1932

Abstract

Influenza hemagglutinin (HA) is a viral membrane protein responsible for the initial steps of the entry of influenza virus into the host cell. It mediates binding of the virus particle to the host-cell membrane and catalyzes fusion of the viral membrane with that of the host. HA is therefore a major target in the development of antiviral strategies. The fusion of two membranes involves high activation barriers and proceeds through several intermediate states. Here, we provide a biophysical description of the membrane fusion process, relating its kinetic and thermodynamic properties to the large conformational changes taking place in HA and placing these in the context of multiple HA proteins working together to mediate fusion. Furthermore, we highlight the role of novel single-particle experiments and computational approaches in understanding the fusion process and their complementarity with other biophysical approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070317-033018
2018-05-20
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070317-033018.html?itemId=/content/journals/10.1146/annurev-biophys-070317-033018&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Aeffner S, Reusch T, Weinhausen B, Salditt T 2012. Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. PNAS 109:E1609–18This research reports on the free-energy barrier for stalk formation, highlighting the effects of hydration.
    [Google Scholar]
  2. 2.  Apellaniz B, Huarte N, Largo E, Nieva JL 2014. The three lives of viral fusion peptides. Chem. Phys. Lipids 181:40–55
    [Google Scholar]
  3. 3.  Armstrong RT, Kushnir AS, White JM 2000. The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition. J. Cell Biol. 151:425–37
    [Google Scholar]
  4. 4.  Axelrod D. 2001. Total internal reflection fluorescence microscopy in cell biology. Traffic 2:764–74
    [Google Scholar]
  5. 5.  Blijleven JS, Boonstra S, Onck PR, van der Giessen E, van Oijen AM 2016. Mechanisms of influenza viral membrane fusion. Semin. Cell Dev. Biol. 60:78–88
    [Google Scholar]
  6. 6.  Boonstra S, Onck PR, van der Giessen E 2017. Computation of hemagglutinin free energy difference by the confinement method. J. Phys. Chem. B 121:11292–303
    [Google Scholar]
  7. 7.  Borrego-Diaz E, Peeples ME, Markosyan RM, Melikyan GB, Cohen FS 2003. Completion of trimeric hairpin formation of influenza virus hemagglutinin promotes fusion pore opening and enlargement. Virology 316:234–44
    [Google Scholar]
  8. 8.  Brandenburg B, Zhuang X 2007. Virus trafficking—learning from single-virus tracking. Nat. Rev. Microbiol. 5:197–208
    [Google Scholar]
  9. 9.  Bullough PA, Hughson FM, Skehel JJ, Wiley DC 1994. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43
    [Google Scholar]
  10. 10.  Calder LJ, Rosenthal PB 2016. Cryomicroscopy provides structural snapshots of influenza virus membrane fusion. Nat. Struct. Mol. Biol. 23:853–58
    [Google Scholar]
  11. 11.  Campelo F, Arnarez C, Marrink SJ, Kozlov MM 2014. Helfrich model of membrane bending: from Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Adv. Colloid Interface Sci. 208:25–33
    [Google Scholar]
  12. 12.  Carr CM, Kim PS 1993. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73:823–32
    [Google Scholar]
  13. 13.  Chang D-K, Cheng S-F, Kantchev EAB, Lin C-H, Liu Y-T 2008. Membrane interaction and structure of the transmembrane domain of influenza hemagglutinin and its fusion peptide complex. BMC Biol 6:2
    [Google Scholar]
  14. 14.  Chao LH, Klein DE, Schmidt AG, Peña JM, Harrison SC 2014. Sequential conformational rearrangements in flavivirus membrane fusion. eLife 3:e04389
    [Google Scholar]
  15. 15.  Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC 1998. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95:409–17
    [Google Scholar]
  16. 16.  Chen J, Skehel JJ, Wiley DC 1999. N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA2 subunit to form an N cap that terminates the triple-stranded coiled coil. PNAS 96:8967–72
