1932

Abstract

Membrane potential (V) is a fundamental biophysical signal present in all cells. V signals range in time from milliseconds to days, and they span lengths from microns to centimeters. V affects many cellular processes, ranging from neurotransmitter release to cell cycle control to tissue patterning. However, existing tools are not suitable for V quantification in many of these areas. In this review, we outline the diverse biology of V, drafting a wish list of features for a V sensing platform. We then use these guidelines to discuss electrode-based and optical platforms for interrogating V. On the one hand, electrode-based strategies exhibit excellent quantification but are most effective in short-term, cellular recordings. On the other hand, optical strategies provide easier access to diverse samples but generally only detect relative changes in V. By combining the respective strengths of these technologies, recent advances in optical quantification of absolute V enable new inquiries into V biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062920-063555
2021-05-06
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-062920-063555.html?itemId=/content/journals/10.1146/annurev-biophys-062920-063555&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abdelfattah AS, Kawashima T, Singh A, Novak O, Liu H et al. 2019. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365:6454699–704
    [Google Scholar]
  2. 2. 
    Abdul Kadir L, Stacey M, Barrett-Jolley R 2018. Emerging roles of the membrane potential: action beyond the action potential. Front. Physiol. 9:1661
    [Google Scholar]
  3. 3. 
    Adam Y, Kim JJ, Lou S, Zhao Y, Xie ME et al. 2019. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 569:413–17
    [Google Scholar]
  4. 4. 
    Akemann W, Mutoh H, Perron A, Park YK, Iwamoto Y, Knopfel T. 2012. Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J. Neurophysiol. 108:82323–37
    [Google Scholar]
  5. 5. 
    Alcamí P, Pereda AE. 2019. Beyond plasticity: the dynamic impact of electrical synapses on neural circuits. Nat. Rev. Neurosci. 20:5253–71
    [Google Scholar]
  6. 6. 
    Arcangeli A, Bianchi L, Becchetti A, Faravelli L, Coronnello M et al. 1995. A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J. Physiol. 489:2455–71
    [Google Scholar]
  7. 7. 
    Armstrong CM, Gilly WF. 1992. Access resistance and space clamp problems associated with whole-cell patch clamping. Methods Enzymol 207:100–22
    [Google Scholar]
  8. 8. 
    Bean BP. 2007. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8:6451–65
    [Google Scholar]
  9. 9. 
    Beaulieu-Laroche L, Toloza EHS, van der Goes MS, Lafourcade M, Barnagian D et al. 2018. Enhanced dendritic compartmentalization in human cortical neurons. Cell 175:3643–51.e14
    [Google Scholar]
  10. 10. 
    Bedlack RS Jr., Wei MD, Fox SH, Gross E, Loew LM. 1994. Distinct electric potentials in soma and neurite membranes. Neuron 13:51187–93
    [Google Scholar]
  11. 11. 
    Beier HT, Roth CC, Bixler JN, Sedelnikova AV, Ibey BL. 2019. Visualization of dynamic sub-microsecond changes in membrane potential. Biophys. J 116:1120–26
    [Google Scholar]
  12. 12. 
    Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K. 2009. Bi-stable neural state switches. Nat. Neurosci. 12:2229–34
    [Google Scholar]
  13. 13. 
    Bi G, Poo M. 2001. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24:139–66
    [Google Scholar]
  14. 14. 
    Brette R, Destexhe A 2012. Intracellular recording. Handbook of Neural Activity Measurement R Brette 44–91 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  15. 15. 
    Briggman KL, Kristan WB, González JE, Kleinfeld D, Tsien RY 2010. Monitoring integrated activity of individual neurons using FRET-based voltage-sensitive dyes. Membrane Potential Imaging in the Nervous System: Methods and Applications M Canepari, D Zecevic 61–70 Berlin: Springer
    [Google Scholar]
  16. 16. 
    Brinks D, Klein AJ, Cohen AE 2015. Two-photon lifetime imaging of voltage indicating proteins as a probe of absolute membrane voltage. Biophys. J. 109:5914–21Compared the performance of three GEVIs in reporting absolute Vmem under two-photon illumination.
