1932

Abstract

The ability of bacterial cells to adjust their gene expression program in response to environmental perturbation is often critical for their survival. Recent experimental advances allowing us to quantitatively record gene expression dynamics in single cells and in populations coupled with mathematical modeling enable mechanistic understanding on how these responses are shaped by the underlying regulatory networks. Here, we review how the combination of local and global factors affect dynamical responses of gene regulatory networks. Our goal is to discuss the general principles that allow extrapolation from a few model bacteria to less understood microbes. We emphasize that, in addition to well-studied effects of network architecture, network dynamics are shaped by global pleiotropic effects and cell physiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070317-032947
2018-05-20
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070317-032947.html?itemId=/content/journals/10.1146/annurev-biophys-070317-032947&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Alon U. 2007. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8:450–61
    [Google Scholar]
  2. 2.  Ames P, Studdert CA, Reiser RH, Parkinson JS 2002. Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. PNAS 99:7060–65
    [Google Scholar]
  3. 3.  Angeli D, Ferrell JE Jr, Sontag ED 2004. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. PNAS 101:1822–27
    [Google Scholar]
  4. 4.  Arsene F, Tomoyasu T, Bukau B 2000. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 55:3–9
    [Google Scholar]
  5. 5.  Ascensao JA, Datta P, Hancioglu B, Sontag E, Gennaro ML, Igoshin OA 2016. Non-monotonic response to monotonic stimulus: regulation of glyoxylate shunt gene-expression dynamics in Mycobacterium tuberculosis. PLOS Comp. Biol. 12:e1004741
    [Google Scholar]
  6. 6.  Austin DW, Allen MS, McCollum JM, Dar RD, Wilgus JR et al. 2006. Gene network shaping of inherent noise spectra. Nature 439:608–11
    [Google Scholar]
  7. 7.  Balaban NQ. 2011. Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr. Opin. Genet. Dev. 21:768–75
    [Google Scholar]
  8. 8.  Barkai N, Leibler S 1997. Robustness in simple biochemical networks. Nature 387:913–17
    [Google Scholar]
  9. 9.  Bennett MR, Volfson D, Tsimring L, Hasty J 2007. Transient dynamics of genetic regulatory networks. Biophys. J. 92:3501–12
    [Google Scholar]
  10. 10.  Berthoumieux S, de Jong H, Baptist G, Pinel C, Ranquet C et al. 2013. Shared control of gene expression in bacteria by transcription factors and global physiology of the cell. Mol. Syst. Biol. 9:634
    [Google Scholar]
  11. 11.  Block DH, Hussein R, Liang LW, Lim HN 2012. Regulatory consequences of gene translocation in bacteria. Nucleic Acids Res 40:8979–92
    [Google Scholar]
  12. 12.  Bradley MD, Beach MB, de Koning AP, Pratt TS, Osuna R 2007. Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiology 153:2922–40
    [Google Scholar]
  13. 13.  Bratsun D, Volfson D, Tsimring LS, Hasty J 2005. Delay-induced stochastic oscillations in gene regulation. PNAS 102:14593–98
    [Google Scholar]
  14. 14.  Bryant JA, Sellars LE, Busby SJ, Lee DJ 2014. Chromosome position effects on gene expression in Escherichia coli K-12. Nucleic Acids Res 42:11383–92
    [Google Scholar]
  15. 15.  Butzin NC, Hochendoner P, Ogle CT, Mather WH 2017. Entrainment of a bacterial synthetic gene oscillator through proteolytic queueing. ACS Synth Biol 6:455–62
    [Google Scholar]