    [Google Scholar]
  17. 17.  Chernomordik LV, Kozlov MM 2003. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72:175–207
    [Google Scholar]
  18. 18.  Chernomordik LV, Kozlov MM 2008. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15:675–83
    [Google Scholar]
  19. 19.  Chlanda P, Mekhedov E, Waters H, Schwartz CL, Fischer ER et al. 2016. The hemifusion structure induced by influenza virus haemagglutinin is determined by physical properties of the target membranes. Nat. Microbiol. 1:16050
    [Google Scholar]
  20. 20.  Chlanda P, Zimmerberg J 2016. Protein–lipid interactions critical to replication of the influenza A virus. FEBS Lett 590:1940–54
    [Google Scholar]
  21. 21.  Cohen FS. 2016. How viruses invade cells. Biophys. J. 110:1028–32
    [Google Scholar]
  22. 22.  Cohen FS, Melikyan GB 2004. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol. 199:1–14
    [Google Scholar]
  23. 23.  Costello DA, Lee DW, Drewes J, Vasquez KA, Kisler K et al. 2012. Influenza virus-membrane fusion triggered by proton uncaging for single particle studies of fusion kinetics. Anal. Chem. 84:8480–89
    [Google Scholar]
  24. 24.  Costello DA, Millet JK, Hsia C, Whittaker GR, Daniel S 2013. Single particle assay of coronavirus membrane fusion with proteinaceous receptor-embedded supported bilayers. Biomaterials 34:7895–904
    [Google Scholar]
  25. 25.  Costello DA, Whittaker GR, Daniel S 2015. Variations in pH sensitivity, acid stability, and fusogenicity of three influenza virus H3 subtypes. J. Virol. 89:350–60
    [Google Scholar]
  26. 26.  D'Agostino M, Risselada HJ, Mayer A 2016. Steric hindrance of SNARE transmembrane domain organization impairs the hemifusion-to-fusion transition. EMBO Rep 17:1590–608An exemplary experimental and computational collaboration on transmembrane domain effects in SNARE-mediated fusion.
    [Google Scholar]
  27. 27.  Daniels RS, Downie JC, Hay AJ, Knossow M, Skehel JJ et al. 1985. Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40:431–39
    [Google Scholar]
  28. 28.  Di Lella S, Herrmann A, Mair CM 2016. Modulation of the pH stability of influenza virus hemagglutinin: a host cell adaptation strategy. Biophys. J. 110:2293–301
    [Google Scholar]
  29. 29.  Doms RW, Helenius A, White J 1985. Membrane fusion activity of the influenza virus hemagglutinin: the low pH-induced conformational change. J. Biol. Chem. 260:2973–81
    [Google Scholar]
  30. 30.  Donten ML, Hassan S, Popp A, Halter J, Hauser K, Hamm P 2015. pH-jump induced leucine zipper folding beyond the diffusion limit. J. Phys. Chem. B 119:1425–32
    [Google Scholar]
  31. 31.  Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE 2012. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys. 41:429–52
    [Google Scholar]
  32. 32.  Dudko OK. 2015. Decoding the mechanical fingerprints of biomolecules. Q. Rev. Biophys. 49:e3
    [Google Scholar]
  33. 33.  Englander SW, Mayne L, Kan Z-Y, Hu W 2016. Protein folding—how and why: by hydrogen exchange, fragment separation, and mass spectrometry. Annu. Rev. Biophys. 45:135–52
    [Google Scholar]
  34. 34.  Floyd DL, Ragains JR, Skehel JJ, Harrison SC, van Oijen AM 2008. Single-particle kinetics of influenza virus membrane fusion. PNAS 105:15382–87
    [Google Scholar]
  35. 35.  Fontana J, Cardone G, Heymann JB, Winkler DC, Steven AC 2012. Structural changes in influenza virus at low pH characterized by cryo-electron tomography. J. Virol. 86:2919–29
    [Google Scholar]
  36. 36.  Fuhrmans M, Marelli G, Smirnova YG, Müller M 2015. Mechanics of membrane fusion/pore formation. Chem. Phys. Lipids 185:109–28
    [Google Scholar]
  37. 37.  Fuhrmans M, Marrink SJ 2012. Molecular view of the role of fusion peptides in promoting positive membrane curvature. J. Am. Chem. Soc. 134:1543–52
    [Google Scholar]
  38. 38.  Gao Y, Zorman S, Gundersen G, Xi Z, Ma L et al. 2012. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337:1340–43
    [Google Scholar]
  39. 39.  Garcia NK, Guttman M, Ebner JL, Lee KK 2015. Dynamic changes during acid-induced activation of influenza hemagglutinin. Structure 23:665–76
