1932

Abstract

This review deals with two important concepts—protein intrinsic disorder and proteinaceous membrane-less organelles (PMLOs). The past 20 years have seen an upsurge of scientific interest in these phenomena. However, neither are new discoveries made in this century, but instead are timely reincarnations of old ideas that were mostly ignored by the scientific community for a long time. Merging these concepts in the form of the intrinsic disorder–based biological liquid–liquid phase separation provides a basis for understanding the molecular mechanisms of PMLO biogenesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062920-063704
2021-05-06
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-062920-063704.html?itemId=/content/journals/10.1146/annurev-biophys-062920-063704&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aggarwal S, Snaidero N, Pahler G, Frey S, Sanchez P et al. 2013. Myelin membrane assembly is driven by a phase transition of myelin basic proteins into a cohesive protein meshwork. PLOS Biol 11:e1001577
    [Google Scholar]
  2. 2. 
    Alberti S. 2017. The wisdom of crowds: regulating cell function through condensed states of living matter. J. Cell Sci. 130:2789–96
    [Google Scholar]
  3. 3. 
    Alberti S, Dormann D. 2019. Liquid–liquid phase separation in disease. Annu. Rev. Genet. 53:171–94
    [Google Scholar]
  4. 4. 
    Alberti S, Gladfelter A, Mittag T. 2019. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176:419–34
    [Google Scholar]
  5. 5. 
    Alberti S, Hyman AA. 2016. Are aberrant phase transitions a driver of cellular aging?. BioEssays 38:959–68
    [Google Scholar]
  6. 6. 
    Alterovitz WL, Faraggi E, Oldfield CJ, Meng J, Xue B et al. 2020. Many-to-one binding by intrinsically disordered protein regions. Pac. Symp. Biocomput. 25:159–70
    [Google Scholar]
  7. 7. 
    Ambadipudi S, Biernat J, Riedel D, Mandelkow E, Zweckstetter M. 2017. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun. 8:275
    [Google Scholar]
  8. 8. 
    Ambadipudi S, Reddy JG, Biernat J, Mandelkow E, Zweckstetter M. 2019. Residue-specific identification of phase separation hot spots of Alzheimer's-related protein tau. Chem. Sci. 10:6503–7
    [Google Scholar]
  9. 9. 
    Aulas A, Vande Velde C 2015. Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS?. Front. Cell Neurosci. 9:423
    [Google Scholar]
  10. 10. 
    Badrinarayanan A, Le TB, Laub MT. 2015. Bacterial chromosome organization and segregation. Annu. Rev. Cell Dev. Biol. 31:171–99
    [Google Scholar]
  11. 11. 
    Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:285–98
    [Google Scholar]
  12. 12. 
    Banjade S, Rosen MK 2014. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3:e04123
    [Google Scholar]
  13. 13. 
    Baranger M. 2001. Chaos, complexity, and entropy—a physics talk for non-physicists Rep., Wesleyan Univ. Phys. Dep. Colloq., Wesleyan Univ. Middletown, CT: http://necsi.org/projects/baranger/cce.pdf
    [Google Scholar]
  14. 14. 
    Beutel O, Maraspini R, Pombo-Garcia K, Martin-Lemaitre C, Honigmann A. 2019. Phase separation of zonula occludens proteins drives formation of tight junctions. Cell 179:923–36.e11
    [Google Scholar]
  15. 15. 
    Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO et al. 2018. Extreme disorder in an ultrahigh-affinity protein complex. Nature 555:61–66
    [Google Scholar]
  16. 16. 
    Brangwynne CP. 2013. Phase transitions and size scaling of membrane-less organelles. J. Cell Biol. 203:875–81
    [Google Scholar]
  17. 17. 
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C et al. 2009. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–32
    [Google Scholar]
  18. 18. 
    Brangwynne CP, Mitchison TJ, Hyman AA 2011. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. PNAS 108:4334–39
    [Google Scholar]
  19. 19. 
    Brangwynne CP, Tompa P, Pappu RV. 2015. Polymer physics of intracellular phase transitions. Nat. Phys. 11:899–904
    [Google Scholar]
  20. 20. 
    Bratek-Skicki A, Pancsa R, Meszaros B, Van Lindt J, Tompa P. 2020. A guide to regulation of the formation of biomolecular condensates. FEBS J 287:1924–35
    [Google Scholar]
  21. 21. 