    [Google Scholar]
  17. 17. 
    Bullen A, Saggau P. 1999. High-speed, random-access fluorescence microscopy: II. Fast quantitative measurements with voltage-sensitive dyes. Biophys. J. 76:42272–87Combined random-access imaging with electrochromic dyes to quantify Vmem along neurons with high spatiotemporal resolution.
    [Google Scholar]
  18. 18. 
    Cadwell CR, Palasantza A, Jiang X, Berens P, Deng Q et al. 2016. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34:2199–203Characterized the transcriptomic basis of morphological and electrical signatures of diverse neurons.
    [Google Scholar]
  19. 19. 
    Canepari M, Vogt K, Zecevic D. 2008. Combining voltage and calcium imaging from neuronal dendrites. Cell. Mol. Neurobiol. 28:81079–93
    [Google Scholar]
  20. 20. 
    Cang C, Bekele B, Ren D. 2014. The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nat. Chem. Biol. 10:6463–69
    [Google Scholar]
  21. 21. 
    Ceriani F, Mammano F. 2013. A rapid and sensitive assay of intercellular coupling by voltage imaging of gap junction networks. Cell Commun. Signal. 11:178
    [Google Scholar]
  22. 22. 
    Cervera J, Alcaraz A, Mafe S. 2016. Bioelectrical signals and ion channels in the modeling of multicellular patterns and cancer biophysics. Sci. Rep. 6:20403
    [Google Scholar]
  23. 23. 
    Cervera J, Meseguer S, Mafe S. 2016. The interplay between genetic and bioelectrical signaling permits a spatial regionalisation of membrane potentials in model multicellular ensembles. Sci. Rep. 6:35201
    [Google Scholar]
  24. 24. 
    Chen BC, Legant WR, Wang K, Shao L, Milkie DE et al. 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:62081257998
    [Google Scholar]
  25. 25. 
    Chen L, Becker TM, Koch U, Stauber T. 2019. The LRRC8/VRAC anion channel facilitates myogenic differentiation of murine myoblasts by promoting membrane hyperpolarization. J. Biol. Chem. 294:14279–88
    [Google Scholar]
  26. 26. 
    Cone CD, Cone CM. 1976. Induction of mitosis in mature neurons in central nervous system by sustained depolarization. Science 192:4235155–58
    [Google Scholar]
  27. 27. 
    Coyote-Maestas W, He Y, Myers CL, Schmidt D. 2019. Domain insertion permissibility-guided engineering of allostery in ion channels. Nat. Commun. 10:290
    [Google Scholar]
  28. 28. 
    Deal PE, Kulkarni RU, Al-Abdullatif SH, Miller EW. 2016. Isomerically pure tetramethylrhodamine voltage reporters. J. Am. Chem. Soc. 138:299085–88
    [Google Scholar]
  29. 29. 
    Deal PE, Liu P, Al-Abdullatif SH, Muller VR, Shamardani K et al. 2020. Covalently tethered rhodamine voltage reporters for high speed functional imaging in brain tissue. J. Am. Chem. Soc. 142:1614–22
    [Google Scholar]
  30. 30. 
    Delling M, Decaen PG, Doerner JF, Febvay S, Clapham DE 2013. Primary cilia are specialized calcium signalling organelles. Nature 504:7479311–14Showed that primary cilia are electrically compartmentalized, with distinct Ca2+ levels and Vmem.
    [Google Scholar]
  31. 31. 
    Dumas D, Stoltz JF. 2005. New tool to monitor membrane potential by FRET voltage sensitive dye (FRET-VSD) using spectral and fluorescence lifetime imaging microscopy (FLIM): interest in cell engineering. Clin. Hemorheol. Microcirc. 33:3293–302
    [Google Scholar]
  32. 32. 
    Fertig N, Blick RH, Behrends JC. 2002. Whole cell patch clamp recording performed on a planar glass chip. Biophys. J. 82:63056–62
    [Google Scholar]
  33. 33. 
