1932

Abstract

Phycobilisomes (PBSs) are extremely large chromophore–protein complexes on the stromal side of the thylakoid membrane in cyanobacteria and red algae. The main function of PBSs is light harvesting, and they serve as antennas and transfer the absorbed energy to the reaction centers of two photosynthetic systems (photosystems I and II). PBSs are composed of phycobiliproteins and linker proteins. How phycobiliproteins and linkers are organized in PBSs and how light energy is efficiently harvested and transferred in PBSs are the fundamental questions in the study of photosynthesis. In this review, the structures of the red algae and are discussed in detail, along with the functions of linker proteins in phycobiliprotein assembly and in fine-tuning the energy state of chromophores.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062920-063657
2021-05-06
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-062920-063657.html?itemId=/content/journals/10.1146/annurev-biophys-062920-063657&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abraham RJ, Eivazi F, Pearson H, Smith KM. 1976. π–π aggregation in metalloporphyrins: causative factors. J. Chem. Soc. Chem. Commun. 17:699–701
    [Google Scholar]
  2. 2. 
    Adir N. 2006. Assembly and disassembly of phycobilisomes. Microbiol. Monogr. 2:47–77
    [Google Scholar]
  3. 3. 
    Adir N, Dobrovetsky Y, Lerner N. 2001. Structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5 Å: structural implications for thermal stability in phycobilisome assembly. J. Mol. Biol. 313:71–81
    [Google Scholar]
  4. 4. 
    Adir N, Lerner N. 2003. The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in phycobilisomes. J. Biol. Chem. 278:25926–32
    [Google Scholar]
  5. 5. 
    Adir N, Vainer R, Lerner N. 2002. Refined structure of C-phycocyanin from the cyanobacterium Synechococcus vulcanus at 1.6 Å: insights into the role of solvent molecules in thermal stability and co-factor structure. Biochim. Biophys. Acta 1556:168–74
    [Google Scholar]
  6. 6. 
    Arteni AA, Liu LN, Aartsma TJ, Zhang YZ, Zhou BC, Boekema EJ. 2008. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth. Res. 95:169–74
    [Google Scholar]
  7. 7. 
    Ashby MK, Mullineaux CW. 1999. The role of ApcD and ApcF in energy transfer from phycobilisomes to PSI and PSII in a cyanobacterium. Photosynth. Res. 61:169–79
    [Google Scholar]
  8. 8. 
    Barber J, Morris EP, da Fonseca PCA. 2003. Interaction of the allophycocyanin core complex with photosystem II. Photochem. Photobiol. Sci. 5:536–41
    [Google Scholar]
  9. 9. 
    Brejc K, Ficner R, Huber R, Steinbacher S. 1995. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Å resolution. J. Mol. Biol. 249:424–40
    [Google Scholar]
  10. 10. 
    Brocchieri L, Karlin S 1994. Geometry of interplanar residue contacts in protein structures. PNAS 91:9297–301
    [Google Scholar]
  11. 11. 
    Bryant DA, Guglielmi G, Tandeau de Marsac N, Castets AM, Cohen-Bazire G. 1979. Structure of cyanobacterial phycobilisomes: model. Arch. Microbiol. 123:113–27
    [Google Scholar]
  12. 12. 
    Burley SK, Petsko GA. 1985. Aromatic-aromatic interaction: a mechanism of protein structure stabilization. Science 229:23–28
    [Google Scholar]
  13. 13. 
    Burley SK, Petsko GA. 1986. Amino-aromatic interactions in proteins. FEBS Lett 203:139–43
    [Google Scholar]
  14. 14. 
    Burley SK, Petsko GA. 1988. Weakly polar interactions in proteins. Adv. Protein Chem. 39:125–89
    [Google Scholar]
  15. 15. 
    Camara-Artigas A, Bacarizo J, Andujar-Sanchez M, Ortiz-Salmeron E, Mesa-Valle C et al. 2012. pH-dependent structural conformations of B-phycoerythrin from Porphyridium cruentum. FEBS J 279:3680–91
    [Google Scholar]
  16. 16. 
    Chang L, Liu X, Li Y, Liu CC, Yang F et al. 2015. Structural organization of an intact phycobilisome and its association with photosystem II. Cell Res 25:726–37
    [Google Scholar]
  17. 17. 
    Chang WR, Jiang T, Wan ZL, Zhang JP, Yang ZX, Liang DC. 1996. Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 Å resolution. J. Mol. Biol. 262:721–31
    [Google Scholar]
  18. 18. 