    Case LB, Ditlev JA, Rosen MK. 2019. Regulation of transmembrane signaling by phase separation. Annu. Rev. Biophys. 48:465–94
    [Google Scholar]
  22. 22. 
    Cheng Y, LeGall T, Oldfield CJ, Mueller JP, Van YY et al. 2006. Rational drug design via intrinsically disordered protein. Trends Biotechnol 24:435–42
    [Google Scholar]
  23. 23. 
    Chong PA, Forman-Kay JD. 2016. Liquid-liquid phase separation in cellular signaling systems. Curr. Opin. Struct. Biol. 41:180–86
    [Google Scholar]
  24. 24. 
    Collier NC, Heuser J, Levy MA, Schlesinger MJ. 1988. Ultrastructural and biochemical analysis of the stress granule in chicken embryo fibroblasts. J. Cell Biol. 106:1131–39
    [Google Scholar]
  25. 25. 
    Collier NC, Schlesinger MJ. 1986. The dynamic state of heat shock proteins in chicken embryo fibroblasts. J. Cell Biol. 103:1495–507
    [Google Scholar]
  26. 26. 
    Courchaine EM, Lu A, Neugebauer KM. 2016. Droplet organelles?. EMBO J 35:1603–12
    [Google Scholar]
  27. 27. 
    Darling AL, Liu Y, Oldfield CJ, Uversky VN. 2018. Intrinsically disordered proteome of human membrane-less organelles. Proteomics 18:e1700193
    [Google Scholar]
  28. 28. 
    Darling AL, Zaslavsky BY, Uversky VN. 2019. Intrinsic disorder-based emergence in cellular biology: physiological and pathological liquid-liquid phase transitions in cells. Polymers 11:990
    [Google Scholar]
  29. 29. 
    Destainville N, Schmidt TH, Lang T. 2016. Where biology meets physics—a converging view on membrane microdomain dynamics. Curr. Top. Membr. 77:27–65
    [Google Scholar]
  30. 30. 
    Ditlev JA, Case LB, Rosen MK. 2018. Who's in and who's out—compositional control of biomolecular condensates. J. Mol. Biol. 430:4666–84
    [Google Scholar]
  31. 31. 
    Dobra I, Pankivskyi S, Samsonova A, Pastre D, Hamon L. 2018. Relation between stress granules and cytoplasmic protein aggregates linked to neurodegenerative diseases. Curr. Neurol. Neurosci. Rep. 18:107
    [Google Scholar]
  32. 32. 
    Dundr M, Misteli T. 2010. Biogenesis of nuclear bodies. Cold Spring Harb. Perspect. Biol. 2:a000711
    [Google Scholar]
  33. 33. 
    Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z. 2002. Intrinsic disorder and protein function. Biochemistry 41:6573–82
    [Google Scholar]
  34. 34. 
    Dunker AK, Brown CJ, Obradovic Z. 2002. Identification and functions of usefully disordered proteins. Adv. Protein Chem. 62:25–49
    [Google Scholar]
  35. 35. 
    Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P et al. 2001. Intrinsically disordered protein. J. Mol. Graph. Model. 19:26–59
    [Google Scholar]
  36. 36. 
    Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ. 2000. Intrinsic protein disorder in complete genomes. Genome Inform. Ser. Workshop Genome Inform. 11:161–71
    [Google Scholar]
  37. 37. 
    Dunker AK, Uversky VN. 2010. Drugs for “protein clouds”: targeting intrinsically disordered transcription factors. Curr. Opin. Pharmacol. 10:782–88
    [Google Scholar]
  38. 38. 
    Ebersbach G, Briegel A, Jensen GJ, Jacobs-Wagner C. 2008. A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell 134:956–68
    [Google Scholar]
  39. 39. 
    Ebersbach G, Gerdes K. 2004. Bacterial mitosis: Partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. Mol. Microbiol. 52:385–98
    [Google Scholar]
  40. 40. 
    Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC, Eckmann CR et al. 2015. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. PNAS 112:7189–94
    [Google Scholar]
  41. 41. 
    Erdel F, Rippe K. 2018. Formation of chromatin subcompartments by phase separation. Biophys. J. 114:2262–70
    [Google Scholar]
  42. 42. 
    Feng Z, Chen X, Wu X, Zhang M. 2019. Formation of biological condensates via phase separation: characteristics, analytical methods, and physiological implications. J. Biol. Chem. 294:14823–35
    [Google Scholar]
  43. 43. 