  16. 16.  Cameron DE, Collins JJ 2014. Tunable protein degradation in bacteria. Nat. Biotechnol. 32:1276–81
    [Google Scholar]
  17. 17.  Carbonell-Ballestero M, Duran-Nebreda S, Montañez R, Solé R, Macía J, Rodríguez-Caso C 2014. A bottom-up characterization of transfer functions for synthetic biology designs: lessons from enzymology. Nucleic Acids Res 42:14060–69
    [Google Scholar]
  18. 18.  Chaves M, Albert R, Sontag ED 2005. Robustness and fragility of Boolean models for genetic regulatory networks. J. Theor. Biol. 235:431–49
    [Google Scholar]
  19. 19.  Chen D, Arkin AP 2012. Sequestration-based bistability enables tuning of the switching boundaries and design of a latch. Mol. Syst. Biol. 8:620
    [Google Scholar]
  20. 20.  Chen Y, Jim KJ, Hirning JA, Josić K, Bennett MR 2015. Emergent genetic oscillations in a synthetic microbial consortium. Science 349:986–89
    [Google Scholar]
  21. 21.  Cookson NA, Mather WH, Danino T, Mondragon-Palomino O, Williams RJ et al. 2011. Queueing up for enzymatic processing: correlated signaling through coupled degradation. Mol. Syst. Biol. 7:561
    [Google Scholar]
  22. 22.  Couturier E, Rocha EP 2006. Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol. Microbiol. 59:1506–18
    [Google Scholar]
  23. 23.  Danino T, Mondragon-Palomino O, Tsimring L, Hasty J 2010. A synchronized quorum of genetic clocks. Nature 463:326–30
    [Google Scholar]
  24. 24.  Del Vecchio D, Ninfa AJ, Sontag ED 2008. Modular cell biology: retroactivity and insulation. Mol. Syst. Biol. 4:161
    [Google Scholar]
  25. 25.  Deris JB, Kim M, Zhang Z, Okano H, Hermsen R et al. 2013. The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science 342:1237435
    [Google Scholar]
  26. 26.  Dillon SC, Dorman CJ 2010. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 8:185–95
    [Google Scholar]
  27. 27.  Domian IJ, Reisenauer A, Shapiro L 1999. Feedback control of a master bacterial cell-cycle regulator. PNAS 96:6648–53
    [Google Scholar]
  28. 28.  Dvornyk V, Vinogradova O, Nevo E 2003. Origin and evolution of circadian clock genes in prokaryotes. PNAS 100:2495–500
    [Google Scholar]
  29. 29.  Edwards JS, Ibarra RU, Palsson BO 2001. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat. Biotechnol. 19:125–30
    [Google Scholar]
  30. 30.  Elowitz MB, Leibler S 2000. A synthetic oscillatory network of transcriptional regulators. Nature 403:335–38
    [Google Scholar]
  31. 31.  El-Samad H, Kurata H, Doyle JC, Gross CA, Khammash M 2005. Surviving heat shock: control strategies for robustness and performance. PNAS 102:2736–41
    [Google Scholar]
  32. 32.  Endres RG, Oleksiuk O, Hansen CH, Meir Y, Sourjik V, Wingreen NS 2008. Variable sizes of Escherichia coli chemoreceptor signaling teams. Mol. Syst. Biol. 4:211
    [Google Scholar]
  33. 33.  Fasani RA, Savageau MA 2013. Molecular mechanisms of multiple toxin–antitoxin systems are coordinated to govern the persister phenotype. PNAS 110:E2528–37
    [Google Scholar]
  34. 34.  Fasani RA, Savageau MA 2015. Unrelated toxin–antitoxin systems cooperate to induce persistence. J. R. Soc. Interface 12:20150130
    [Google Scholar]
  35. 35.  Feng J, Kessler DA, Ben-Jacob E, Levine H 2014. Growth feedback as a basis for persister bistability. PNAS 111:544–49
    [Google Scholar]
  36. 36.  Ferrandiz MJ, Arnanz C, Martin-Galiano AJ, Rodriguez-Martin C, de la Campa AG 2014. Role of global and local topology in the regulation of gene expression in Streptococcus pneumoniae. PLOS ONE 9:e101574
    [Google Scholar]