    Contreras-Martel C, Martinez-Oyanedel J, Bunster M, Legrand P, Piras C et al. 2001. Crystallization and 2.2 Å resolution structure of R-phycoerythrin from Gracilaria chilensis: a case of perfect hemihedral twinning. Acta Crystallogr. D Biol. Crystallogr. 57:52–60
    [Google Scholar]
  19. 19. 
    Contreras-Martel C, Matamala A, Bruna C, Poo-Caamano G, Almonacid D et al. 2007. The structure at 2 Å resolution of phycocyanin from Gracilaria chilensis and the energy transfer network in a PC-PC complex. Biophys. Chem. 125:388–96
    [Google Scholar]
  20. 20. 
    Crowley PB, Golovin A. 2005. Cation–π interactions in protein–protein interfaces. Proteins Struct. Funct. Bioinform. 59:231–39
    [Google Scholar]
  21. 21. 
    Dagnino-Leone J, Figueroa M, Mella C, Vorphal MA, Kerff F et al. 2017. Structural models of the different trimers present in the core of phycobilisomes from Gracilaria chilensis based on crystal structures and sequences. PLOS ONE 12:e0177540
    [Google Scholar]
  22. 22. 
    David L, Prado M, Arteni AA, Elmlund DA, Blankenship RE, Adir N. 2014. Structural studies show energy transfer within stabilized phycobilisomes independent of the mode of rod–core assembly. Biochim. Biophys. Acta 1837:385–95
    [Google Scholar]
  23. 23. 
    Dougherty DA. 1996. Cation-π interactions in chemistry and biology: a new view of benzene. Phe, Tyr, and Trp. Science 271:163–68
    [Google Scholar]
  24. 24. 
    Doust AB, Marai CN, Harrop SJ, Wilk KE, Curmi PM, Scholes GD. 2004. Developing a structure–function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy. J. Mol. Biol. 344:135–53
    [Google Scholar]
  25. 25. 
    Ducret A, Sidler W, Wehrli E, Frank G, Zuber H. 1996. Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaena sp. PCC 7120. Eur. J. Biochem. 236:1010–24
    [Google Scholar]
  26. 26. 
    Duerring M, Huber R, Bode W, Ruembeli R, Zuber H. 1990. Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 Å. J. Mol. Biol. 211:633–44
    [Google Scholar]
  27. 27. 
    Duerring M, Schmidt GB, Huber R. 1991. Isolation, crystallization, crystal-structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 Å resolution. J. Mol. Biol. 217:577–92
    [Google Scholar]
  28. 28. 
    Elmorjani K, Thomas JC, Sebban P. 1986. Phycobilisomes of wild type and pigment mutants of the cyanobacterium Synechocystis PCC 6803. Arch. Microbiol. 146:186–91
    [Google Scholar]
  29. 29. 
    Ficner R, Lobeck K, Schmidt G, Huber R. 1992. Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 Å resolution. J. Mol. Biol. 228:935–50
    [Google Scholar]
  30. 30. 
    Flocco MM, Mowbray SL. 1994. Planar stacking interactions of arginine and aromatic side-chains in proteins. J. Mol. Biol. 235:709–17
    [Google Scholar]
  31. 31. 
    Gallivan JP, Dougherty DA 1999. Cation-π interactions in structural biology. PNAS 96:9459–64
    [Google Scholar]
  32. 32. 
    Gantt E. 1975. Phycobilisomes: light-harvesting pigment complexes. Bioscience 25:781–88
    [Google Scholar]
  33. 33. 
    Gantt E, Conti SF. 1965. The ultrastructure of Porphyridium cruentum. J. Cell Biol. 26:365–81
    [Google Scholar]
  34. 34. 
    Gantt E, Conti SF. 1966. Granules associated with the chloroplast lamellae of Porphyridium cruentum. J. Cell Biol. 29:423–34
    [Google Scholar]
  35. 35. 
    Gantt E, Lipschultz CA. 1972. Phycobilisomes of Porphyridium cruentum: 1. Isolation. J. Cell Biol. 54:313–24
    [Google Scholar]
  36. 36. 
    Gantt E, Lipschultz CA. 1980. Structure and phycobiliprotein composition of phycobilisomes from Griffithsia pacifica (Rhodophyceae). J. Phycol. 16:394–98
    [Google Scholar]
  37. 37. 
    Gao X, Zhang N, Wei TD, Su HN, Xie BB et al. 2011. Crystal structure of the N-terminal domain of linker L-R and the assembly of cyanobacterial phycobilisome rods. Mol. Microbiol. 82:698–705
    [Google Scholar]
  38. 38. 