    Fluhler E, Burnham VG, Loew LM. 1985. Spectra, membrane binding, and potentiometric responses of new charge shift probes. Biochemistry 24:215749–55
    [Google Scholar]
  34. 34. 
    Fromherz P, Hübener G, Kuhn B, Hinner MJ. 2008. ANNINE-6plus, a voltage-sensitive dye with good solubility, strong membrane binding and high sensitivity. Eur. Biophys. J. 37:4509–14
    [Google Scholar]
  35. 35. 
    Gonzalez JE, Tsien RY. 1997. Improved indicators of cell membrane potential that use fluorescence resonance energy transfer. Chem. Biol. 4:4269–77
    [Google Scholar]
  36. 36. 
    Gross E, Bedlack RS, Loew LM. 1994. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys. J. 67:1208–16
    [Google Scholar]
  37. 37. 
    Holcman D, Yuste R. 2015. The new nanophysiology: regulation of ionic flow in neuronal subcompartments. Nat. Rev. Neurosci. 16:11685–92
    [Google Scholar]
  38. 38. 
    Holst GL, Stoy W, Yang B, Kolb I, Kodandaramaiah SB et al. 2019. Autonomous patch-clamp robot for functional characterization of neurons in vivo: development and application to mouse visual cortex. J. Neurophysiol. 121:62341–57
    [Google Scholar]
  39. 39. 
    Hoppa MB, Gouzer G, Armbruster M, Ryan TA. 2014. Control and plasticity of the presynaptic action potential waveform at small CNS nerve terminals. Neuron 84:4778–89
    [Google Scholar]
  40. 40. 
    Horn R, Marty A 1988. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J. Gen. Physiol. 92:2145–59
    [Google Scholar]
  41. 41. 
    Hou JH, Venkatachalam V, Cohen AE 2014. Temporal dynamics of microbial rhodopsin fluorescence reports absolute membrane voltage. Biophys. J. 106:3639–48Reported absolute Vmem with 10-mV resolution using temporal dynamics of the GEVI Arch(D95H).
    [Google Scholar]
  42. 42. 
    Huang X, Jan LY 2014. Targeting potassium channels in cancer. J. Cell Biol. 206:2151–62
    [Google Scholar]
  43. 43. 
    Huang YL, Walker AS, Miller EW. 2015. A photostable silicon rhodamine platform for optical voltage sensing. J. Am. Chem. Soc. 137:3310767–76
    [Google Scholar]
  44. 44. 
    Jacquemet G, Baghirov H, Georgiadou M, Sihto H, Peuhu E et al. 2016. L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling. Nat. Commun. 7:13297
    [Google Scholar]
  45. 45. 
    Jayant K, Hirtz JJ, Plante IJ-L, Tsai DM, De Boer WDAM et al. 2017. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nat. Nanotechnol. 12:4335–42Developed nanopipettes capable of recording from dendritic spines and demonstrated spine electrical compartmentalization.
    [Google Scholar]
  46. 46. 
    Jayant K, Wenzel M, Bando Y, Hamm JP, Mandriota N et al. 2019. Flexible nanopipettes for minimally invasive intracellular electrophysiology in vivo. Cell Rep 26:1266–78.e5
    [Google Scholar]
  47. 47. 
    Johri A, Beal MF. 2012. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 342:3619–30
    [Google Scholar]
  48. 48. 
    Kasper EM, Larkman AU, Lübke J, Blakemore C. 1994. Pyramidal neurons in layer 5 of the rat visual cortex. II. Development of electrophysiological properties. J. Comp. Neurol. 339:4475–94
    [Google Scholar]
  49. 49. 
    Kato K, Clifford DB, Zorumski CF. 1993. Long-term potentiation during whole-cell recording in rat hippocampal slices. Neuroscience 53:139–47
    [Google Scholar]
  50. 50. 
    Kazemipour A, Novak O, Flickinger D, Marvin JS, Abdelfattah AS et al. 2019. Kilohertz frame-rate two-photon tomography. Nat. Methods 16:8778–86
    [Google Scholar]
  51. 51. 
