1932

Abstract

G protein–coupled receptors (GPCRs), which mediate processes as diverse as olfaction and maintenance of metabolic homeostasis, have become the single most effective class of therapeutic drug targets. As a result, understanding the molecular basis for their activity is of paramount importance. Recent technological advances have made GPCR structural biology increasingly tractable, offering views of these receptors in unprecedented atomic detail. Structural and biophysical data have shown that GPCRs function as complex allosteric machines, communicating ligand-binding events through conformational change. Changes in receptor conformation lead to activation of effector proteins, such as G proteins and arrestins, which are themselves conformational switches. Here, we review how structural biology has illuminated the agonist-induced cascade of conformational changes that culminate in a cellular response to GPCR activation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070317-032931
2018-05-20
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070317-032931.html?itemId=/content/journals/10.1146/annurev-biophys-070317-032931&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Altenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL 2008. High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. PNAS 105:7439–44
    [Google Scholar]
  2. 2.  Arac D, Strater N, Seiradake E 2016. Understanding the structural basis of adhesion GPCR functions. Handb. Exp. Pharmacol. 234:67–82
    [Google Scholar]
  3. 3.  Ballesteros J, Weinstein H 1995. Integrated methods for modeling G-protein coupled receptors. Methods Neurosci 25:366–428
    [Google Scholar]
  4. 4.  Benovic JL, DeBlasi A, Stone WC, Caron MG, Lefkowitz RJ 1989. β-Adrenergic receptor kinase: Primary structure delineates a multigene family. Science 246:235–40
    [Google Scholar]
  5. 5.  Burg JS, Ingram JR, Venkatakrishnan AJ, Jude KM, Dukkipati A et al. 2015. Structural basis for chemokine recognition and activation of a viral G protein–coupled receptor. Science 347:1113–17
    [Google Scholar]
  6. 6.  Caffrey M. 2015. A comprehensive review of the lipid cubic phase or in meso method for crystallizing membrane and soluble proteins and complexes. Acta Crystallogr. F Struct. Biol. Commun. 71:3–18
    [Google Scholar]
  7. 7.  Caffrey M, Cherezov V 2009. Crystallizing membrane proteins using lipidic mesophases. Nat. Protocols 4:706–31
    [Google Scholar]
  8. 8.  Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG 2016. Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536:104–7
    [Google Scholar]
  9. 9.  Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS et al. 2007. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–65
    [Google Scholar]
  10. 10.  Chun E, Thompson AA, Liu W, Roth CB, Griffith MT et al. 2012. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20:967–76
    [Google Scholar]
  11. 11.  Chung KY, Rasmussen SG, Liu T, Li S, DeVree BT et al. 2011. Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Nature 477:611–15
    [Google Scholar]
  12. 12.  Didenko T, Liu JJ, Horst R, Stevens RC, Wuthrich K 2013. Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs. Curr. Opin. Struct. Biol. 23:740–47
    [Google Scholar]
  13. 13.  Dixon RA, Kobilka BK, Strader DJ, Benovic JL, Dohlman HG et al. 1986. Cloning of the gene and cDNA for mammalian β-adrenergic receptor and homology with rhodopsin. Nature 321:75–79
    [Google Scholar]
  14. 14.  Doumazane E, Scholler P, Fabre L, Zwier JM, Trinquet E et al. 2013. Illuminating the activation mechanisms and allosteric properties of metabotropic glutamate receptors. PNAS 110:E1416–25
    [Google Scholar]
  15. 15.  Dror RO, Green HF, Valant C, Borhani DW, Valcourt JR et al. 2013. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 503:295–99
    [Google Scholar]
  16. 16.  Dror RO, Mildorf TJ, Hilger D, Manglik A, Borhani DW et al. 2015. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348:1361–65
    [Google Scholar]
  17. 17.  Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P et al. 2011. Pathway and mechanism of drug binding to G-protein-coupled receptors. PNAS 108:13118–23
    [Google Scholar]
  18. 18.  Egloff P, Hillenbrand M, Klenk C, Batyuk A, Heine P et al. 2014. Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. PNAS 111:E655–62
    [Google Scholar]