    Gillbro T, Sharkov AV, Kryukov IV, Khoroshilov EV, Kryukov PG et al. 1993. Förster energy transfer between neighbouring chromophores in C-phycocyanin trimers. Biochim. Biophys. Acta 1140:321–26
    [Google Scholar]
  39. 39. 
    Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS et al. 1992. Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC7120. Eur. J. Biochem. 205:907–15
    [Google Scholar]
  40. 40. 
    Glazer AN. 1985. Light harvesting by phycobilisomes. Annu. Rev. Biophys. Biophys. Chem. 14:47–77
    [Google Scholar]
  41. 41. 
    Grossman AR. 1990. Chromatic adaptation and the events involved in phycobilisome biosynthesis. Plant Cell Environ 13:651–66
    [Google Scholar]
  42. 42. 
    Guan X, Qin S, Zhao F, Zhang X, Tang X. 2007. Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution. Int. J. Biol. Sci. 3:434–45
    [Google Scholar]
  43. 43. 
    Guglielmi G, Cohenbazire G, Bryant DA. 1981. The structure of Gloeobacter violaceus and its phycobilisomes. Arch. Microbiol. 129:181–89
    [Google Scholar]
  44. 44. 
    Hohenstein EG, Sherrill CD. 2009. Effects of heteroatoms on aromatic π−π interactions: benzene−pyridine and pyridine dimer. J. Phys. Chem. A 113:878–86
    [Google Scholar]
  45. 45. 
    Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N et al. 1999. Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. Biochim. Biophys. Acta 1412:250–61
    [Google Scholar]
  46. 46. 
    Huber R. 1989. Nobel lecture: a structural basis of light energy and electron transfer in biology. EMBO J 8:2125–47
    [Google Scholar]
  47. 47. 
    Hunter CA, Sanders JKM. 1990. The nature of π-π interactions. J. Am. Chem. Soc. 112:5525–34
    [Google Scholar]
  48. 48. 
    Hunter CA, Singh J, Thornton JM. 1991. π-π interactions: the geometry and energetics of phenylalanine-phenylalanine interactions in proteins. J. Mol. Biol. 218:837–46
    [Google Scholar]
  49. 49. 
    Jiang T, Zhang JP, Chang WR, Liang DC. 2001. Crystal structure of R-phycocyanin and possible energy transfer pathways in the phycobilisome. Biophys. J. 81:1171–79
    [Google Scholar]
  50. 50. 
    Jiang T, Zhang JP, Liang DC. 1999. Structure and function of chromophores in R-phycoerythrin at 1.9 angstrom resolution. Proteins Struct. Funct. Genet. 34:224–31
    [Google Scholar]
  51. 51. 
    Kumar V, Sonani RR, Sharma M, Gupta GD, Madamwar D. 2016. Crystal structure analysis of C-phycoerythrin from marine cyanobacterium Phormidium sp. A09DM. Photosynth. Res. 129:17–28
    [Google Scholar]
  52. 52. 
    Lehn J-M. 1990. Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew. Chem. Int. Ed. Engl. 29:1304–19
    [Google Scholar]
  53. 53. 
    Li Y, Lin Y, Garvey CJ, Birch D, Corkery RW et al. 2016. Characterization of red-shifted phycobilisomes isolated from the chlorophyll f-containing cyanobacterium Halomicronema hongdechloris. Biochim. Biophys. Acta 1857:107–14
    [Google Scholar]
  54. 54. 
    Liu JY, Jiang T, Zhang JP, Liang DC. 1999. Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-Å resolution. J. Biol. Chem. 274:16945–52
    [Google Scholar]
  55. 55. 
    Liu LN, Chen XL, Zhang YZ, Zhou BC. 2005. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim. Biophys. Acta 1708:133–42
    [Google Scholar]
  56. 56. 
    Lundell DJ, Glazer AN. 1983. Molecular architecture of a light-harvesting antenna: structure of the 18 S core-rod subassembly of the Synechococcus 6301 phycobilisome. J. Biol. Chem. 258:894–901
    [Google Scholar]
  57. 57. 
    Ma J, You X, Sun S, Wang X, Qin S, Sui S-F. 2020. Structural basis of energy transfer in Porphyridium purpureum phycobilisome. Nature 579:146–51
    [Google Scholar]
  58. 58. 
    Ma JC, Dougherty DA. 1997. The cation−π interaction. Chem. Rev. 97:1303–24
    [Google Scholar]
  59. 59. 
    MacColl R. 1998. Cyanobacterial phycobilisomes. J. Struct. Biol. 124:311–34
    [Google Scholar]
  60. 60. 
    Marquardt J, Senger H, Miyashita H, Miyachi S, Morschel E. 1997. Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410:428–32
    [Google Scholar]
  61. 61. 