    Klapperstück T, Glanz D, Klapperstück M, Wohlrab J. 2009. Methodological aspects of measuring absolute values of membrane potential in human cells by flow cytometry. Cytom. A 75:7593–608
    [Google Scholar]
  52. 52. 
    Kodandaramaiah SB, Franzesi GT, Chow BY, Boyden ES, Forest CR. 2012. Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nat. Methods 9:6585–87
    [Google Scholar]
  53. 53. 
    Kole MHP, Stuart GJ. 2012. Signal processing in the axon initial segment. Neuron 73:2235–47
    [Google Scholar]
  54. 54. 
    Korn SJ, Horn R. 1989. Influence of sodium-calcium exchange on calcium current rundown and the duration of calcium-dependent chloride currents in pituitary cells, studied with whole cell and perforated patch recording. J. Gen. Physiol. 94:5789–812
    [Google Scholar]
  55. 55. 
    Krasznai Z, Márián T, Balkay L, Emri M, Trón L. 1995. Flow cytometric determination of absolute membrane potential of cells. J. Photochem. Photobiol. B 28:193–99
    [Google Scholar]
  56. 56. 
    Kulkarni RU, Kramer DJ, Pourmandi N, Karbasi K, Bateup HS, Miller EW 2017. Voltage-sensitive rhodol with enhanced two-photon brightness. PNAS 114:112813–18
    [Google Scholar]
  57. 57. 
    Kulkarni RU, Miller EW. 2017. Voltage imaging: pitfalls and potential. Biochemistry 56:395171–77
    [Google Scholar]
  58. 58. 
    Larkin J, Garcia-Ojalvo J, Prindle A, Liu J, Gabalda-Sagarra M et al. 2017. Coupling between distant biofilms and emergence of nutrient time-sharing. Science 356:6338638–42
    [Google Scholar]
  59. 59. 
    Lazzari-Dean JR, Gest AMM, Miller EW 2019. Optical estimation of absolute membrane potential using fluorescence lifetime imaging. eLife 8:e44522Demonstrated that the fluorescence lifetime of VFs reports absolute Vmem with high resolution and improved throughput.
    [Google Scholar]
  60. 60. 
    Lee DD, Galera-Laporta L, Bialecka-Fornal M, Moon EC, Shen Z et al. 2019. Magnesium flux modulates ribosomes to increase bacterial survival. Cell 177:2352–60
    [Google Scholar]
  61. 61. 
    Lee HJ, Huang K-C, Mei G, Zong C, Mamaeva N et al. 2019. Electronic preresonance stimulated Raman scattering imaging of red-shifted proteorhodopsins: toward quantitation of the membrane potential. J. Phys. Chem. Lett. 10:154374–81
    [Google Scholar]
  62. 62. 
    Lee HJ, Zhang D, Jiang Y, Wu X, Shih P-Y et al. 2017. Label-free vibrational spectroscopic imaging of neuronal membrane potential. J. Phys. Chem. Lett. 8:91932–36
    [Google Scholar]
  63. 63. 
    LeSauter J, Silver R, Cloues R, Witkovsky P. 2011. Light exposure induces short- and long-term changes in the excitability of retinorecipient neurons in suprachiasmatic nucleus. J. Neurophysiol. 106:2576–88
    [Google Scholar]
  64. 64. 
    Levin M. 2014. Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol. Biol. Cell. 25:243835–50
    [Google Scholar]
  65. 65. 
    Li W-C, Soffe SR, Roberts A. 2004. A direct comparison of whole cell patch and sharp electrodes by simultaneous recording from single spinal neurons in frog tadpoles. J. Neurophysiol. 92:1380–86
    [Google Scholar]
  66. 66. 
    Linley JE 2013. Perforated whole-cell patch-clamp recording. Ion Channels: Methods and Protocols N Gamper 149–57 Berlin: Springer
    [Google Scholar]
  67. 67. 
    Liu P, Grenier V, Hong W, Muller VR, Miller EW. 2017. Fluorogenic targeting of voltage-sensitive dyes to neurons. J. Am. Chem. Soc. 139:4817334–40
    [Google Scholar]
  68. 68. 