  37. 37.  Fossum S, Crooke E, Skarstad K 2007. Organization of sister origins and replisomes during multifork DNA replication in Escherichia coli. EMBO J 26:4514–22
    [Google Scholar]
  38. 38.  Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS et al. 2011. Competitive and cooperative metabolic interactions in bacterial communities. Nat. Commun. 2:589
    [Google Scholar]
  39. 39.  Gardner TS, Cantor CR, Collins JJ 2000. Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–42
    [Google Scholar]
  40. 40.  Genot AJ, Baccouche A, Sieskind R, Aubert-Kato N, Bredeche N et al. 2016. High-resolution mapping of bifurcations in nonlinear biochemical circuits. Nat. Chem. 8:760–67
    [Google Scholar]
  41. 41.  Gerdes K, Maisonneuve E 2012. Bacterial persistence and toxin-antitoxin loci. Annu. Rev. Microbiol. 66:103–23
    [Google Scholar]
  42. 42.  Gerosa L, Kochanowski K, Heinemann M, Sauer U 2013. Dissecting specific and global transcriptional regulation of bacterial gene expression. Mol. Syst. Biol. 9:658
    [Google Scholar]
  43. 43.  Gillespie DT. 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81:2340–61
    [Google Scholar]
  44. 44.  Goentoro L, Shoval O, Kirschner MW, Alon U 2009. The incoherent feedforward loop can provide fold-change detection in gene regulation. Mol. Cell 36:894–99
    [Google Scholar]
  45. 45.  Goldbeter A. 1995. A model for circadian oscillations in the Drosophila period protein (PER). Proc. R. Soc. B 261:319–24
    [Google Scholar]
  46. 46.  Goldbeter A, Koshland DE Jr 1981. An amplified sensitivity arising from covalent modification in biological systems. PNAS 78:6840–44
    [Google Scholar]
  47. 47.  Goodwin BC. 1965. Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3:425–38
    [Google Scholar]
  48. 48.  Gosset G, Zhang Z, Nayyar S, Cuevas WA, Saier MH Jr. 2004. Transcriptome analysis of Crp-dependent catabolite control of gene expression in Escherichia coli. J. Bacteriol. 186:3516–24
    [Google Scholar]
  49. 49.  Gottesman S. 2005. Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 21:399–404
    [Google Scholar]
  50. 50.  Gottesman S, Roche E, Zhou Y, Sauer RT 1998. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12:1338–47
    [Google Scholar]
  51. 51.  Guido NJ, Wang X, Adalsteinsson D, McMillen D, Hasty J et al. 2006. A bottom-up approach to gene regulation. Nature 439:856–60
    [Google Scholar]
  52. 52.  Gupta C, López JM, Azencott R, Bennett MR, Josić K, Ott W 2014. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations. J. Chem. Phys. 140:204108
    [Google Scholar]
  53. 53.  Gupta C, López JM, Ott W, Josić K, Bennett MR 2013. Transcriptional delay stabilizes bistable gene networks. Phys. Rev. Lett. 111:058104
    [Google Scholar]
  54. 54.  Hanggi P, Talkner P, Borkovec M 1990. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62:251–341
    [Google Scholar]
  55. 55.  Hasty J, Isaacs F, Dolnik M, McMillen D, Collins JJ 2001. Designer gene networks: towards fundamental cellular control. Chaos 11:207–20
    [Google Scholar]
  56. 56.  Heller MJ. 2002. DNA microarray technology: devices, systems, and applications. Annu. Rev. Biomed. Eng. 4:129–53
    [Google Scholar]
  57. 57.  Hibbing ME, Fuqua C, Parsek MR, Peterson SB 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8:15–25
    [Google Scholar]
  58. 58.  Hoynes-O'Connor A, Moon TS 2016. Development of design rules for reliable antisense RNA behavior in E. coli. ACS Synth Biol. 5:1441–54
    [Google Scholar]
  59. 59.  Huang D, Holtz W, Maharbiz M 2012. A genetic bistable switch utilizing nonlinear protein degradation. J. Biol. Eng. 6:9