    [Google Scholar]
  40. 40.  Garcia NK, Lee KK 2016. Dynamic viral glycoprotein machines: approaches for probing transient states that drive membrane fusion. Viruses 8:15
    [Google Scholar]
  41. 41.  Gerl MJ, Sampaio JL, Urban S, Kalvodova L, Verbavatz J et al. 2012. Quantitative analysis of the lipidomes of the influenza virus envelope and MDCK cell apical membrane. J. Cell Biol. 196:213–21
    [Google Scholar]
  42. 42.  Ghosh U, Xie L, Jia L, Liang S, Weliky DP 2015. Closed and semiclosed interhelical structures in membrane versus closed and open structures in detergent for the influenza virus hemagglutinin fusion peptide and correlation of hydrophobic surface area with fusion catalysis. J. Am. Chem. Soc. 137:7548–51
    [Google Scholar]
  43. 43.  Godley L, Pfeifer J, Steinhauer DA, Ely B, Shaw G et al. 1992. Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity. Cell 68:635–45
    [Google Scholar]
  44. 44.  Gui L, Ebner JL, Mileant A, Williams JA, Lee KK 2016. Visualization and sequencing of membrane remodeling leading to influenza virus fusion. J. Virol. 90:6948–62Cryo-EM images of influenza virion–vesicle fusion show dimple formation and curious areas of close bilayer apposition.
    [Google Scholar]
  45. 45.  Hamilton BS, Whittaker GR, Daniel S 2012. Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 4:1144–68
    [Google Scholar]
  46. 46.  Han X, Bushweller JH, Cafiso DS, Tamm LK 2001. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat. Struct. Biol. 8:715–20
    [Google Scholar]
  47. 47.  Harrison SC. 2008. Viral membrane fusion. Nat. Struct. Mol. Biol. 15:690–98
    [Google Scholar]
  48. 48.  Harrison SC. 2015. Viral membrane fusion. Virology 479:498–507
    [Google Scholar]
  49. 49.  Helfrich W. 1973. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28:693–703
    [Google Scholar]
  50. 50.  Herrmann A, Sieben C 2015. Single-virus force spectroscopy unravels molecular details of virus infection. Integr. Biol. 7:620–32
    [Google Scholar]
  51. 51.  Huang Q, Korte T, Rachakonda PS, Knapp EW, Herrmann A 2009. Energetics of the loop-to-helix transition leading to the coiled-coil structure of influenza virus hemagglutinin HA2 subunits. Proteins 74:291–303
    [Google Scholar]
  52. 52.  Huang Q, Opitz R, Knapp EW, Herrmann A 2002. Protonation and stability of the globular domain of influenza virus hemagglutinin. Biophys. J. 82:1050–58
    [Google Scholar]
  53. 53.  Huang Q, Rachakonda PS, Ludwig K, Korte T, Böttcher C, Herrmann A 2003. Early steps of the conformational change of influenza virus hemagglutinin to a fusion active state: stability and energetics of the hemagglutinin. Biochim. Biophys. Acta 1614:3–13
    [Google Scholar]
  54. 54.  Imai M, Mizuno T, Kawasaki K 2006. Membrane fusion by single influenza hemagglutinin trimers: kinetic evidence from image analysis of hemagglutinin-reconstituted vesicles. J. Biol. Chem. 281:12729–35
    [Google Scholar]
  55. 55.  Ingolfsson HI, Lopez CA, Uusitalo JJ, de Jong DH, Gopal SM et al. 2014. The power of coarse graining in biomolecular simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4:225–48
    [Google Scholar]
  56. 56.  Ivanovic T, Choi JL, Whelan SPJ, van Oijen AM, Harrison SC 2013. Influenza virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates. eLife 2:e00333
    [Google Scholar]
  57. 57.  Ivanovic T, Harrison SC 2015. Distinct functional determinants of influenza hemagglutinin-mediated membrane fusion. eLife 4:e11009The authors identify nonproductive HA pathways as plausibly explaining the observed low inhibitor count fusion inhibition.
    [Google Scholar]
  58. 58.  Jahn R, Scheller RH 2006. SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7:631–43
    [Google Scholar]
  59. 59.  Jiao J, Rebane AA, Ma L, Gao Y, Zhang Y 2015. Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition. PNAS 112:E2855–64An insightful study revealing the free energy available from HIV-1 gp41 refolding using optical tweezers.