    Marx A, Adir N. 2013. Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly. Biochim. Biophys. Acta 1827:311–18
    [Google Scholar]
  62. 62. 
    McGregor A, Klartag M, David L, Adir N 2008. Allophycocyanin trimer stability and functionality are primarily due to polar enhanced hydrophobicity of the phycocyanobilin binding pocket. J. Mol. Biol. 384:406–21
    [Google Scholar]
  63. 63. 
    Meyer EA, Castellano RK, Diederich F. 2003. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. Engl. 42:1210–50
    [Google Scholar]
  64. 64. 
    Mitchell JBO, Nandi CL, McDonald IK, Thornton JM, Price SL. 1994. Amino/aromatic interactions in proteins: Is the evidence stacked against hydrogen bonding?. J. Mol. Biol. 239:315–31
    [Google Scholar]
  65. 65. 
    Murray JW, Maghlaoui K, Barber J. 2007. The structure of allophycocyanin from Thermosynechococcus elongatus at 3.5 Å resolution. Acta Crystallogr. F 63:998–1002
    [Google Scholar]
  66. 66. 
    Nield J, Rizkallah PJ, Barber J, Chayen NE. 2003. The 1.45 Å three-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongates. J. Struct. Biol. 141:149–55
    [Google Scholar]
  67. 67. 
    Padyana AK, Bhat VB, Madyastha KM, Rajashankar KR, Ramakumar S. 2001. Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem. Biophys. Res. Commun. 282:893–98
    [Google Scholar]
  68. 68. 
    Peng PP, Dong LL, Sun YF, Zeng XL, Ding WL et al. 2014. The structure of allophycocyanin B from Synechocystis PCC 6803 reveals the structural basis for the extreme redshift of the terminal emitter in phycobilisomes. Acta Crystallogr. D 70:2558–69
    [Google Scholar]
  69. 69. 
    Rast A, Schaffer M, Albert S, Wan W, Pfeffer S et al. 2019. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat. Plants 5:436–46
    [Google Scholar]
  70. 70. 
    Reuter W, Wiegand G, Huber R, Than ME 1999. Structural analysis at 2.2 Å of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP·LC7.8, from phycobilisomes of Mastigocladus laminosus. PNAS 96:1363–68
    [Google Scholar]
  71. 71. 
    Ritter S, Hiller RG, Wrench PM, Welte W, Diederichs K. 1999. Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-angstrom resolution. J. Struct. Biol. 126:86–97
    [Google Scholar]
  72. 72. 
    Rooman M, Liévin J, Buisine E, Wintjens R. 2002. Cation–π/H-bond stair motifs at protein–DNA interfaces. J. Mol. Biol. 319:67–76
    [Google Scholar]
  73. 73. 
    Scharnagl C, Schneider S. 1989. UV-visible absorption and circular dichroism spectra of the subunits of C-phycocyanin I: quantitative assessment of the effect of chromophore–protein interaction in the α-subunit. J. Photochem. Photobiol. B 3:603–14
    [Google Scholar]
  74. 74. 
    Scharnagl C, Schneider S. 1991. UV-visible absorption and circular dichroism spectra of the subunits of C-phycocyanin II: a quantitative discussion of the chromophore–protein and chromophore–chromophore interactions in the β subunit. J. Photochem. Photobiol. B 8:129–57
    [Google Scholar]
  75. 75. 
    Schirmer T, Bode W, Huber R. 1987. Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 Å resolution: a common principle of phycobilin-protein interaction. J. Mol. Biol. 196:677–95
    [Google Scholar]
  76. 76. 
    Schirmer T, Bode W, Huber R, Sidler W, Zuber H. 1985. X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J. Mol. Biol. 184:257–77
    [Google Scholar]
  77. 77. 
    Schirmer T, Huber R, Schneider M, Bode W, Miller M, Hackert ML. 1986. Crystal structure analysis and refinement at 2.5 Å of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum: the molecular model and its implication for light-harvesting. J. Mol. Biol. 188:651–76
    [Google Scholar]
  78. 78. 
    Schmidt M, Krasselt A, Reuter W. 2006. Local protein flexibility as a prerequisite for reversible chromophore isomerization in alpha-phycoerythrocyanin. Biochim. Biophys. Acta 1764:55–62
    [Google Scholar]
  79. 79. 
    Searle GFW, Barber J, Porter G, Tredwell CJ. 1978. Picosecond time-resolved energy transfer in Porphyridium cruentum. 2. In the isolated light harvesting complex (phycobilisomes). Biochim. Biophys. Acta 501:246–56
    [Google Scholar]
  80. 80. 