    [Google Scholar]
  60. 60.  Isalan M, Lemerle C, Michalodimitrakis K, Horn C, Beltrao P et al. 2008. Evolvability and hierarchy in rewired bacterial gene networks. Nature 452:840–45
    [Google Scholar]
  61. 61.  Jacob F, Monod J 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318–56
    [Google Scholar]
  62. 62.  Jang SS, Oishi KT, Egbert RG, Klavins E 2012. Specification and simulation of synthetic multicelled behaviors. ACS Synth Biol 1:365–74
    [Google Scholar]
  63. 63.  Johnson CH, Golden SS, Ishiura M, Kondo T 1996. Circadian clocks in prokaryotes. Mol. Microbiol. 21:5–11
    [Google Scholar]
  64. 64.  Josic K, Lopez JM, Ott W, Shiau L, Bennett MR 2011. Stochastic delay accelerates signaling in gene networks. PLOS Comp. Biol. 7:E1002264
    [Google Scholar]
  65. 65.  Kepler TB, Elston TC 2001. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81:3116–36
    [Google Scholar]
  66. 66.  Keren L, Zackay O, Lotan-Pompan M, Barenholz U, Dekel E et al. 2013. Promoters maintain their relative activity levels under different growth conditions. Mol. Syst. Biol. 9:701
    [Google Scholar]
  67. 67.  Keshet Y, Seger R 2010. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol. Biol. 661:3–38
    [Google Scholar]
  68. 68.  Kim J, Khetarpal I, Sen S, Murray RM 2014. Synthetic circuit for exact adaptation and fold-change detection. Nucleic Acids Res 42:6078–89
    [Google Scholar]
  69. 69.  Kim J, White KS, Winfree E 2006. Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol. Syst. Biol. 2:68
    [Google Scholar]
  70. 70.  Kim KH, Sauro HM 2010. Fan-out in gene regulatory networks. J. Biol. Eng. 4:16
    [Google Scholar]
  71. 71.  Klumpp S, Hwa T 2014. Bacterial growth: global effects on gene expression, growth feedback and proteome partition. Curr. Opin. Biotechnol. 28:96–102
    [Google Scholar]
  72. 72.  Klumpp S, Zhang Z, Hwa T 2009. Growth rate-dependent global effects on gene expression in bacteria. Cell 139:1366–75
    [Google Scholar]
  73. 73.  Levine E, Zhang Z, Kuhlman T, Hwa T 2007. Quantitative characteristics of gene regulation by small RNA. PLOS Biol 5:e229
    [Google Scholar]
  74. 74.  Levskaya A, Chevalier AA, Tabor JJ, Simpson ZB, Lavery LA et al. 2005. Synthetic biology: engineering Escherichia coli to see light. Nature 438:441–42
    [Google Scholar]
  75. 75.  Liu LF, Wang JC 1987. Supercoiling of the DNA template during transcription. PNAS 84:7024–27
    [Google Scholar]
  76. 76.  Locke JC, Elowitz MB 2009. Using movies to analyse gene circuit dynamics in single cells. Nat. Rev. Microbiol. 7:383–92
    [Google Scholar]
  77. 77.  Ma W, Trusina A, El-Samad H, Lim WA, Tang C 2009. Defining network topologies that can achieve biochemical adaptation. Cell 138:760–73
    [Google Scholar]
  78. 78.  Mangan S, Alon U 2003. Structure and function of the feed-forward loop network motif. PNAS 100:11980–85
    [Google Scholar]
  79. 79.  Marchand N, Collins CH 2013. Peptide-based communication system enables Escherichia coli to Bacillus megaterium interspecies signaling. Biotechnol. Bioeng. 110:3003–12
    [Google Scholar]
  80. 80.  Mather W, Bennett MR, Hasty J, Tsimring LS 2009. Delay-induced degrade-and-fire oscillations in small genetic circuits. Phys. Rev. Lett. 102:068105
    [Google Scholar]
  81. 81.  Mee MT, Collins JJ, Church GM, Wang HH 2014. Syntrophic exchange in synthetic microbial communities. PNAS 111:E2149–56
    [Google Scholar]
  82. 82.  Michaelis L, Menten ML 1913. Die kinetik der invertinwirkung. Biochem. Z. 49:333–69