  19. 19.  Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG 1996. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–70
    [Google Scholar]
  20. 20.  Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA et al. 2014. Molecular control of δ-opioid receptor signalling. Nature 506:191–96
    [Google Scholar]
  21. 21.  Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB 2003. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63:1256–72
    [Google Scholar]
  22. 22.  Gilman AG. 1987. G proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56:615–49
    [Google Scholar]
  23. 23.  Goncalves JA, South K, Ahuja S, Zaitseva E, Opefi CA et al. 2010. Highly conserved tyrosine stabilizes the active state of rhodopsin. PNAS 107:19861–66
    [Google Scholar]
  24. 24.  Gregorio GG, Masureel M, Hilger D, Terry DS, Juette M et al. 2017. Single-molecule analysis of ligand efficacy in β2AR-G protein activation. Nature 547:68–73
    [Google Scholar]
  25. 25.  Gurevich VV, Gurevich EV 2004. The molecular acrobatics of arrestin activation. Trends Pharmacol. Sci. 25:105–11
    [Google Scholar]
  26. 26.  Gurevich VV, Gurevich EV 2014. Extensive shape shifting underlies functional versatility of arrestins. Curr. Opin. Cell Biol. 27:1–9
    [Google Scholar]
  27. 27.  Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C 2001. Crystal structure of β-arrestin at 1.9 Å: possible mechanism of receptor binding and membrane translocation. Structure 9:869–80
    [Google Scholar]
  28. 28.  Hanson SM, Francis DJ, Vishnivetskiy SA, Kolobova EA, Hubbell WL et al. 2006. Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. PNAS 103:4900–5
    [Google Scholar]
  29. 29.  Hausch F. 2017. Cryo-EM structures of class B GPCR reveal the activation mechanism. Angew. Chem. Int. Ed. 56:12412–14
    [Google Scholar]
  30. 30.  Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C et al. 2012. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482:237–40
    [Google Scholar]
  31. 31.  Hirsch JA, Schubert C, Gurevich VV, Sigler PB 1999. The 2.8 Å crystal structure of visual arrestin: a model for arrestin's regulation. Cell 97:257–69
    [Google Scholar]
  32. 32.  Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN et al. 2015. Structural insights into μ-opioid receptor activation. Nature 524:315–21
    [Google Scholar]
  33. 33.  Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP et al. 2013. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:534–38
    [Google Scholar]
  34. 34.  Jaakola V-P, Griffith MT, Hanson MA, Cherezov V, Chien EY et al. 2008. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–17
    [Google Scholar]
  35. 35.  Kang Y, Zhou XE, Gao X, He Y, Liu W et al. 2015. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–67
    [Google Scholar]
  36. 36.  Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC 2014. Allosteric sodium in class A GPCR signaling. Trends Biochem. Sci. 39:233–44
    [Google Scholar]
  37. 37.  Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe H-W, Sommer ME 2013. Crystal structure of pre-activated arrestin p44. Nature 497:142–46
    [Google Scholar]
  38. 38.  Komolov KE, Benovic JL 2018. G protein-coupled receptor kinases: past, present and future. Cell Signal 41:17–24
    [Google Scholar]
  39. 39.  Komolov KE, Du Y, Duc NM, Betz RM, Rodrigues J et al. 2017. Structural and functional analysis of a β2-adrenergic receptor complex with GRK5. Cell 169:407–21.e16
    [Google Scholar]
  40. 40.  Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM et al. 2012. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–56
    [Google Scholar]
  41. 41.  Kruse AC, Ring AM, Manglik A, Hu J, Hu K et al. 2013. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504:101–6
    [Google Scholar]
  42. 42.  Kufareva I, Gustavsson M, Zheng Y, Stephens BS, Handel TM 2017. What do structures tell us about chemokine receptor function and antagonism?. Annu. Rev. Biophys. 46:175–98
    [Google Scholar]
  43. 43.  Landau EM, Rosenbusch JP 1996. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. PNAS 93:14532–35
    [Google Scholar]
  44. 44.  Lane JR, May LT, Parton RG, Sexton PM, Christopoulos A 2017. A kinetic view of GPCR allostery and biased agonism. Nat. Chem. Biol. 13:929–37
    [Google Scholar]
  45. 45.  Latorraca NR, Venkatakrishnan AJ, Dror RO 2017. GPCR dynamics: structures in motion. Chem. Rev. 117:139–55
    [Google Scholar]