    Loew LM, Scully S, Simpson L, Waggoner AS. 1979. Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential. Nature 281:5731497–99
    [Google Scholar]
  69. 69. 
    Loewenstein WR, Kanno Y. 1964. Studies on an epithelial (gland) cell junction I. Modifications of surface membrane permeability. J. Cell Biol. 22:565–86
    [Google Scholar]
  70. 70. 
    Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M. 2014. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth. FEBS Lett 588:162663–70
    [Google Scholar]
  71. 71. 
    Magni M, Meldolesi J, Pandiella A. 1991. Ionic events induced by epidermal growth factor: evidence that hyperpolarization and stimulated cation influx play a role in the stimulation of cell growth. J. Biol. Chem. 266:106329–35
    [Google Scholar]
  72. 72. 
    Maher MP, Wu NT, Ao H. 2007. pH-insensitive FRET voltage dyes. J. Biomol. Screen. 12:5656–67
    [Google Scholar]
  73. 73. 
    Malinow R, Tsien RW. 1990. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346:5429177–80
    [Google Scholar]
  74. 74. 
    Maric D, Maric I, Smith SV, Serafini R, Hu Q, Barker JL. 1998. Potentiometric study of resting potential, contributing K+ channels and the onset of Na+ channel excitability in embryonic rat cortical cells. Eur. J. Neurosci. 10:82532–46
    [Google Scholar]
  75. 75. 
    McCormick DA, Prince DA. 1987. Post-natal development of electrophysiological properties of rat cerebral cortical pyramidal neurones. J. Physiol. 393:1743–62
    [Google Scholar]
  76. 76. 
    McNamara HM, Salegame R, Al Tanoury Z, Xu H, Begum S et al. 2020. Bioelectrical domain walls in homogeneous tissues. Nat. Phys. 16:3357–64Provided theoretical and direct experimental evidence for stable Vmem patterning in tissue.
    [Google Scholar]
  77. 77. 
    Miller EW. 2016. Small molecule fluorescent voltage indicators for studying membrane potential. Curr. Opin. Chem. Biol. 33:74–80
    [Google Scholar]
  78. 78. 
    Miller EW, Lin JY, Frady EP, Steinbach PA, Kristan WB, Tsien RY 2012. Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires. PNAS 109:62114–19
    [Google Scholar]
  79. 79. 
    Montana V, Farkas DL, Loew LM. 1989. Dual-wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry 28:114536–39
    [Google Scholar]
  80. 80. 
    Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y. 2005. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:70461239–43
    [Google Scholar]
  81. 81. 
    Novo D, Perlmutter NG, Hunt RH, Shapiro HM. 1999. Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry 35:155–63
    [Google Scholar]
  82. 82. 
    Obergrussberger A, Brüggemann A, Goetze TA, Rapedius M, Haarmann C et al. 2016. Automated patch clamp meets high-throughput screening: 384 cells recorded in parallel on a planar patch clamp module. J. Lab. Autom. 21:6779–93
    [Google Scholar]
  83. 83. 
    Okkelman IA, Papkovsky DB, Dmitriev RI. 2020. Estimation of the mitochondrial membrane potential using fluorescence lifetime imaging microscopy. Cytom. A 97:5471–82
    [Google Scholar]
  84. 84. 
    Ortiz G, Liu P, Naing SHH, Muller VR, Miller EW. 2019. Synthesis of sulfonated carbofluoresceins for voltage imaging. J. Am. Chem. Soc. 141:166631–38
    [Google Scholar]
  85. 85. 
    Palmer LM, Stuart GJ. 2009. Membrane potential changes in dendritic spines during action potentials and synaptic input. J. Neurosci. 29:216897–903
    [Google Scholar]
  86. 86. 
    Pandiella A, Magni M, Lovisolo D, Meldolesi J. 1989. The effects of epidermal growth factor on membrane potential. J. Biol. Chem. 264:2212914–21
    [Google Scholar]
  87. 87. 