    [Google Scholar]
  60. 60.  Kapanidis AN, Laurence TA, Lee NK, Margeat E, Kong X, Weiss S 2005. Alternating-laser excitation of single molecules. Acc. Chem. Res. 38:523–33
    [Google Scholar]
  61. 61.  Kasson PM, Kelley NW, Singhal N, Vrljic M, Brunger AT, Pande VS 2006. Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion. PNAS 103:11916–21
    [Google Scholar]
  62. 62.  Kasson PM, Lindahl E, Pande VS 2010. Atomic-resolution simulations predict a transition state for vesicle fusion defined by contact of a few lipid tails. PLOS Comput. Biol. 6:e1000829
    [Google Scholar]
  63. 63.  Kasson PM, Pande VS 2007. Control of membrane fusion mechanism by lipid composition: predictions from ensemble molecular dynamics. PLOS Comput. Biol. 3:2228–38
    [Google Scholar]
  64. 64.  Kawamoto S, Klein ML, Shinoda W 2015. Coarse-grained molecular dynamics study of membrane fusion: curvature effects on free energy barriers along the stalk mechanism. J. Chem. Phys. 143:243112
    [Google Scholar]
  65. 65.  Kemble GW, Bodian DL, Rose J, Wilson IA, White JM 1992. Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin. J. Virol. 66:4940–50
    [Google Scholar]
  66. 66.  Kemble GW, Danieli T, White JM 1994. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76:383–91
    [Google Scholar]
  67. 67.  Kielian M. 2014. Mechanisms of virus membrane fusion proteins. Annu. Rev. Virol. 1:171–89
    [Google Scholar]
  68. 68.  Kim IS, Jenni S, Stanifer ML, Roth E, Whelan SPJ et al. 2017. Mechanism of membrane fusion induced by vesicular stomatitis virus G protein. PNAS 114:E28–36
    [Google Scholar]
  69. 69.  Kozlov MM, Campelo F, Liska N, Chernomordik LV, Marrink SJ, McMahon HT 2014. Mechanisms shaping cell membranes. Curr. Opin. Cell Biol. 29:53–60
    [Google Scholar]
  70. 70.  Kozlov MM, McMahon HT, Chernomordik LV 2010. Protein-driven membrane stresses in fusion and fission. Trends Biochem. Sci. 35:699–706
    [Google Scholar]
  71. 71.  Kozlovsky Y, Chernomordik LV, Kozlov MM 2002. Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. Biophys. J. 83:2634–51
    [Google Scholar]
  72. 72.  Kozlovsky Y, Efrat A, Siegel DP, Kozlov MM 2004. Stalk phase formation: effects of dehydration and saddle splay modulus. Biophys. J. 87:2508–21
    [Google Scholar]
  73. 73.  Kozlovsky Y, Kozlov MM 2002. Stalk model of membrane fusion: solution of energy crisis. Biophys. J. 82:882–95
    [Google Scholar]
  74. 74.  Krumbiegel M, Herrmann A, Blumenthal R 1994. Kinetics of the low pH-induced conformational changes and fusogenic activity of influenza hemagglutinin. Biophys. J. 67:2355–60
    [Google Scholar]
  75. 75.  Kuzmin PI, Zimmerberg J, Chizmadzhev YA, Cohen F 2001. A quantitative model for membrane fusion based on low-energy intermediates. PNAS 98:7235–40
    [Google Scholar]
  76. 76.  Lagache T, Sieben C, Meyer T, Herrmann A, Holcman D 2017. Stochastic model of acidification, activation of hemagglutinin and escape of influenza viruses from an endosome. Front. Phys. 5:25
    [Google Scholar]
  77. 77.  Lai AL, Freed JH 2015. The interaction between influenza HA fusion peptide and transmembrane domain affects membrane structure. Biophys. J. 109:2523–36
    [Google Scholar]
  78. 78.  Lakadamyali M, Rust MJ, Babcock HP, Zhuang X 2003. Visualizing infection of individual influenza viruses. PNAS 100:9280–85
    [Google Scholar]
  79. 79.  Larsson P, Kasson PM 2013. Lipid tail protrusion in simulations predicts fusogenic activity of influenza fusion peptide mutants and conformational models. PLOS Comput. Biol. 9:e1002950
    [Google Scholar]
  80. 80.  Lee KK, Pessi A, Gui L, Santoprete A, Talekar A et al. 2011. Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus. J. Biol. Chem. 286:42141–49
    [Google Scholar]
  81. 81.  Leikina E, Chernomordik LV 2000. Reversible merger of membranes at the early stage of influenza hemagglutinin-mediated fusion. Mol. Biol. Cell 11:2359–71
    [Google Scholar]
  82. 82.  Leikina E, Mittal A, Cho MS, Melikov K, Kozlov MM, Chernomordik LV 2004. Influenza hemagglutinins outside of the contact zone are necessary for fusion pore expansion. J. Biol. Chem. 279:26526–32
    [Google Scholar]
  83. 83.  Lentz BR, Lee J 1999. Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release?. Mol. Membr. Biol. 16:279–96
    [Google Scholar]
  84. 84.  Li F, Pincet F, Perez E, Eng WS, Melia TJ et al. 2007. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14:890–96
    [Google Scholar]
  85. 85.  Lin X, Eddy NR, Noel JK, Whitford PC, Wang Q et al. 2014. Order and disorder control the functional rearrangement of influenza hemagglutinin. PNAS 111:12049–54These simulations on a structure-based model of HA suggest two pathways for HA refolding.