    Feric M, Brangwynne CP. 2013. A nuclear F-actin scaffold stabilizes RNP droplets against gravity in large cells. Nat. Cell Biol. 15:1253–59
    [Google Scholar]
  44. 44. 
    Ferreon JC, Jain A, Choi KJ, Tsoi PS, MacKenzie KR et al. 2018. Acetylation disfavors Tau phase separation. Int. J. Mol. Sci. 19:1360
    [Google Scholar]
  45. 45. 
    Flory PJ. 1942. Thermodynamics of high polymer solutions. J. Chem. Phys. 10:51–61
    [Google Scholar]
  46. 46. 
    Flory PJ. 1953. Principles of Polymer Chemistry Ithaca, NY: Cornell Univ. Press
    [Google Scholar]
  47. 47. 
    Forman-Kay JD, Kriwacki RW, Seydoux G. 2018. Phase separation in biology and disease. J. Mol. Biol. 430:4603–6
    [Google Scholar]
  48. 48. 
    Formicola N, Vijayakumar J, Besse F. 2019. Neuronal ribonucleoprotein granules: dynamic sensors of localized signals. Traffic 20:639–49
    [Google Scholar]
  49. 49. 
    Frank L, Rippe K. 2020. Repetitive RNAs as regulators of chromatin-associated subcompartment formation by phase separation. J. Mol. Biol. 432:4270–86
    [Google Scholar]
  50. 50. 
    Fuxreiter M. 2012. Fuzziness: linking regulation to protein dynamics. Mol. Biosyst. 8:168–77
    [Google Scholar]
  51. 51. 
    Fuxreiter M. 2018. Towards a stochastic paradigm: from fuzzy ensembles to cellular functions. Molecules 23:3008
    [Google Scholar]
  52. 52. 
    Fuxreiter M, Tompa P. 2012. Fuzzy complexes: a more stochastic view of protein function. Adv. Exp. Med. Biol. 725:1–14
    [Google Scholar]
  53. 53. 
    Gomes E, Shorter J. 2019. The molecular language of membraneless organelles. J. Biol. Chem. 294:7115–27
    [Google Scholar]
  54. 54. 
    Gruet A, Dosnon M, Blocquel D, Brunel J, Gerlier D et al. 2016. Fuzzy regions in an intrinsically disordered protein impair protein-protein interactions. FEBS J 283:576–94
    [Google Scholar]
  55. 55. 
    Habchi J, Tompa P, Longhi S, Uversky VN. 2014. Introducing protein intrinsic disorder. Chem. Rev. 114:6561–88
    [Google Scholar]
  56. 56. 
    Handwerger KE, Cordero JA, Gall JG. 2005. Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol. Biol. Cell 16:202–11
    [Google Scholar]
  57. 57. 
    Heinkel F, Abraham L, Ko M, Chao J, Bach H et al. 2019. Phase separation and clustering of an ABC transporter in Mycobacterium tuberculosis. PNAS 116:16326–31
    [Google Scholar]
  58. 58. 
    Heinrich BS, Maliga Z, Stein DA, Hyman AA, Whelan SPJ. 2018. Phase transitions drive the formation of vesicular stomatitis virus replication compartments. mBio 9:e02290–17
    [Google Scholar]
  59. 59. 
    Hildebrand EM, Dekker J. 2020. Mechanisms and functions of chromosome compartmentalization. Trends Biochem. Sci. 45:385–96
    [Google Scholar]
  60. 60. 
    Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. 2017. A phase separation model for transcriptional control. Cell 169:13–23
    [Google Scholar]
  61. 61. 
    Hofweber M, Dormann D. 2019. Friend or foe—post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 294:7137–50
    [Google Scholar]
  62. 62. 
    Holehouse AS, Pappu RV. 2018. Functional implications of intracellular phase transitions. Biochemistry 57:2415–23
    [Google Scholar]
  63. 63. 
    Howard M, Rutenberg AD, de Vet S. 2001. Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87:278102
    [Google Scholar]
  64. 64. 
    Hu G, Wu Z, Wang K, Uversky VN, Kurgan L. 2016. Untapped potential of disordered proteins in current druggable human proteome. Curr. Drug Targets 17:1198–205
    [Google Scholar]
  65. 65. 