    [Google Scholar]
  83. 83.  Miller MB, Bassler BL 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165–99
    [Google Scholar]
  84. 84.  Moreno-Gamez S, Sorg RA, Domenech A, Kjos M, Weissing FJ et al. 2017. Quorum sensing integrates environmental cues, cell density and cell history to control bacterial competence. Nat. Commun. 8:854
    [Google Scholar]
  85. 85.  Narula J, Kuchina A, Lee DD, Fujita M, Suel GM, Igoshin OA 2015. Chromosomal arrangement of phosphorelay genes couples sporulation and DNA replication. Cell 162:328–37
    [Google Scholar]
  86. 86.  Narula J, Kuchina A, Zhang F, Fujita M, Suel GM, Igoshin OA 2016. Slowdown of growth controls cellular differentiation. Mol. Syst. Biol. 12:871
    [Google Scholar]
  87. 87.  Neumann S, Lovdok L, Bentele K, Meisig J, Ullner E et al. 2014. Exponential signaling gain at the receptor level enhances signal-to-noise ratio in bacterial chemotaxis. PLOS ONE 9:e87815
    [Google Scholar]
  88. 88.  Nevozhay D, Adams RM, Murphy KF, Josic K, Balazsi G 2009. Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression. PNAS 106:5123–28
    [Google Scholar]
  89. 89.  O'Brien EL, Van Itallie E, Bennett MR 2012. Modeling synthetic gene oscillators. Math. Biosci. 236:1–15
    [Google Scholar]
  90. 90.  Ogle CT, Mather WH 2016. Proteolytic crosstalk in multi-protease networks. Phys. Biol. 13:025002
    [Google Scholar]
  91. 91.  Ouzounis CA, Karp PD 2000. Global properties of the metabolic map of Escherichia coli. Genome Res 10:568–76
    [Google Scholar]
  92. 92.  Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K et al. 2013. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–32
    [Google Scholar]
  93. 93.  Paget MS. 2015. Bacterial sigma factors and anti-sigma factors: structure, function and distribution. Biomolecules 5:1245–65
    [Google Scholar]
  94. 94.  Paijmans J, Bosman M, Ten Wolde PR, Lubensky DK 2016. Discrete gene replication events drive coupling between the cell cycle and circadian clocks. PNAS 113:4063–68
    [Google Scholar]
  95. 95.  Palsson B. 2006. Systems Biology: Properties of Reconstructed Networks New York: Cambridge Univ. Press
  96. 96.  Papenfort K, Bassler BL 2016. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14:576–88
    [Google Scholar]
  97. 97.  Pato ML. 1972. Regulation of chromosome replication and the bacterial cell cycle. Annu. Rev. Microbiol. 26:347–68
    [Google Scholar]
  98. 98.  Payne S, Li B, Cao Y, Schaeffer D, Ryser MD, You L 2013. Temporal control of self-organized pattern formation without morphogen gradients in bacteria. Mol. Syst. Biol. 9:697
    [Google Scholar]
  99. 99.  Peles S, Munsky B, Khammash M 2006. Reduction and solution of the chemical master equation using time scale separation and finite state projection. J. Chem. Phys. 125:204104
    [Google Scholar]
  100. 100.  Perkins TJ, Wilds R, Glass L 2010. Robust dynamics in minimal hybrid models of genetic networks. Philos. Trans. R. Soc. A 368:4961–75
    [Google Scholar]
  101. 101.  Pothoulakis G, Ceroni F, Reeve B, Ellis T 2014. The spinach RNA aptamer as a characterization tool for synthetic biology. ACS Synth Biol 3:182–87
    [Google Scholar]
  102. 102.  Prindle A, Selimkhanov J, Li H, Razinkov I, Tsimring LS, Hasty J 2014. Rapid and tunable post-translational coupling of genetic circuits. Nature 508:387–91
    [Google Scholar]
  103. 103.  Rao CV, Arkin AP 2003. Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118:4999–5010
    [Google Scholar]