    [Google Scholar]
  86. 86.  Lin X, Noel JK, Wang Q, Ma J, Onuchic JN 2016. Lowered pH leads to fusion peptide release and a highly dynamic intermediate of influenza hemagglutinin. J. Phys. Chem. B 120:9654–60
    [Google Scholar]
  87. 87.  Lorieau JL, Louis JM, Bax A 2010. The complete influenza hemagglutinin fusion domain adopts a tight helical hairpin arrangement at the lipid:water interface. PNAS 107:11341–46
    [Google Scholar]
  88. 88.  Markvoort AJ, Marrink SJ 2011. Lipid acrobatics in the membrane fusion arena. Curr. Top. Membr. 68:259–94
    [Google Scholar]
  89. 89.  Marrink SJ, Mark AE 2003. The mechanism of vesicle fusion as revealed by molecular dynamics simulations. J. Am. Chem. Soc. 125:11144–45
    [Google Scholar]
  90. 90.  Martens S, McMahon HT 2008. Mechanisms of membrane fusion: disparate players and common principles. Nat. Rev. Mol. Cell Biol. 9:543–56
    [Google Scholar]
  91. 91.  Marti DN, Bjelic S, Lu M, Bosshard H, Jelesarov I 2004. Fast folding of the HIV-1 and SIV gp41 six-helix bundles. J. Mol. Biol. 336:1–8
    [Google Scholar]
  92. 92.  Melikyan GB, White JM, Cohen FS 1995. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J. Cell Biol. 131:679–91
    [Google Scholar]
  93. 93.  Mirjanian D, Dickey AN, Hoh JH, Woolf TB, Stevens MJ 2010. Splaying of aliphatic tails plays a central role in barrier crossing during liposome fusion. J. Phys. Chem. B 114:11061–68
    [Google Scholar]
  94. 94.  Mori T, Miyashita N, Im W, Feig M, Sugita Y 2016. Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochim. Biophys. Acta 1858:1635–51
    [Google Scholar]
  95. 95.  Munro JB, Gorman J, Ma X, Zhou Z, Arthos J et al. 2014. Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science 346:759–63The first to measure conformational dynamics of a viral fusion protein using fluorescence resonance energy transfer.