    Huggins ML. 1941. Solutions of long chain compounds. J. Chem. Phys. 9:440
    [Google Scholar]
  66. 66. 
    Hyman AA, Weber CA, Julicher F. 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  67. 67. 
    Iakoucheva LM, Brown CJ, Lawson JD, Obradovic Z, Dunker AK. 2002. Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol. 323:573–84
    [Google Scholar]
  68. 68. 
    Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG et al. 2004. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–49
    [Google Scholar]
  69. 69. 
    Jin F, Yu C, Lai L, Liu Z. 2013. Ligand clouds around protein clouds: a scenario of ligand binding with intrinsically disordered proteins. PLOS Comput. Biol. 9:e1003249
    [Google Scholar]
  70. 70. 
    Joshi P, Vendruscolo M. 2015. Druggability of intrinsically disordered proteins. Adv. Exp. Med. Biol. 870:383–400
    [Google Scholar]
  71. 71. 
    Kim MY, Na I, Kim JS, Son SH, Choi S et al. 2019. Rational discovery of antimetastatic agents targeting the intrinsically disordered region of MBD2. Sci. Adv. 5:eaav9810
    [Google Scholar]
  72. 72. 
    Kruse K. 2002. A dynamic model for determining the middle of Escherichia coli. . Biophys. J. 82:618–27
    [Google Scholar]
  73. 73. 
    Landsteiner DP. 1936. The Specificity of Serological Reactions New York: Dover
    [Google Scholar]
  74. 74. 
    Lee IH, Imanaka MY, Modahl EH, Torres-Ocampo AP. 2019. Lipid raft modulation by membrane-anchored proteins with inherent phase separation properties. ACS Omega 4:6551–59
    [Google Scholar]
  75. 75. 
    Li P, Banjade S, Cheng HC, Kim S, Chen B et al. 2012. Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–40
    [Google Scholar]
  76. 76. 
    Lin Y, Protter DS, Rosen MK, Parker R. 2015. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60:208–19
    [Google Scholar]
  77. 77. 
    Lin YH, Forman-Kay JD, Chan HS. 2018. Theories for sequence-dependent phase behaviors of biomolecular condensates. Biochemistry 57:2499–508
    [Google Scholar]
  78. 78. 
    Loose M, Fischer-Friedrich E, Herold C, Kruse K, Schwille P. 2011. Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nat. Struct. Mol. Biol. 18:577–83
    [Google Scholar]
  79. 79. 
    Loose M, Fischer-Friedrich E, Ries J, Kruse K, Schwille P. 2008. Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320:789–92
    [Google Scholar]
  80. 80. 
    Loose M, Kruse K, Schwille P. 2011. Protein self-organization: lessons from the Min system. Annu. Rev. Biophys. 40:315–36
    [Google Scholar]
  81. 81. 
    Lutkenhaus J. 2007. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 76:539–62
    [Google Scholar]
  82. 82. 
    Mao YS, Zhang B, Spector DL. 2011. Biogenesis and function of nuclear bodies. Trends Genet 27:295–306
    [Google Scholar]
  83. 83. 
    Meinhardt H, de Boer PA 2001. Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. PNAS 98:14202–7
    [Google Scholar]
  84. 84. 
    Metallo SJ. 2010. Intrinsically disordered proteins are potential drug targets. Curr. Opin. Chem. Biol. 14:481–88
    [Google Scholar]
  85. 85. 
    Mirny L, Slutsky M, Wunderlich Z, Tafvizi A, Leith J, Kosmrlj A. 2009. How a protein searches for its site on DNA: the mechanism of facilitated diffusion. J. Phys. A 42:434013
    [Google Scholar]
  86. 86. 
    Miskei M, Gregus A, Sharma R, Duro N, Zsolyomi F, Fuxreiter M. 2017. Fuzziness enables context dependence of protein interactions. FEBS Lett 591:2682–95
    [Google Scholar]
  87. 87. 
    Mitrea DM, Chandra B, Ferrolino MC, Gibbs EB, Tolbert M et al. 2018. Methods for physical characterization of phase-separated bodies and membrane-less organelles. J. Mol. Biol. 430:4773–805
    [Google Scholar]
  88. 88. 
    Murthy AC, Dignon GL, Kan Y, Zerze GH, Parekh SH et al. 2019. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26:637–48
    [Google Scholar]
  89. 89. 