  104. 104.  Ray JC, Tabor JJ, Igoshin OA 2011. Non-transcriptional regulatory processes shape transcriptional network dynamics. Nat. Rev. Microbiol. 9:817–28
    [Google Scholar]
  105. 105.  Ray JC, Wickersheim ML, Jalihal AP, Adeshina YO, Cooper TF, Balazsi G 2016. Cellular growth arrest and persistence from enzyme saturation. PLOS Comput. Biol. 12:e1004825
    [Google Scholar]
  106. 106.  Rosenfeld N, Elowitz MB, Alon U 2002. Negative autoregulation speeds the response times of transcription networks. J. Mol. Biol. 323:785–93
    [Google Scholar]
  107. 107.  Ross J, Vlad MO 1999. Nonlinear kinetics and new approaches to complex reaction mechanisms. Annu. Rev. Phys. Chem. 50:51–78
    [Google Scholar]
  108. 108.  Sadeghpour M, Veliz-Cuba A, Orosz G, Josić K, Bennett MR 2017. Bistability and oscillations in co-repressive synthetic microbial consortia. Quant. Biol. 5:55–66
    [Google Scholar]
  109. 109.  Sauer C, Syvertsson S, Bohorquez LC, Cruz R, Harwood CR et al. 2016. Effect of genome position on heterologous gene expression in Bacillus subtilis: an unbiased analysis. ACS Synth Biol 5:942–47
    [Google Scholar]
  110. 110.  Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T 2010. Interdependence of cell growth and gene expression: origins and consequences. Science 330:1099–102
    [Google Scholar]
  111. 111.  Scott SR, Hasty J 2016. Quorum sensing communication modules for microbial consortia. ACS Synth Biol 5:969–77
    [Google Scholar]
  112. 112.  Segel IH. 1975. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems New York: Wiley
  113. 113.  Sevier SA, Kessler DA, Levine H 2016. Mechanical bounds to transcriptional noise. PNAS 113:13983–88
    [Google Scholar]
  114. 114.  Sevier SA, Levine H 2017. Mechanical properties of transcription. Phys. Rev. Lett. 118:268101
    [Google Scholar]
  115. 115.  Shahrezaei V, Marguerat S 2015. Connecting growth with gene expression: of noise and numbers. Curr. Opin. Microbiol. 25:127–35
    [Google Scholar]
  116. 116.  Shaner NC, Steinbach PA, Tsien RY 2005. A guide to choosing fluorescent proteins. Nat. Methods 2:905–9
    [Google Scholar]
  117. 117.  Shong J, Huang YM, Bystroff C, Collins CH 2013. Directed evolution of the quorum-sensing regulator EsaR for increased signal sensitivity. ACS Chem. Biol. 8:789–95
    [Google Scholar]
  118. 118.  Shoval O, Goentoro L, Hart Y, Mayo A, Sontag E, Alon U 2010. Fold-change detection and scalar symmetry of sensory input fields. PNAS 107:15995–6000
    [Google Scholar]
  119. 119.  Siegal-Gaskins D, Grotewold E, Smith GD 2009. The capacity for multistability in small gene regulatory networks. BMC Syst. Biol. 3:96
    [Google Scholar]
  120. 120.  Slager J, Veening JW 2016. Hard-wired control of bacterial processes by chromosomal gene location. Trends Microbiol 24:788–800
    [Google Scholar]
  121. 121.  Smits WK, Kuipers OP, Veening JW 2006. Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol. 4:259–71
    [Google Scholar]
  122. 122.  Smolen P, Baxter DA, Byrne JH 2002. A reduced model clarifies the role of feedback loops and time delays in the Drosophila circadian oscillator. Biophys. J. 83:2349–59
    [Google Scholar]
  123. 123.  Sobetzko P. 2016. Transcription-coupled DNA supercoiling dictates the chromosomal arrangement of bacterial genes. Nucleic Acids Res 44:1514–24
    [Google Scholar]
  124. 124.  Sobetzko P, Glinkowska M, Travers A, Muskhelishvili G 2013. DNA thermodynamic stability and supercoil dynamics determine the gene expression program during the bacterial growth cycle. Mol. Biosyst. 9:1643–51
    [Google Scholar]