    Perkins KL. 2006. Cell-attached voltage-clamp and current-clamp recording and stimulation techniques in brain slices. J. Neurosci. Methods 154:1–21–18
    [Google Scholar]
  88. 88. 
    Piatkevich KD, Jung EE, Straub C, Linghu C, Park D et al. 2018. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14:4352–60
    [Google Scholar]
  89. 89. 
    Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J et al. 2015. Ion channels enable electrical communication in bacterial communities. Nature 527:757659–63
    [Google Scholar]
  90. 90. 
    Rad MS, Cohen LB, Braubach O, Baker BJ. 2018. Monitoring voltage fluctuations of intracellular membranes. Sci. Rep. 8:6911
    [Google Scholar]
  91. 91. 
    Raspe M, Kedziora KM, van den Broek B, Zhao Q, de Jong S et al. 2016. siFLIM: Single-image frequency-domain FLIM provides fast and photon-efficient lifetime data. Nat. Methods 13:6501–4
    [Google Scholar]
  92. 92. 
    Rinne A, Birk A, Bünemann M 2013. Voltage regulates adrenergic receptor function. PNAS 110:41536–41
    [Google Scholar]
  93. 93. 
    Rinne A, Mobarec JC, Mahaut-Smith M, Kolb P, Bünemann M. 2015. The mode of agonist binding to a G protein-coupled receptor switches the effect that voltage changes have on signaling. Sci. Signal. 8:401ra110
    [Google Scholar]
  94. 94. 
    Robinson JT, Jorgolli M, Shalek AK, Yoon MH, Gertner RS, Park H. 2012. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7:3180–84
    [Google Scholar]
  95. 95. 
    Rohr S. 2004. Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc. Res. 62:2309–22
    [Google Scholar]
  96. 96. 
    Rolfe DFS, Brown GC. 1997. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77:3731–58
    [Google Scholar]
  97. 97. 
    Sada N, Lee S, Katsu T, Otsuki T, Inoue T. 2015. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science 347:62281362–67
    [Google Scholar]
  98. 98. 
    Saminathan A, Devany J, Veetil AT, Suresh B, Pillai KSet al 2021. A DNA-based voltmeter for organelles. Nat. Nanotechnol 16196103
    [Google Scholar]
  99. 99. 
    Sánchez A, Urrego D, Pardo LA. 2016. Cyclic expression of the voltage-gated potassium channel KV10.1 promotes disassembly of the primary cilium. EMBO Rep 17:5708–23
    [Google Scholar]
  100. 100. 
    Sigworth FJ, Neher E. 1980. Single Na+ channel currents observed in cultured rat muscle cells. Nature 287:447–49
    [Google Scholar]
  101. 101. 
    Spruston N, Johnston D. 1992. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J. Neurophysiol. 67:3508–29
    [Google Scholar]
  102. 102. 
    Stuart GJ, Spruston N. 2015. Dendritic integration: 60 years of progress. Nat. Neurosci. 18:121713–21
    [Google Scholar]
  103. 103. 
    Suk HJ, van Welie I, Kodandaramaiah SB, Allen B, Forest CR, Boyden ES 2017. Closed-loop real-time imaging enables fully automated cell-targeted patch-clamp neural recording in vivo. Neuron 95:51037–47.e11
    [Google Scholar]
  104. 104. 
    Tsuchiya W, Okada Y. 1982. Membrane potential changes associated with differentiation of enterocytes in the rat intestinal villi in culture. Dev. Biol. 94:2284–90
    [Google Scholar]
  105. 105. 
    Tyzio R, Ivanov A, Bernard C, Holmes GL, Ben-Ari Y, Khazipov R 2003. Membrane potential of CA3 hippocampal pyramidal cells during postnatal development. J. Neurophysiol. 90:2964–72Revealed discrepancies in Vmem as reported by whole-cell, cell-attached, and perforated-patch recordings.
    [Google Scholar]
  106. 106. 