    Netherton C, Moffat K, Brooks E, Wileman T. 2007. A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Adv. Virus Res. 70:101–82
    [Google Scholar]
  90. 90. 
    Nikolic J, Lagaudriere-Gesbert C, Scrima N, Blondel D, Gaudin Y. 2019. Structure and function of Negri bodies. Phys. Virol. 1140:111–27
    [Google Scholar]
  91. 91. 
    Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E et al. 2015. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57:936–47
    [Google Scholar]
  92. 92. 
    Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK. 2008. Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genom 9:S1
    [Google Scholar]
  93. 93. 
    Palikyras S, Papantonis A. 2019. Modes of phase separation affecting chromatin regulation. Open Biol 9:190167
    [Google Scholar]
  94. 94. 
    Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M et al. 2015. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–77
    [Google Scholar]
  95. 95. 
    Pederson T. 2001. Protein mobility within the nucleus—what are the right moves?. Cell 104:635–38
    [Google Scholar]
  96. 96. 
    Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P. 2014. The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 23:1077–93
    [Google Scholar]
  97. 97. 
    Peng Z, Yan J, Fan X, Mizianty MJ, Xue B et al. 2015. Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol. Life Sci. 72:137–51
    [Google Scholar]
  98. 98. 
    Phair RD, Misteli T. 2000. High mobility of proteins in the mammalian cell nucleus. Nature 404:604–9
    [Google Scholar]
  99. 99. 
    Piovesan A, Pelleri MC, Antonaros F, Strippoli P, Caracausi M, Vitale L. 2019. On the length, weight and GC content of the human genome. BMC Res. Notes 12:106
    [Google Scholar]
  100. 100. 
    Raskin DM, de Boer PA 1999. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. PNAS 96:4971–76
    [Google Scholar]
  101. 101. 
    Recouvreux P, Lenne PF. 2016. Molecular clustering in the cell: from weak interactions to optimized functional architectures. Curr. Opin. Cell Biol. 38:18–23
    [Google Scholar]
  102. 102. 
    Reichheld SE, Muiznieks LD, Keeley FW, Sharpe S 2017. Direct observation of structure and dynamics during phase separation of an elastomeric protein. PNAS 114:E4408–15
    [Google Scholar]
  103. 103. 
    Ryan VH, Dignon GL, Zerze GH, Chabata CV, Silva R et al. 2018. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 69:465–79.e7
    [Google Scholar]
  104. 104. 
    Ryan VH, Fawzi NL. 2019. Physiological, pathological, and targetable membraneless organelles in neurons. Trends Neurosci 42:693–708
    [Google Scholar]
  105. 105. 
    Saha S, Weber CA, Nousch M, Adame-Arana O, Hoege C et al. 2016. Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. Cell 166:1572–84.e16
    [Google Scholar]
  106. 106. 
    Sharma R, Raduly Z, Miskei M, Fuxreiter M. 2015. Fuzzy complexes: specific binding without complete folding. FEBS Lett 589:2533–42
    [Google Scholar]
  107. 107. 
    Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE, Brangwynne CP. 2017. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168:159–71.e14
    [Google Scholar]
  108. 108. 
    Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382
    [Google Scholar]
  109. 109. 
    Smith LM, Kelleher NL 2013. Proteoform: a single term describing protein complexity. Nat. Methods 10:186–87
    [Google Scholar]
  110. 110. 
    Sokolova E, Spruijt E, Hansen MM, Dubuc E, Groen J et al. 2013. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. PNAS 110:11692–97
    [Google Scholar]
  111. 111. 
    Spannl S, Tereshchenko M, Mastromarco GJ, Ihn SJ, Lee HO 2019. Biomolecular condensates in neurodegeneration and cancer. Traffic 20:890–911
    [Google Scholar]
  112. 112. 
    Strulson CA, Molden RC, Keating CD, Bevilacqua PC. 2012. RNA catalysis through compartmentalization. Nat. Chem. 4:941–46
    [Google Scholar]
  113. 113. 
    Su X, Ditlev JA, Hui E, Xing W, Banjade S et al. 2016. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352:595–99
    [Google Scholar]
  114. 114. 
    Sun Y, Leong NT, Jiang T, Tangara A, Darzacq X, Drubin DG. 2017. Molecular architecture of the 90S small subunit pre-ribosome. eLife 6:e22086
    [Google Scholar]
  115. 115. 
