1932

Abstract

G protein–coupled receptors (GPCRs) represent a large superfamily of membrane proteins that mediate cell signaling and regulate a variety of physiological processes in the human body. Structure-function studies of this superfamily were enabled a decade ago by multiple breakthroughs in technology that included receptor stabilization, crystallization in a membrane environment, and microcrystallography. The recent emergence of X-ray free-electron lasers (XFELs) has further accelerated structural studies of GPCRs and other challenging proteins by overcoming radiation damage and providing access to high-resolution structures and dynamics using micrometer-sized crystals. Here, we summarize key technology advancements and major milestones of GPCR research using XFELs and provide a brief outlook on future developments in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070317-033239
2018-05-20
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070317-033239.html?itemId=/content/journals/10.1146/annurev-biophys-070317-033239&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Angel TE, Chance MR, Palczewski K 2009. Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors. PNAS 106:8555–60
    [Google Scholar]
  2. 2.  Attwood TK, Findlay JB 1994. Fingerprinting G-protein-coupled receptors. Protein Eng 7:195–203
    [Google Scholar]
  3. 3.  Audet M, Bouvier M 2012. Restructuring G-protein-coupled receptor activation. Cell 151:14–23
    [Google Scholar]
  4. 4.  Bai X-C, McMullan G, Scheres SHW 2015. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40:49–57
    [Google Scholar]
  5. 5.  Barends TR, Foucar L, Ardevol A, Nass K, Aquila A et al. 2015. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 350:445–50
    [Google Scholar]
  6. 6.  Battye TGG, Kontogiannis L, Johnson O, Powell HR, Leslie AGW 2011. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67:271–81
    [Google Scholar]
  7. 7.  Batyuk A, Galli L, Ishchenko A, Han GW, Gati C et al. 2016. Native phasing of x-ray free-electron laser data for a G protein–coupled receptor. Sci. Adv. 2:e1600292
    [Google Scholar]
  8. 8.  Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN et al. 2000. The Protein Data Bank. Nucleic Acids Res 28:235–42
    [Google Scholar]
  9. 9.  Boutet S, Lomb L, Williams GJ, Barends TR, Aquila A et al. 2012. High-resolution protein structure determination by serial femtosecond crystallography. Science 337:362–64
    [Google Scholar]
  10. 10.  Boutet S, Williams GJ 2010. The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). New J. Phys. 12:035024
    [Google Scholar]
  11. 11.  Brehm W, Diederichs K 2014. Breaking the indexing ambiguity in serial crystallography. Acta Crystallogr. D Biol. Crystallogr. 70:101–9
    [Google Scholar]
  12. 12.  Caffrey M, Cherezov V 2009. Crystallizing membrane proteins using lipidic mesophases. Nat. Protoc. 4:706–31
    [Google Scholar]
  13. 13.  Caffrey M, Lyons J, Smyth T, Hart DJ 2009. Monoacylglycerols: the workhorse lipids for crystallizing membrane proteins in mesophases. Curr. Top. Membr. 63:83–108
    [Google Scholar]
  14. 14.  Carpenter B, Nehmé R, Warne T, Leslie AGW, Tate CG 2016. Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536:104–7
    [Google Scholar]
  15. 15.  Chapman HN, Fromme P, Barty A, White TA, Kirian RA et al. 2011. Femtosecond X-ray protein nanocrystallography. Nature 470:73–77
    [Google Scholar]
  16. 16.  Cherezov V. 2011. Lipidic cubic phase technologies for membrane protein structural studies. Curr. Opin. Struct. Biol. 21:559–66
    [Google Scholar]
  17. 17.  Cherezov V, Abola E, Stevens RC 2010. Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets. Methods Mol. Biol. 654:141–68
    [Google Scholar]
  18. 18.  Cherezov V, Clogston J, Misquitta Y, Abdel-Gawad W, Caffrey M 2002. Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophys. J. 83:3393–407
    [Google Scholar]
  19. 19.  Cherezov V, Clogston J, Papiz MZ, Caffrey M 2006. Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J. Mol. Biol. 357:1605–18
    [Google Scholar]
  20. 20.  Cherezov V, Hanson MA, Griffith MT, Hilgart MC, Sanishvili R et al. 2009. Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 μm size X-ray synchrotron beam. J. R. Soc. Interface 6:S587
    [Google Scholar]