  46. 46.  Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ et al. 2011. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–25
    [Google Scholar]
  47. 47.  Lefkowitz RJ. 2013. A brief history of G-protein coupled receptors (Nobel Lecture). Angew. Chem. Int. Ed. 52:6366–78
    [Google Scholar]
  48. 48.  Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A et al. 2017. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546:118–23
    [Google Scholar]
  49. 49.  Liu W, Chun E, Thompson AA, Chubukov P, Xu F et al. 2012. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–36
    [Google Scholar]
  50. 50.  Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ 1990. β-Arrestin: a protein that regulates β-adrenergic receptor function. Science 248:1547–50
    [Google Scholar]
  51. 51.  Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z et al. 2015. Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161:1101–11
    [Google Scholar]
  52. 52.  Manglik A, Kobilka B 2014. The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Curr. Opin. Cell Biol. 27:136–43
    [Google Scholar]
  53. 53.  Manglik A, Kobilka BK, Steyaert J 2017. Nanobodies to study G protein–coupled receptor structure and function. Annu. Rev. Pharmacol. Toxicol. 57:19–37
    [Google Scholar]
  54. 54.  Massink A, Gutierrez-de-Teran H, Lenselink EB, Ortiz Zacarias NV, Xia L et al. 2015. Sodium ion binding pocket mutations and adenosine A2A receptor function. Mol. Pharmacol. 87:305–13
    [Google Scholar]
  55. 55.  McMahon C, Baier AS, Pascolutti R, Wegrecki M, Zheng S et al. 2018. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol 25:289–96
    [Google Scholar]
  56. 56.  Oldham WM, Van Eps N, Preininger AM, Hubbell WL, Hamm HE 2006. Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat. Struct. Mol. Biol. 13:772–77
    [Google Scholar]
  57. 57.  Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H et al. 2000. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–45
    [Google Scholar]
  58. 58.  Palczewski K, Pulvermuller A, Buczylko J, Hofmann KP 1991. Phosphorylated rhodopsin and heparin induce similar conformational changes in arrestin. J. Biol. Chem. 266:18649–54
    [Google Scholar]
  59. 59.  Promel S, Langenhan T, Arac D 2013. Matching structure with function: the GAIN domain of adhesion-GPCR and PKD1-like proteins. Trends Pharmacol. Sci. 34:470–78
    [Google Scholar]
  60. 60.  Rasmussen SG, Choi H-J, Fung JJ, Pardon E, Casarosa P et al. 2011. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469:175–80
    [Google Scholar]
  61. 61.  Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS et al. 2007. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450:383–87
    [Google Scholar]
  62. 62.  Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY et al. 2011. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–55
    [Google Scholar]
  63. 63.  Ring AM, Manglik A, Kruse AC, Enos MD, Weis WI et al. 2013. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature 502:575–79
    [Google Scholar]
  64. 64.  Rosen H, Stevens RC, Hanson M, Roberts E, Oldstone MBA 2013. Sphingosine-1-phosphate and its receptors: structure, signaling, and influence. Annu. Rev. Biochem. 82:637–62
    [Google Scholar]
  65. 65.  Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS et al. 2007. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318:1266–73
    [Google Scholar]
  66. 66.  Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS et al. 2017. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16:19–34
    [Google Scholar]
  67. 67.  Scheerer P, Sommer ME 2017. Structural mechanism of arrestin activation. Curr. Opin. Struct. Biol. 45:160–69
    [Google Scholar]
  68. 68.  Schertler GF, Villa C, Henderson R 1993. Projection structure of rhodopsin. Nature 362:770–72
    [Google Scholar]
  69. 69.  Schmid EM, Ford MG, Burtey A, Praefcke GJ, Peak-Chew S-Y et al. 2006. Role of the AP2 β-appendage hub in recruiting partners for clathrin-coated vesicle assembly. PLOS Biol 4:e262
    [Google Scholar]
  70. 70.  Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI et al. 2013. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–41
    [Google Scholar]
  71. 71.  Smith JL, Fischetti RF, Yamamoto M 2012. Micro-crystallography comes of age. Curr. Opin. Struct. Biol. 22:602–12
    [Google Scholar]
  72. 72.  Sommer ME, Farrens DL, McDowell JH, Weber LA, Smith WC 2007. Dynamics of arrestin-rhodopsin interactions: loop movement is involved in arrestin activation and receptor binding. J. Biol. Chem. 282:25560–68