  125. 125.  Sobetzko P, Travers A, Muskhelishvili G 2012. Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. PNAS 109:E42–50
    [Google Scholar]
  126. 126.  Soler-Bistue A, Mondotte JA, Bland MJ, Val ME, Saleh MC, Mazel D 2015. Genomic location of the major ribosomal protein gene locus determines Vibrio cholerae global growth and infectivity. PLOS Genet 11:e1005156
    [Google Scholar]
  127. 127.  Sourjik V, Berg HC 2004. Functional interactions between receptors in bacterial chemotaxis. Nature 428:437–41
    [Google Scholar]
  128. 128.  Stock AM, Robinson VL, Goudreau PN 2000. Two-component signal transduction. Annu. Rev. Biochem. 69:183–215
    [Google Scholar]
  129. 129.  Stoleriu I, Davidson FA, Liu JL 2004. Quasi-steady state assumptions for non-isolated enzyme-catalysed reactions. J. Math. Biol. 48:82–104
    [Google Scholar]
  130. 130.  Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J 2008. A fast, robust and tunable synthetic gene oscillator. Nature 456:516–19
    [Google Scholar]
  131. 131.  Tabor JJ, Salis HM, Simpson ZB, Chevalier AA, Levskaya A et al. 2009. A synthetic genetic edge detection program. Cell 137:1272–81
    [Google Scholar]
  132. 132.  Tamsir A, Tabor JJ, Voigt CA 2011. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469:212–15
    [Google Scholar]
  133. 133.  Tiwari A, Balazsi G, Gennaro ML, Igoshin OA 2010. The interplay of multiple feedback loops with post-translational kinetics results in bistability of mycobacterial stress response. Phys. Biol. 7:036005
    [Google Scholar]
  134. 134.  Tiwari A, Ray JC, Narula J, Igoshin OA 2011. Bistable responses in bacterial genetic networks: designs and dynamical consequences. Math. Biosci. 231:76–89
    [Google Scholar]
  135. 135.  Tsai TY, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE Jr 2008. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321:126–29
    [Google Scholar]
  136. 136.  Tyson JJ, Chen KC, Novak B 2003. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15:221–31
    [Google Scholar]
  137. 137.  Ukai-Tadenuma M, Yamada RG, Xu HY, Ripperger JA, Liu AC, Ueda HR 2011. Delay in feedback repression by Cryptochrome 1 is required for circadian clock function. Cell 144:268–81
    [Google Scholar]
  138. 138.  van Riel NA 2006. Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Brief Bioinform 7:364–74
    [Google Scholar]
  139. 139.  Vinella D, D'Ari R 1995. Overview of controls in the Escherichia coli cell cycle. Bioessays 17:527–36
    [Google Scholar]
  140. 140.  Wilson C, Bellen HJ, Gehring WJ 1990. Position effects on eukaryotic gene expression. Annu. Rev. Cell Biol. 6:679–714
    [Google Scholar]
  141. 141.  Wintermute EH, Silver PA 2010. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6:407
    [Google Scholar]
  142. 142.  Yi TM, Huang Y, Simon MI, Doyle J 2000. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. PNAS 97:4649–53
    [Google Scholar]
  143. 143.  Yin YW, Steitz TA 2002. Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science 298:1387–95
    [Google Scholar]
  144. 144.  You M, Jaffrey SR 2015. Structure and mechanism of RNA mimics of green fluorescent protein. Annu. Rev. Biophys. 44:187–206
    [Google Scholar]
  145. 145.  Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I et al. 2006. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat. Methods 3:623–28
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070317-032947
Loading
/content/journals/10.1146/annurev-biophys-070317-032947
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error