    [Google Scholar]
  96. 96.  Nikolaus J, Stöckl M, Langosch D, Volkmer R, Herrmann A 2010. Direct visualization of large and protein-free hemifusion diaphragms. Biophys. J. 98:1192–99
    [Google Scholar]
  97. 97.  Nikolaus J, Warner JM, O'Shaughnessy B, Herrmann A 2011. The pathway to membrane fusion through hemifusion. Curr. Top. Membr. 68:1–32
    [Google Scholar]
  98. 98.  Oelkers M, Witt H, Halder P, Jahn R, Janshoff A 2016. SNARE-mediated membrane fusion trajectories derived from force-clamp experiments. PNAS 113:13051–56
    [Google Scholar]
  99. 99.  Otterstrom JJ, Brandenburg B, Koldijk MH, Juraszek J, Tang C et al. 2014. Relating influenza virus membrane fusion kinetics to stoichiometry of neutralizing antibodies at the single-particle level. PNAS 111:E5143–48
    [Google Scholar]
  100. 100.  Otterstrom JJ, van Oijen AM 2013. Visualization of membrane fusion, one particle at a time. Biochemistry 52:1654–68
    [Google Scholar]
  101. 101.  Ovchinnikov V, Cecchini M, Karplus M 2013. A simplified confinement method for calculating absolute free energies and free energy and entropy differences. J. Phys. Chem. B. 117:750–62
    [Google Scholar]
  102. 102.  Park HE, Gruenke JA, White JM 2003. Leash in the groove mechanism of membrane fusion. Nat. Struct. Biol. 10:1048–53
    [Google Scholar]
  103. 103.  Perez A, Morrone JA, Simmerling C, Dill KA 2016. Advances in free-energy-based simulations of protein folding and ligand binding. Curr. Opin. Struct. Biol. 36:25–31
    [Google Scholar]
  104. 104.  Reddy T, Shorthouse D, Parton DL, Jefferys E, Fowler PW et al. 2015. Nothing to sneeze at: a dynamic and integrative computational model of an influenza A virion. Structure 23:584–97
    [Google Scholar]
  105. 105.  Risselada HJ, Bubnis G, Grubmüller H 2014. Expansion of the fusion stalk and its implication for biological membrane fusion. PNAS 111:11043–48
    [Google Scholar]
  106. 106.  Risselada HJ, Marelli G, Fuhrmans M, Smirnova YG, Grubmüller H et al. 2012. Line-tension controlled mechanism for influenza fusion. PLOS ONE 7:e38302
    [Google Scholar]
  107. 107.  Risselada HJ, Smirnova YG, Grubmüller H 2014. Free energy landscape of rim-pore expansion in membrane fusion. Biophys. J. 107:2287–95
    [Google Scholar]
  108. 108.  Rizo J, Xu J 2015. The synaptic vesicle release machinery. Annu. Rev. Biophys. 44:339–67
    [Google Scholar]
  109. 109.  Ruigrok RWH, Martin SR, Wharton SA, Skehel JJ, Bayley PM, Wiley DC 1986. Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes. Virology 155:484–97
    [Google Scholar]
  110. 110.  Ryham RJ, Klotz TS, Yao L, Cohen FS 2016. Calculating transition energy barriers and characterizing activation states for steps of fusion. Biophys. J. 110:1110–24
    [Google Scholar]
  111. 111.  Salditt T, Aeffner S 2016. X-ray structural investigations of fusion intermediates: lipid model systems and beyond. Semin. Cell Dev. Biol. 60:65–77
    [Google Scholar]
  112. 112.  Sampaio JL, Gerl MJ, Klose C, Ejsing CS, Beug H et al. 2011. Membrane lipidome of an epithelial cell line. PNAS 108:1903–7
    [Google Scholar]
  113. 113.  Sauter NK, Bednarski MD, Wurzburg BA, Hanson JE, Whitesides GM et al. 1989. Hemagglutinins from 2 influenza virus variants bind to sialic-acid derivatives with millimolar dissociation constants: a 500-MHz proton nuclear magnetic-resonance study. Biochemistry 28:8388–96
    [Google Scholar]
  114. 114.  Sauter NK, Hanson JE, Glick GD, Brown JH, Crowther RL et al. 1992. Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry 31:9609–21
    [Google Scholar]
  115. 115.  Seo J, Cohen C 1993. Pitch diversity in alpha-helical coiled coils. Proteins 15:223–34
    [Google Scholar]
  116. 116.  Shroff H, Reinhard BM, Siu M, Agarwal H, Spakowitz A, Liphardt J 2005. Biocompatible force sensor with optical readout and dimensions of 6 nm3. Nano Lett 5:1509–14
    [Google Scholar]
  117. 117.  Skehel JJ, Wiley DC 1998. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell 95:871–74
    [Google Scholar]
  118. 118.  Skehel JJ, Wiley DC 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69:531–69