  21. 21.  Cherezov V, Liu J, Griffith M, Hanson MA, Stevens RC 2008. LCP-FRAP assay for pre-screening membrane proteins for in meso crystallization. Cryst. Growth Des. 8:4307–15
    [Google Scholar]
  22. 22.  Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS et al. 2007. High-resolution crystal structure of an engineered human β2-adrenergic G protein–coupled receptor. Science 318:1258–65
    [Google Scholar]
  23. 23.  Chun E, Thompson AA, Liu W, Roth CB, Griffith MT et al. 2012. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20:967–76
    [Google Scholar]
  24. 24.  Day PW, Rasmussen SG, Parnot C, Fung JJ, Masood A et al. 2007. A monoclonal antibody for G protein–coupled receptor crystallography. Nat. Methods 4:927–29
    [Google Scholar]
  25. 25.  DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D et al. 2008. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D Appl. Phys. 41:195505
    [Google Scholar]
  26. 26.  Dodevski I, Pluckthun A 2011. Evolution of three human GPCRs for higher expression and stability. J. Mol. Biol. 408:599–615
    [Google Scholar]
  27. 27.  Duisenberg A. 1992. Indexing in single-crystal diffractometry with an obstinate list of reflections. J. Appl. Crystallogr. 25:92–96
    [Google Scholar]
  28. 28.  Emma P, Akre R, Arthur J, Bionta R, Bostedt C et al. 2010. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photon. 4:641–47
    [Google Scholar]
  29. 29.  Fenalti G, Abola EE, Wang C, Wu B, Cherezov V 2015. Fluorescence recovery after photobleaching in lipidic cubic phase (LCP-FRAP): a precrystallization assay for membrane proteins. Methods Enzymol 557:417–37
    [Google Scholar]
  30. 30.  Fenalti G, Zatsepin NA, Betti C, Giguere P, Han GW et al. 2015. Structural basis for bifunctional peptide recognition at human delta-opioid receptor. Nat. Struct. Mol. Biol. 22:265–68
    [Google Scholar]
  31. 31.  Galandrin S, Oligny-Longpré G, Bouvier M 2007. The evasive nature of drug efficacy: implications for drug discovery. Trends Pharmacol. Sci. 28:423–30
    [Google Scholar]
  32. 32.  Ghosh E, Kumari P, Jaiman D, Shukla AK 2015. Methodological advances: the unsung heroes of the GPCR structural revolution. Nat. Rev. Mol. Cell. Biol. 16:69–81
    [Google Scholar]
  33. 33.  Ginn HM, Brewster AS, Hattne J, Evans G, Wagner A et al. 2015. A revised partiality model and post-refinement algorithm for X-ray free-electron laser data. Acta Crystallogr. D Biol. Crystallogr. 71:1400–10
    [Google Scholar]
  34. 34.  Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP et al. 2008. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16:897–905
    [Google Scholar]
  35. 35.  Hart P, Boutet S, Carini G, Dragone A, Duda B et al. 2012. The Cornell-SLAC pixel array detector at LCLS Presented at 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/IMC), Oct. 29–Nov. 3 Anaheim, CA:
    [Google Scholar]
  36. 36.  Hato M, Yamashita J, Shiono M 2009. Aqueous phase behavior of lipids with isoprenoid type hydrophobic chains. J. Phys. Chem. B 113:10196–209
    [Google Scholar]
  37. 37.  Hattne J, Echols N, Tran R, Kern J, Gildea RJ et al. 2014. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nat. Methods 11:545–48
    [Google Scholar]
  38. 38.  Heng BC, Aubel D, Fussenegger M 2013. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases. Biotechnol. Adv. 31:1676–94
    [Google Scholar]
  39. 39.  Henrich B, Becker J, Dinapoli R, Goettlicher P, Graafsma H et al. 2011. The adaptive gain integrating pixel detector AGIPD a detector for the European XFEL. Nucl. Inst. Methods Phys. A 633:S11–14
    [Google Scholar]
  40. 40.  Heydenreich FM, Vuckovic Z, Matkovic M, Veprintsev DB 2015. Stabilization of G protein-coupled receptors by point mutations. Front. Pharmacol. 6:82
    [Google Scholar]
  41. 41.  Hirata K, Shinzawa-Itoh K, Yano N, Takemura S, Kato K et al. 2014. Determination of damage-free crystal structure of an X-ray-sensitive protein using an XFEL. Nat. Methods 11:734–36
    [Google Scholar]
  42. 42.  Hollenstein K, Kean J, Bortolato A, Cheng RK, Doré AS et al. 2013. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499:438–43
    [Google Scholar]
  43. 43.  Hutchings CJ, Koglin M, Olson WC, Marshall FH 2017. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat. Rev. Drug Discov. 16:661