    Sonani RR, Gupta GD, Madamwar D, Kumar V. 2015. Crystal structure of allophycocyanin from marine cyanobacterium Phormidium sp. A09DM. PLOS ONE 10:e0124580
    [Google Scholar]
  81. 81. 
    Sonani RR, Roszak AW, Liu H, Gross ML, Blankenship RE et al. 2020. Revisiting high-resolution crystal structure of Phormidium rubidium phycocyanin. Photosynth. Res. 144:349–60
    [Google Scholar]
  82. 82. 
    Sonani RR, Roszak AW, Ortmann de Percin Northumberland C, Madamwar D, Cogdell RJ 2018. An improved crystal structure of C-phycoerythrin from the marine cyanobacterium Phormidium sp. A09DM. Photosynth. Res. 135:65–78
    [Google Scholar]
  83. 83. 
    Soni BR, Hasan MI, Parmar A, Ethayathulla AS, Kumar RP et al. 2010. Structure of the novel 14kDa fragment of alpha-subunit of phycoerythrin from the starving cyanobacterium Phormidium tenue. J. Struct. Biol. 171:247–55
    [Google Scholar]
  84. 84. 
    Stec B, Troxler RF, Teeter MM. 1999. Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly. Biophys. J. 76:2912–21
    [Google Scholar]
  85. 85. 
    Su HN, Xie BB, Zhang XY, Zhou BC, Zhang YZ. 2010. The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview. Photosynth. Res. 106:73–87
    [Google Scholar]
  86. 86. 
    Tang K, Ding WL, Hoppner A, Zhao C, Zhang L et al. 2015. The terminal phycobilisome emitter, LCM: a light-harvesting pigment with a phytochrome chromophore. PNAS 112:15880–85
    [Google Scholar]
  87. 87. 
    Thakuria R, Nath NK, Saha BK. 2019. The nature and applications of π–π interactions: a perspective. Crystal Growth Des 19:523–28
    [Google Scholar]
  88. 88. 
    van de Meene AML, Hohmann-Marriott MF, Vermaas WFJ, Roberson RW. 2006. The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch. Microbiol. 184:259–70
    [Google Scholar]
  89. 89. 
    Wang XQ, Li LN, Chang WR, Zhang JP, Gui LL et al. 2001. Structure of C-phycocyanin from Spirulina platensis at 2.2 Å resolution: a novel monoclinic crystal form for phycobiliproteins in phycobilisomes. Acta Crystallogr. D 57:784–92
    [Google Scholar]
  90. 90. 
    Watanabe M, Ikeuchi M. 2013. Phycobilisome: architecture of a light-harvesting supercomplex. Photosynth. Res. 116:265–76
    [Google Scholar]
  91. 91. 
    Wheeler SE. 2011. Local nature of substituent effects in stacking interactions. J. Am. Chem. Soc. 133:10262–74
    [Google Scholar]
  92. 92. 
    Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G et al. 1999. Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63-Å resolution. PNAS 96:8901–6
    [Google Scholar]
  93. 93. 
    Williams RC, Gingrich JC, Glazer AN. 1980. Cyanobacterial phycobilisomes: particles from Synechocystis 6701 and 2 pigment mutants. J. Cell Biol. 85:558–66
    [Google Scholar]
  94. 94. 
    Xie S, Du M, Mets L, Fleming G. 1992. Femtosecond fluorescence depolarization study of photosynthetic antenna proteins: observation of ultrafast energy transfer in trimeric C-phycocyanin and allophycocyanin. Proc. SPIE 1640: Time-Resolved Laser Spectroscopy in Biochemistry IIIed. JR Lakowicz, Art. 58278 Bellingham, WA: SPIE
    [Google Scholar]
  95. 95. 
    Yamanaka G, Glazer AN, Williams RC. 1980. Molecular architecture of a light-harvesting antenna: comparison of wild-type and mutant Synechococcus 6301 phycobilisomes. J. Biol. Chem. 255:1004–10
    [Google Scholar]
  96. 96. 
    Yi ZW, Huang H, Kuang TY, Sui SF. 2005. Three-dimensional architecture of phycobilisomes from Nostocflagelliforme revealed by single particle electron microscopy. FEBS Lett 579:3569–73
    [Google Scholar]
  97. 97. 
    Zhang J, Ma J, Liu D, Qin S, Sun S et al. 2017. Structure of phycobilisome from the red alga Griffithsia pacifica. Nature 551:57–63
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-062920-063657
Loading
/content/journals/10.1146/annurev-biophys-062920-063657
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error