    [Google Scholar]
  73. 73.  Staus DP, Strachan RT, Manglik A, Pani B, Kahsai AW et al. 2016. Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535:448–52
    [Google Scholar]
  74. 74.  Staus DP, Wingler LM, Strachan RT, Rasmussen SG, Pardon E et al. 2014. Regulation of β2-adrenergic receptor function by conformationally selective single-domain intrabodies. Mol. Pharmacol. 85:472–81
    [Google Scholar]
  75. 75.  Sunahara RK, Tesmer JJ, Gilman AG, Sprang SR 1997. Crystal structure of the adenylyl cyclase activator G. Science 278:1943–47
    [Google Scholar]
  76. 76.  Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D et al. 2005. Crystal structure of cone arrestin at 2.3 Å: evolution of receptor specificity. J. Mol. Biol. 354:1069–80
    [Google Scholar]
  77. 77.  Szczepek M, Beyriere F, Hofmann KP, Elgeti M, Kazmin R et al. 2014. Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat. Commun. 5:4801
    [Google Scholar]
  78. 78.  Tate CG. 2012. A crystal clear solution for determining G-protein-coupled receptor structures. Trends Biochem. Sci. 37:343–52
    [Google Scholar]
  79. 79.  Unger VM, Hargrave PA, Baldwin JM, Schertler GFX 1997. Arrangement of rhodopsin transmembrane α-helices. Nature 389:203–6
    [Google Scholar]
  80. 80.  Vaidehi N, Grisshammer R, Tate CG 2016. How can mutations thermostabilize G-protein-coupled receptors?. Trends Pharmacol. Sci. 37:37–46
    [Google Scholar]
  81. 81.  Van Eps N, Preininger AM, Alexander N, Kaya AI, Meier S et al. 2011. Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. PNAS 108:9420–24
    [Google Scholar]
  82. 82.  Venkatakrishnan AJ, Deupi X, Lebon G, Heydenreich FM, Flock T et al. 2016. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536:484–87
    [Google Scholar]
  83. 83.  Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM 2013. Molecular signatures of G-protein-coupled receptors. Nature 494:185–94
    [Google Scholar]
  84. 84.  Vishnivetskiy SA, Paz CL, Schubert C, Hirsch JA, Sigler PB, Gurevich VV 1999. How does arrestin respond to the phosphorylated state of rhodopsin?. J. Biol. Chem. 274:11451–54
    [Google Scholar]
  85. 85.  Wacker D, Stevens RC, Roth BL 2017. How ligands illuminate GPCR molecular pharmacology. Cell 170:414–27
    [Google Scholar]
  86. 86.  Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC et al. 2008. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454:486–91
    [Google Scholar]
  87. 87.  Westfield GH, Rasmussen SG, Su M, Dutta S, DeVree BT et al. 2011. Structural flexibility of the Gαs α-helical domain in the β2-adrenoceptor Gs complex. PNAS 108:16086–91
    [Google Scholar]
  88. 88.  White JF, Noinaj N, Shibata Y, Love J, Kloss B et al. 2012. Structure of the agonist-bound neurotensin receptor. Nature 490:508–13
    [Google Scholar]
  89. 89.  Wisler JW, Xiao K, Thomsen AR, Lefkowitz RJ 2014. Recent developments in biased agonism. Curr. Opin. Cell Biol. 27:18–24
    [Google Scholar]
  90. 90.  Wu F, Song G, de Graaf C, Stevens RC 2017. Structure and function of peptide-binding G protein-coupled receptors. J. Mol. Biol. 429:2726–45
    [Google Scholar]
  91. 91.  Yao X-Q, Cato MC, Labudde E, Beyett TS, Tesmer JJG, Grant BJ 2017. Navigating the conformational landscape of G protein–coupled receptor kinases during allosteric activation. J. Biol. Chem. 292:16032–43
    [Google Scholar]
  92. 92.  Ye L, Van Eps N, Zimmer M, Ernst OP, Prosser RS 2016. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature 533:265–68
    [Google Scholar]
  93. 93.  Zhan X, Gimenez LE, Gurevich VV, Spiller BW 2011. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. J. Mol. Biol. 406:467–78
    [Google Scholar]
  94. 94.  Zhang Y, Sun B, Feng D, Hu H, Chu M et al. 2017. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546:248–53
    [Google Scholar]
  95. 95.  Zhou XE, He Y, de Waal PW, Gao X, Kang Y et al. 2017. Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170:457–69.e13
    [Google Scholar]
  96. 96.  Zhuang T, Chen Q, Cho MK, Vishnivetskiy SA, Iverson TM fhgkhjlbnlkhg1315 et al. 2013. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. PNAS 110:942–47
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070317-032931
Loading
/content/journals/10.1146/annurev-biophys-070317-032931
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error