    [Google Scholar]
  44. 44.  Isberg V, Mordalski S, Munk C, Rataj K, Harpsøe K et al. 2016. GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res 44:D356–64
    [Google Scholar]
  45. 45.  Ishchenko A, Cherezov V, Liu W 2016. Preparation and delivery of microcrystals in lipidic cubic phase for serial femtosecond crystallography. J. Vis. Exp. 115:e54463
    [Google Scholar]
  46. 46.  Ishchenko A, Peng L, Zinovev E, Vlasov A, Lee SC et al. 2017. Chemically stable lipids for membrane protein crystallization. Cryst. Growth Des. 17:3502–11
    [Google Scholar]
  47. 47.  Ishchenko A, Wacker D, Kapoor M, Zhang A, Han GW et al. 2017. Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody. PNAS 114:8223–28
    [Google Scholar]
  48. 48.  Johansson LC, Stauch B, Ishchenko A, Cherezov V 2017. A bright future for serial femtosecond crystallography with XFELs. Trends Biochem. Sci. 42:749–62
    [Google Scholar]
  49. 49.  Kabsch W. 2010. XDS. Acta Crystallogr. D Biol. Crystallogr. 66:125–32
    [Google Scholar]
  50. 50.  Kabsch W. 2014. Processing of X-ray snapshots from crystals in random orientations. Acta Crystallogr. D Biol. Crystallogr. 70:2204–16
    [Google Scholar]
  51. 51.  Kang Y, Zhou XE, Gao X, He Y, Liu W et al. 2015. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–67
    [Google Scholar]
  52. 52.  Katritch V, Cherezov V, Stevens RC 2013. Structure-function of the G protein–coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53:531–56
    [Google Scholar]
  53. 53.  Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC 2014. Allosteric sodium in class A GPCR signaling. Trends Biochem. Sci. 39:233–44
    [Google Scholar]
  54. 54.  Kern J, Alonso-Mori R, Hellmich J, Tran R, Hattne J et al. 2012. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. PNAS 109:9721–26
    [Google Scholar]
  55. 55.  Kern J, Tran R, Alonso-Mori R, Koroidov S, Echols N et al. 2014. Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy. Nat. Commun. 5:4371
    [Google Scholar]
  56. 56.  Kirian RA, Wang X, Weierstall U, Schmidt KE, Spence JC et al. 2010. Femtosecond protein nanocrystallography-data analysis methods. Opt. Express 18:5713–23
    [Google Scholar]
  57. 57.  Koth CM, Murray JM, Mukund S, Madjidi A, Minn A et al. 2012. Molecular basis for negative regulation of the glucagon receptor. PNAS 109:14393–98
    [Google Scholar]
  58. 58.  Kupitz C, Basu S, Grotjohann I, Fromme R, Zatsepin NA et al. 2014. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513:261–65
    [Google Scholar]
  59. 59.  Kupitz C, Olmos JL, Holl M, Tremblay L, Pande K et al. 2017. Structural enzymology using X-ray free electron lasers. Struct. Dyn. 4:044003
    [Google Scholar]
  60. 60.  Landau EM, Rosenbusch JP 1996. Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. PNAS 93:14532–35
    [Google Scholar]
  61. 61.  Liu Q, Dahmane T, Zhang Z, Assur Z, Brasch J et al. 2012. Structures from anomalous diffraction of native biological macromolecules. Science 336:1033–37
    [Google Scholar]
  62. 62.  Liu W, Chun E, Thompson AA, Chubukov P, Xu F et al. 2012. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–36
    [Google Scholar]
  63. 63.  Liu W, Hanson MA, Stevens RC, Cherezov V 2010. LCP-Tm: an assay to measure and understand stability of membrane proteins in a membrane environment. Biophys. J. 98:1539–48
    [Google Scholar]
  64. 64.  Liu W, Ishchenko A, Cherezov V 2014. Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography. Nat. Protoc. 9:2123–34
    [Google Scholar]
  65. 65.  Liu W, Wacker D, Gati C, Han GW, James D et al. 2013. Serial femtosecond crystallography of G protein-coupled receptors. Science 342:1521–24
    [Google Scholar]
  66. 66.  Liu W, Wacker D, Wang C, Abola E, Cherezov V 2014. Femtosecond crystallography of membrane proteins in the lipidic cubic phase. Philos. Trans. R. Soc. B 369:20130314
    [Google Scholar]
  67. 67.  Luttrell LM, Lefkowitz RJ 2002. The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell. Sci. 115:455–65
    [Google Scholar]
  68. 68.  Magnani F, Shibata Y, Serrano-Vega MJ, Tate CG 2008. Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor. PNAS 105:10744–49
    [Google Scholar]
  69. 69.  Mariani V, Morgan A, Yoon CH, Lane TJ, White TA et al. 2016. OnDA: online data analysis and feedback for serial X-ray imaging. J. Appl. Crystallogr. 49:1073–80
