipot C, Cai W. 2017. The extended generalized adaptive biasing force algorithm for multidimensional free-energy calculations. J. Chem. Theory Comput. 13:1566–76
    [Google Scholar]
  204. 204.
    Zheng L, Chen M, Yang W 2008. Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems. PNAS 105:20227–32
    [Google Scholar]
  205. 205.
    Zimmerman MI, Porter JR, Ward MD, Singh S, Vithani N et al. 2021. SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome. Nat. Chem. 13:7651–59
    [Google Scholar]
  206. 206.
    Zuckerman DM, Chong LT. 2017. Weighted ensemble simulation: review of methodology, applications, and software. Annu. Rev. Biophys. 46:43–57
    [Google Scholar]
  207. 207.
    Zuo Z, Wang B, Weng J, Wang W. 2015. Stepwise substrate translocation mechanism revealed by free energy calculations of doxorubicin in the multidrug transporter AcrB. Sci. Rep. 5:13905
    [Google Scholar]
  208. 208.
    Zwanzig RW. 1954. High-temperature equation of state by a perturbation method. I. Nonpolar gases. J. Chem. Phys. 22:1420–26
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-062722-093258
Loading
/content/journals/10.1146/annurev-biophys-062722-093258
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error