    Tompa H. 1956. Polymer Solutions London: Butterworths
    [Google Scholar]
  116. 116. 
    Tompa P, Csermely P. 2004. The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18:1169–75
    [Google Scholar]
  117. 117. 
    Tompa P, Fuxreiter M. 2008. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 33:2–8
    [Google Scholar]
  118. 118. 
    Toretsky JA, Wright PE. 2014. Assemblages: functional units formed by cellular phase separation. J. Cell Biol. 206:579–88
    [Google Scholar]
  119. 119. 
    Toro E, Shapiro L. 2010. Bacterial chromosome organization and segregation. Cold Spring Harb. Perspect. Biol. 2:a000349
    [Google Scholar]
  120. 120. 
    Tóth G, Gardai SJ, Zago W, Bertoncini CW, Cremades N et al. 2014. Targeting the intrinsically disordered structural ensemble of α-synuclein by small molecules as a potential therapeutic strategy for Parkinson's disease. PLOS ONE 9:e87133
    [Google Scholar]
  121. 121. 
    Tsafou K, Tiwari PB, Forman-Kay JD, Metallo SJ, Toretsky JA. 2018. Targeting intrinsically disordered transcription factors: changing the paradigm. J. Mol. Biol. 430:2321–41
    [Google Scholar]
  122. 122. 
    Turoverov KK, Kuznetsova IM, Fonin AV, Darling AL, Zaslavsky BY, Uversky VN. 2019. Stochasticity of biological soft matter: emerging concepts in intrinsically disordered proteins and biological phase separation. Trends Biochem. Sci. 44:716–28
    [Google Scholar]
  123. 123. 
    Updike DL, Hachey SJ, Kreher J, Strome S. 2011. P granules extend the nuclear pore complex environment in the C. elegans germ line. J. Cell Biol. 192:939–48
    [Google Scholar]
  124. 124. 
    Uversky VN. 2011. Intrinsically disordered proteins may escape unwanted interactions via functional misfolding. Biochim. Biophys. Acta 1814:693–712
    [Google Scholar]
  125. 125. 
    Uversky VN. 2011. Multitude of binding modes attainable by intrinsically disordered proteins: a portrait gallery of disorder-based complexes. Chem. Soc. Rev. 40:1623–34
    [Google Scholar]
  126. 126. 
    Uversky VN. 2012. Intrinsically disordered proteins and novel strategies for drug discovery. Expert Opin. Drug Discov. 7:475–88
    [Google Scholar]
  127. 127. 
    Uversky VN. 2013. A decade and a half of protein intrinsic disorder: Biology still waits for physics. Protein Sci 22:693–724
    [Google Scholar]
  128. 128. 
    Uversky VN. 2013. Intrinsic disorder-based protein interactions and their modulators. Curr. Pharm. Des. 19:4191–213
    [Google Scholar]
  129. 129. 
    Uversky VN. 2013. Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta 1834:932–51
    [Google Scholar]
  130. 130. 
    Uversky VN. 2015. Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J 282:1182–89
    [Google Scholar]
  131. 131. 
    Uversky VN. 2016. p53 proteoforms and intrinsic disorder: an illustration of the protein structure–function continuum concept. Int. J. Mol. Sci. 17:1874
    [Google Scholar]
  132. 132. 
    Uversky VN. 2017. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr. Opin. Struct. Biol. 44:18–30
    [Google Scholar]
  133. 133. 
    Uversky VN. 2017. Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: complex coacervates and membrane-less organelles. Adv. Colloid Interface Sci. 239:97–114
    [Google Scholar]
  134. 134. 
    Uversky VN. 2019. Intrinsically disordered proteins and their “mysterious” (meta)physics. Front. Phys. 7:10
    [Google Scholar]
  135. 135. 
    Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ et al. 2014. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem. Rev. 114:6844–79
    [Google Scholar]
  136. 136. 
    Uversky VN, Dunker AK. 2010. Understanding protein non-folding. Biochim. Biophys. Acta 1804:1231–64
    [Google Scholar]
  137. 137. 
    Uversky VN, Finkelstein AV. 2019. Life in phases: intra- and inter-molecular phase transitions in protein solutions. Biomolecules 9:842
    [Google Scholar]
  138. 138. 
    Uversky VN, Gillespie JR, Fink AL. 2000. Why are “natively unfolded” proteins unstructured under physiologic conditions?. Proteins 41:415–27
    [Google Scholar]
  139. 139. 