    [Google Scholar]
  70. 70.  Misquitta Y, Cherezov V, Havas F, Patterson S, Mohan JM et al. 2004. Rational design of lipid for membrane protein crystallization. J. Struct. Biol. 148:169–75
    [Google Scholar]
  71. 71.  Mozzanica A, Bergamaschi A, Brueckner M, Cartier S, Dinapoli R et al. 2016. Characterization results of the JUNGFRAU full scale readout ASIC. J. Instrument. 11:C02047
    [Google Scholar]
  72. 72.  Nakane T, Song C, Suzuki M, Nango E, Kobayashi J et al. 2015. Native sulfur/chlorine SAD phasing for serial femtosecond crystallography. Acta Crystallogr. D Biol. Crystallogr. 71:2519–25
    [Google Scholar]
  73. 73.  Nango E, Royant A, Kubo M, Nakane T, Wickstrand C et al. 2016. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 354:1552–57
    [Google Scholar]
  74. 74.  Nass K, Meinhart A, Barends TR, Foucar L, Gorel A et al. 2016. Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data. IUCrJ 3:180–91
    [Google Scholar]
  75. 75.  Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J 2000. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406:752–57
    [Google Scholar]
  76. 76.  Overington JP, Al-Lazikani B, Hopkins AL 2006. How many drug targets are there?. Nat. Rev. Drug Discov. 5:993–96
    [Google Scholar]
  77. 77.  Pande K, Hutchison CD, Groenhof G, Aquila A, Robinson JS et al. 2016. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352:725–29
    [Google Scholar]
  78. 78.  Pile D. 2011. X-rays: first light from SACLA. Nat. Photon. 5:456–57
    [Google Scholar]
  79. 79.  Rajagopal S, Rajagopal K, Lefkowitz RJ 2010. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat. Rev. Drug Discov. 9:373–86
    [Google Scholar]
  80. 80.  Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY et al. 2011. Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477:549–55
    [Google Scholar]
  81. 81.  Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS et al. 2017. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16:19–34
    [Google Scholar]
  82. 82.  Sarkar CA, Dodevski I, Kenig M, Dudli S, Mohr A et al. 2008. Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. PNAS 105:14808–13
    [Google Scholar]
  83. 83.  Sauter NK. 2015. XFEL diffraction: developing processing methods to optimize data quality. J. Synchrotron Radiat. 22:239–48
    [Google Scholar]
  84. 84.  Sauter NK, Hattne J, Brewster AS, Echols N, Zwart PH, Adams PD 2014. Improved crystal orientation and physical properties from single-shot XFEL stills. Acta Crystallogr. D Biol. Crystallogr. 70:3299–309
    [Google Scholar]
  85. 85.  Schmidt M. 2013. Mix and inject: reaction initiation by diffusion for time-resolved macromolecular crystallography. Adv. Condens. Mat. Phys. 2013:10
    [Google Scholar]
  86. 86.  Schmidt M. 2017. Time-resolved macromolecular crystallography at modern X-ray sources. Protein Crystallography: Methods and Protocols A Wlodawer, Z Dauter, M Jaskolski 273–94 New York: Springer New York
    [Google Scholar]
  87. 87.  Serrano-Vega MJ, Magnani F, Shibata Y, Tate CG 2008. Conformational thermostabilization of the β1-adrenergic receptor in a detergent-resistant form. PNAS 105:877–82
    [Google Scholar]
  88. 88.  Siu FY, He M, de Graaf C, Han GW, Yang D et al. 2013. Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–49
    [Google Scholar]
  89. 89.  Spence JCH, Lattman E 2016. Imaging enzyme kinetics at atomic resolution. IUCrJ 3:228–29
    [Google Scholar]
  90. 90.  Spence JCH, Weierstall U, Chapman HN 2012. X-ray lasers for structural and dynamic biology. Rep. Prog. Phys. 75:102601
    [Google Scholar]
  91. 91.  Stagno JR, Liu Y, Bhandari YR, Conrad CE, Panja S et al. 2017. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 541:242–46
    [Google Scholar]
  92. 92.  Stan CA, Milathianaki D, Laksmono H, Sierra RG, McQueen TA et al. 2016. Liquid explosions induced by X-ray laser pulses. Nat. Phys. 12:966–71
    [Google Scholar]
  93. 93.  Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P et al. 2013. GPCR Network: a large-scale collaboration on GPCR structure and function. Nat. Rev. Drug Discov. 12:25–34
    [Google Scholar]
  94. 94.  Tenboer J, Basu S, Zatsepin N, Pande K, Milathianaki D et al. 2014. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346:1242–46