    [Google Scholar]
  119. 119.  Smirnova YG, Fuhrmans M, Vidal IAB, Müller M 2015. Free-energy calculation methods for collective phenomena in membranes. J. Phys. D Appl. Phys. 48:343001
    [Google Scholar]
  120. 120.  Smirnova YG, Marrink SJ, Lipowsky R, Knecht V 2010. Solvent-exposed tails as prestalk transition states for membrane fusion at low hydration. J. Am. Chem. Soc. 132:6710–18
    [Google Scholar]
  121. 121.  Smrt ST, Draney AW, Lorieau JL 2015. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature. J. Biol. Chem. 290:228–38
    [Google Scholar]
  122. 122.  Stegmann T, Delfino JM, Richards FM, Helenius A 1991. The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion. J. Biol. Chem. 266:18404–10
    [Google Scholar]
  123. 123.  Tahir MA, Van Lehn RC, Choi SH, Alexander-Katz A 2016. Solvent-exposed lipid tail protrusions depend on lipid membrane composition and curvature. Biochim. Biophys. Acta 1858:1207–15
    [Google Scholar]
  124. 124.  Valsson O, Tiwary P, Parrinello M 2016. Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Annu. Rev. Phys. Chem. 67:159–84
    [Google Scholar]
  125. 125.  Vanderlinden E, Naesens L 2014. Emerging antiviral strategies to interfere with influenza virus entry. Med. Res. Rev. 34:301–39
    [Google Scholar]
  126. 126.  Varkouhi AK, Scholte M, Storm G, Haisma HJ 2011. Endosomal escape pathways for delivery of biologicals. J. Controll. Release 151:220–28
    [Google Scholar]
  127. 127.  Vigant F, Santos NC, Lee B 2015. Broad-spectrum antivirals against viral fusion. Nat. Rev. Microbiol. 13:426–37
    [Google Scholar]
  128. 128.  Weber T, Paesold G, Galli C, Mischler R, Semenza G, Brunner J 1994. Evidence for H+-induced insertion of influenza hemagglutinin HA2 N-terminal segment into viral membrane. J. Biol. Chem. 269:18353–58
    [Google Scholar]
  129. 129.  Wessels L, Elting MW, Scimeca D, Weninger K 2007. Rapid membrane fusion of individual virus particles with supported lipid bilayers. Biophys. J. 93:526–38
    [Google Scholar]
  130. 130.  Wharton SA, Calder LJ, Ruigrok RWH, Skehel JJ, Steinhauer DA, Wiley DC 1995. Electron microscopy of antibody complexes of influenza virus hemagglutinin in the fusion pH conformation. EMBO J 14:240–46
    [Google Scholar]
  131. 131.  White JM, Whittaker GR 2016. Fusion of enveloped viruses in endosomes. Traffic 17:593–614
    [Google Scholar]
  132. 132.  Wild CT, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ 1994. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. PNAS 91:9770–74
    [Google Scholar]
  133. 133.  Wilson IA, Skehel JJ, Wiley DC 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–73
    [Google Scholar]
  134. 134.  Woodside MT, Block SM 2014. Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annu. Rev. Biophys. 43:19–39
    [Google Scholar]
  135. 135.  Wu Z, Bello OD, Thiyagarajan S, Auclair SM, Vennekate W et al. 2017. Dilation of fusion pores by crowding of SNARE proteins. eLife 6:e22964
    [Google Scholar]
  136. 136.  Yang S, Kiessling V, Simmons JA, White JM, Tamm LK 2015. HIV gp41-mediated membrane fusion occurs at edges of cholesterol-rich lipid domains. Nat. Chem. Biol. 11:424–31
    [Google Scholar]
  137. 137.  Zhang Y, Dudko OK 2015. Statistical mechanics of viral entry. Phys. Rev. Lett. 114:018104The paper consolidates current biophysical understanding by providing an analytical model of influenza fusion.
    [Google Scholar]
  138. 138.  Zhao W, Hamid E, Shin W, Wen PJ, Krystofiak ES et al. 2016. Hemi-fused structure mediates and controls fusion and fission in live cells. Nature 534:548–52
    [Google Scholar]
  139. 139.  Zhou Y, Wu C, Zhao L, Huang N 2014. Exploring the early stages of the pH-induced conformational change of influenza hemagglutinin. Proteins 82:2412–28The mechanism of HA1 dissociation and fusion peptide release is investigated in these pioneering constant-pH MD simulations.
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070317-033018
Loading
/content/journals/10.1146/annurev-biophys-070317-033018
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error