    Verheugen JA, Fricker D, Miles R. 1999. Noninvasive measurements of the membrane potential and GABAergic action in hippocampal interneurons. J. Neurosci. 19:72546–55
    [Google Scholar]
  107. 107. 
    Vogt KE, Gerharz S, Graham J, Canepari M. 2011. Combining membrane potential imaging with l-glutamate or GABA photorelease. PLOS ONE 6:10e24911
    [Google Scholar]
  108. 108. 
    Wang SY, Melkoumian Z, Woodfork KA, Cather C, Davidson AG et al. 1998. Evidence for an early G1 ionic event necessary for cell cycle progression and survival in the MCF-7 human breast carcinoma cell line. J. Cell. Physiol. 176:3456–64
    [Google Scholar]
  109. 109. 
    White TW, Paul DL. 1999. Genetic diseases and gene knockouts reveal diverse connexin functions. Annu. Rev. Physiol. 61:283–310
    [Google Scholar]
  110. 110. 
    Williams SR, Mitchell SJ. 2008. Direct measurement of somatic voltage clamp errors in central neurons. Nat. Neurosci. 11:7790–98
    [Google Scholar]
  111. 111. 
    Wonderlin WF, Woodfork KA, Strobl JS. 1995. Changes in membrane potential during the progression of MCF-7 human mammary tumor cells through the cell cycle. J. Cell. Physiol. 165:1177–85
    [Google Scholar]
  112. 112. 
    Wu J, Lewis AH, Grandl J. 2017. Touch, tension, and transduction—the function and regulation of piezo ion channels. Trends Biochem. Sci. 42:157–71
    [Google Scholar]
  113. 113. 
    Xie C, Lin Z, Hanson L, Cui Y, Cui B 2012. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7:3185–90Constructed nanopillar electrode arrays for intracellular recording of action potentials from many neurons over days.
    [Google Scholar]
  114. 114. 
    Xu H, Martinoia E, Szabo I. 2015. Organellar channels and transporters. Cell Calcium 58:11–10
    [Google Scholar]
  115. 115. 
    Xu Y, Zou P, Cohen AE. 2017. Voltage imaging with genetically encoded indicators. Curr. Opin. Chem. Biol. 39:1–10
    [Google Scholar]
  116. 116. 
    Yang HH, St-Pierre F. 2016. Genetically encoded voltage indicators: opportunities and challenges. J. Neurosci. 36:399977–89
    [Google Scholar]
  117. 117. 
    Yang M, Brackenbury WJ. 2013. Membrane potential and cancer progression. Front. Physiol. 4:185
    [Google Scholar]
  118. 118. 
    Yellen G, Mongeon R. 2015. Quantitative two-photon imaging of fluorescent biosensors. Curr. Opin. Chem. Biol. 27:24–30
    [Google Scholar]
  119. 119. 
    Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ et al. 2011. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:7363171–78
    [Google Scholar]
  120. 120. 
    Yuste R. 2013. Electrical compartmentalization in dendritic spines. Annu. Rev. Neurosci. 36:429–49
    [Google Scholar]
  121. 121. 
    Zhang J, Chen X, Xue Y, Gamper N, Zhang X. 2018. Beyond voltage-gated ion channels: voltage-operated membrane proteins and cellular processes. J. Cell. Physiol. 233:106377–85
    [Google Scholar]
  122. 122. 
    Zhang J, Davidson RM, Wei MD, Loew LM. 1998. Membrane electric properties by combined patch clamp and fluorescence ratio imaging in single neurons. Biophys. J. 74:148–53
    [Google Scholar]
  123. 123. 
    Zhou Y, Wong C, Cho K, van der Hoeven D, Liang H et al. 2015. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science 349:6250873–76
    [Google Scholar]
  124. 124. 
    Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB et al. 2018. Mitochondrial membrane potential. Anal. Biochem. 552:50–59
    [Google Scholar]
  125. 125. 
    Zou P, Zhao Y, Douglass AD, Hochbaum DR, Brinks D et al. 2014. Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat. Commun. 5:4625
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-062920-063555
Loading
/content/journals/10.1146/annurev-biophys-062920-063555
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error