    Uversky VN, Kuznetsova IM, Turoverov KK, Zaslavsky B. 2015. Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Lett 589:15–22
    [Google Scholar]
  140. 140. 
    Uversky VN, Oldfield CJ, Dunker AK. 2008. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37:215–46
    [Google Scholar]
  141. 141. 
    Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B et al. 2009. Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genom 10:Suppl. 1S7
    [Google Scholar]
  142. 142. 
    Valentin GG. 1836. Repertorium für Anatomie und Physiologie. Berlin: Verlag Veit Comp.
    [Google Scholar]
  143. 143. 
    van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW et al. 2014. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114:6589–631
    [Google Scholar]
  144. 144. 
    Vernon RM, Forman-Kay JD. 2019. First-generation predictors of biological protein phase separation. Curr. Opin. Struct. Biol. 58:88–96
    [Google Scholar]
  145. 145. 
    Wagner R. 1835. Einige Bemerkungen und Fragen über das Keimbläschen (vesicular germinativa). Müller's. Archiv. Anat. Physiol. Wissenschaft Med. 1835:373–77
    [Google Scholar]
  146. 146. 
    Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. 2004. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337:635–45
    [Google Scholar]
  147. 147. 
    Wheeler JR, Matheny T, Jain S, Abrisch R, Parker R. 2016. Distinct stages in stress granule assembly and disassembly. eLife 5:e18413
    [Google Scholar]
  148. 148. 
    Williams RM, Obradovic Z, Mathura V, Braun W, Garner EC et al. 2001. The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac. Symp. Biocomput. 2001.89–100
    [Google Scholar]
  149. 149. 
    Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L. 2013. Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling. Cell 152:791–805
    [Google Scholar]
  150. 150. 
    Wong LE, Kim TH, Muhandiram DR, Forman-Kay JD, Kay LE. 2020. NMR experiments for studies of dilute and condensed protein phases: application to the phase-separating protein CAPRIN1. J. Am. Chem. Soc. 142:2471–89
    [Google Scholar]
  151. 151. 
    Wright PE, Dyson HJ. 1999. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293:321–31
    [Google Scholar]
  152. 152. 
    Wu X, Cai Q, Shen Z, Chen X, Zeng M et al. 2019. RIM and RIM-BP form presynaptic active-zone-like condensates via phase separation. Mol. Cell 73:971–84.e5
    [Google Scholar]
  153. 153. 
    Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L et al. 2014. Structural disorder in viral proteins. Chem. Rev. 114:6880–911
    [Google Scholar]
  154. 154. 
    Xue B, Dunker AK, Uversky VN. 2012. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J. Biomol. Struct. Dyn. 30:137–49
    [Google Scholar]
  155. 155. 
    Xue B, Uversky VN. 2014. Intrinsic disorder in proteins involved in the innate antiviral immunity: another flexible side of a molecular arms race. J. Mol. Biol. 426:1322–50
    [Google Scholar]
  156. 156. 
    You K, Huang Q, Yu C, Shen B, Sevilla C et al. 2020. PhaSepDB: a database of liquid–liquid phase separation related proteins. Nucleic Acids Res 48:D354–59
    [Google Scholar]
  157. 157. 
    Young NP, Balsara NP 2015. Flory–Huggins equation. Encyclopedia of Polymeric Nanomaterials S Kobayashi, K Müllen 777–82 Berlin: Springer
    [Google Scholar]
  158. 158. 
    Zaslavsky BY, Ferreira LA, Darling AL, Uversky VN. 2018. The solvent side of proteinaceous membrane-less organelles in light of aqueous two-phase systems. Int. J. Biol. Macromol. 117:1224–51
    [Google Scholar]
  159. 159. 
    Zaslavsky BY, Uversky VN. 2018. In aqua veritas: the indispensable yet mostly ignored role of water in phase separation and membrane-less organelles. Biochemistry 57:2437–51
    [Google Scholar]
  160. 160. 
    Zhou Y, Su JM, Samuel CE, Ma D. 2019. Measles virus forms inclusion bodies with properties of liquid organelles. J. Virol. 93:e00948–19
    [Google Scholar]
  161. 161. 
    Zhu L, Brangwynne CP. 2015. Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr. Opin. Cell Biol. 34:23–30
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-062920-063704
Loading
/content/journals/10.1146/annurev-biophys-062920-063704
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error