    [Google Scholar]
  95. 95.  Thompson AA, Liu JJ, Chun E, Wacker D, Wu H et al. 2011. GPCR stabilization using the bicelle-like architecture of mixed sterol-detergent micelles. Methods 55:310–17
    [Google Scholar]
  96. 96.  Uervirojnangkoorn M, Zeldin OB, Lyubimov AY, Hattne J, Brewster AS et al. 2015. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals. eLife 4:e05421
    [Google Scholar]
  97. 97.  Vaidehi N, Grisshammer R, Tate CG 2016. How do mutations thermostabilize G protein-coupled receptors?. Trends Pharmacol. Sci. 37:37–46
    [Google Scholar]
  98. 98.  van den Bedem H, Fraser JS 2015. Integrative, dynamic structural biology at atomic resolution—it's about time. Nat. Methods 12:307–18
    [Google Scholar]
  99. 99.  Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM 2013. Molecular signatures of G-protein-coupled receptors. Nature 494:185–94
    [Google Scholar]
  100. 100.  Wacker D, Wang C, Katritch V, Han GW, Huang XP et al. 2013. Structural features for functional selectivity at serotonin receptors. Science 340:615–19
    [Google Scholar]
  101. 101.  Wang C, Wu H, Evron T, Vardy E, Han GW et al. 2014. Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat. Commun. 5:4355
    [Google Scholar]
  102. 102.  Wang C, Wu H, Katritch V, Han GW, Huang XP et al. 2013. Structure of the human smoothened receptor bound to an antitumour agent. Nature 497:338–43
    [Google Scholar]
  103. 103.  Weierstall U. 2014. Liquid sample delivery techniques for serial femtosecond crystallography. Philos. Trans. R. Soc. B 369:20130337
    [Google Scholar]
  104. 104.  Weierstall U, James D, Wang C, White TA, Wang D et al. 2014. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5:3309
    [Google Scholar]
  105. 105.  White TA. 2014. Post-refinement method for snapshot serial crystallography. Philos. Trans. R. Soc. B 369:20130330
    [Google Scholar]
  106. 106.  White TA, Mariani V, Brehm W, Yefanov O, Barty A et al. 2016. Recent developments in CrystFEL. J. Appl. Crystallogr. 49:680–89
    [Google Scholar]
  107. 107.  Xiang J, Chun E, Liu C, Jing L, Al-Sahouri Z et al. 2016. Successful strategies to determine high-resolution structures of GPCRs. Trends Pharmacol. Sci. 37:1055–69
    [Google Scholar]
  108. 108.  Yamashita J, Shiono M, Hato M 2008. New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure−aqueous phase structure relationship for lipids with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains. J. Phys. Chem. B 112:12286–96
    [Google Scholar]
  109. 109.  Yefanov O, Mariani V, Gati C, White TA, Chapman HN, Barty A 2015. Accurate determination of segmented X-ray detector geometry. Opt. Express 23:28459–70
    [Google Scholar]
  110. 110.  Zhang D, Gao Z-G, Zhang K, Kiselev E, Crane S et al. 2015. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520:317–21
    [Google Scholar]
  111. 111.  Zhang D, Zhao Q, Wu B 2015. Structural studies of G protein-coupled receptors. Mol. Cells 38:836–42
    [Google Scholar]
  112. 112.  Zhang H, Han GW, Batyuk A, Ishchenko A, White KL et al. 2017. Structural basis for selectivity and diversity in angiotensin II receptors. Nature 544:327–32
    [Google Scholar]
  113. 113.  Zhang H, Qiao A, Yang D, Yang L, Dai A et al. 2017. Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259–64
    [Google Scholar]
  114. 114.  Zhang H, Unal H, Gati C, Han GW, Liu W et al. 2015. Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161:833–44
    [Google Scholar]
  115. 115.  Zhang X, Stevens RC, Xu F 2015. The importance of ligands for G protein-coupled receptor stability. Trends Biochem. Sci. 40:79–87
    [Google Scholar]
  116. 116.  Zhang X, Zhao F, Wu Y, Yang J, Han GW et al. 2017. Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nat. Commun. 8:15383
    [Google Scholar]
  117. 117.  Zheng Y, Qin L, Zacarías NV, de Vries H, Han GW et al. 2016. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature 540:458–61
    [Google Scholar]
  118. 118.  Zhou XE, He Y, de Waal PW, Gao X, Kang Y et al. 2017. Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170:457–69
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070317-033239
Loading
/content/journals/10.1146/annurev-biophys-070317-033239
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error