1932

Abstract

A wide range of cell–microenvironmental interactions are mediated by membrane-localized receptors that bind ligands present on another cell or the extracellular matrix. This situation introduces a number of physical effects including spatial organization of receptor–ligand complexes and development of mechanical forces in cells. Unlike traditional experimental approaches, hybrid live cell–supported lipid bilayer (SLB) systems, wherein a live cell interacts with a synthetic substrate supported membrane, allow interrogation of these aspects of receptor signaling. The SLB system directly offers facile control over the identity, density, and mobility of ligands used for engaging cellular receptors. Further, application of various nano- and micropatterning techniques allows for spatial patterning of ligands. In this review, we describe the hybrid live cell–SLB system and its application in uncovering a range of spatial and mechanical aspects of receptor signaling. We highlight the T cell immunological synapse, junctions formed between EphA2- and ephrinA1-expressing cells, and adhesions formed by cadherin and integrin receptors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070317-033330
2019-05-06
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biophys/48/1/annurev-biophys-070317-033330.html?itemId=/content/journals/10.1146/annurev-biophys-070317-033330&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Andreasson-Ochsner M, Romano G, Hakanson M, Smith ML, Leckband DE et al. 2011. Single cell 3-D platform to study ligand mobility in cell–cell contact. Lab Chip 11:2876–83
    [Google Scholar]
  2. 2.
    Artavanis-Tsakonas S, Rand MD, Lake RJ 1999. Notch signaling: cell fate control and signal integration in development. Science 284:770–76
    [Google Scholar]
  3. 3.
    Atapattu L, Saha N, Llerena C, Vail ME, Scott AM et al. 2012. Antibodies binding the ADAM10 substrate recognition domain inhibit Eph function. J. Cell Sci. 125:6084–93
    [Google Scholar]
  4. 4.
    Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW 1976. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16:1055–69
    [Google Scholar]
  5. 5.
    Baksh MM, Dean C, Pautot S, DeMaria S, Isacoff E, Groves JT 2005. Neuronal activation by GPI-linked neuroligin-1 displayed in synthetic lipid bilayer membranes. Langmuir 21:10693–98
    [Google Scholar]
  6. 6.
    Bashaw GJ, Klein R 2010. Signaling from axon guidance receptors. Cold Spring Harb. Perspect. Biol. 2:a001941
    [Google Scholar]
  7. 7.
    Biswas KH, Cho NJ, Groves JT 2018. Fabrication of multicomponent, spatially segregated DNA and protein functionalized supported membrane microarray. Langmuir 34:9781–88
    [Google Scholar]
  8. 8.
    Biswas KH, Groves JT 2016. A microbead supported membrane-based fluorescence imaging assay reveals intermembrane receptor-ligand complex dimension with nanometer precision. Langmuir 32:6775–80
    [Google Scholar]
  9. 9.
    Biswas KH, Hartman KL, Yu CH, Harrison OJ, Song H et al. 2015. E-cadherin junction formation involves an active kinetic nucleation process. PNAS 112:10932–37
    [Google Scholar]
  10. 10.
    Biswas KH, Hartman KL, Zaidel-Bar R, Groves JT 2016. Sustained α-catenin activation at E-cadherin junctions in the absence of mechanical force. Biophys. J. 111:1044–52
    [Google Scholar]
  11. 11.
    Biswas KH, Jackman JA, Park JH, Groves JT, Cho NJ 2018. Interfacial forces dictate the pathway of phospholipid vesicle adsorption onto silicon dioxide surfaces. Langmuir 34:1775–82
    [Google Scholar]
  12. 12.
    Biswas KH, Zaidel-Bar R 2017. Early events in the assembly of E-cadherin adhesions. Exp. Cell Res. 358:14–19
    [Google Scholar]
  13. 13.
    Biswas KH, Zhongwen C, Dubey AK, Oh D, Groves JT 2018. Multicomponent supported membrane microarray for monitoring spatially resolved cellular signaling reactions. Adv. Biosyst. 2:1800015
    [Google Scholar]
  14. 14.
    Brasch J, Harrison OJ, Honig B, Shapiro L 2012. Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol 22:299–310
    [Google Scholar]
  15. 15.
    Brian AA, McConnell HM 1984. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. PNAS 81:6159–63
    [Google Scholar]
  16. 16.
    Buckley CD, Tan J, Anderson KL, Hanein D, Volkmann N et al. 2014. Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346:1254211
    [Google Scholar]
  17. 17.
    Caculitan NG, Kai H, Liu EY, Fay N, Yu Y et al. 2014. Size-based chromatography of signaling clusters in a living cell membrane. Nano Lett 14:2293–98
    [Google Scholar]
  18. 18.
    Caplan S, Zeliger S, Wang L, Baniyash M 1995. Cell-surface-expressed T-cell antigen-receptor zeta chain is associated with the cytoskeleton. PNAS 92:4768–72
    [Google Scholar]
  19. 19.
    Carter N, Nakamoto T, Hirai H, Hunter T 2002. EphrinA1-induced cytoskeletal re-organization requires FAK and p130cas. Nat. Cell Biol. 4:565–73
    [Google Scholar]
  20. 20.
    Changede R, Xu X, Margadant F, Sheetz MP 2015. Nascent integrin adhesions form on all matrix rigidities after integrin activation. Dev. Cell 35:614–21
    [Google Scholar]
  21. 21.
    Charnley M, Kroschewski R, Textor M 2012. The study of polarisation in single cells using model cell membranes. Integr. Biol. 4:1059–71
    [Google Scholar]
  22. 22.
    Chen CS 2008. Mechanotransduction—a field pulling together. ? J. Cell Sci. 121:3285–92
    [Google Scholar]
  23. 23.
    Chen Y, Muller JD, So PT, Gratton E 1999. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77:553–67
    [Google Scholar]
  24. 24.
    Chen Z, Oh D, Biswas KH, Yu CH, Zaidel-Bar R, Groves JT 2018. Spatially modulated ephrinA1:EphA2 signaling increases local contractility and global focal adhesion dynamics to promote cell motility. PNAS 115:E5696–705
    [Google Scholar]
  25. 25.
    Choudhuri K, Llodra J, Roth EW, Tsai J, Gordo S et al. 2014. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507:118–23
    [Google Scholar]
  26. 26.
    Choudhuri K, Wiseman D, Brown MH, Gould K, van der Merwe PA 2005. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436:578–82
    [Google Scholar]
  27. 27.
    Cordoba SP, Choudhuri K, Zhang H, Bridge M, Basat AB et al. 2013. The large ectodomains of CD45 and CD148 regulate their segregation from and inhibition of ligated T-cell receptor. Blood 121:4295–302
    [Google Scholar]
  28. 28.
    Coyle MP, Xu Q, Chiang S, Francis MB, Groves JT 2013. DNA-mediated assembly of protein heterodimers on membrane surfaces. J. Am. Chem. Soc. 135:5012–16
    [Google Scholar]
  29. 29.
    Cremer PS, Boxer SG 1999. Formation and spreading of lipid bilayers on planar glass supports. J. Phys. Chem. B 103:2554–59
    [Google Scholar]
  30. 30.
    Davis MM, Boniface JJ, Reich Z, Lyons D, Hampl J et al. 1998. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 16:523–44
    [Google Scholar]
  31. 31.
    Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V et al. 1994. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266:816–19
    [Google Scholar]
  32. 32.
    del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP 2009. Stretching single talin rod molecules activates vinculin binding. Science 323:638–41
    [Google Scholar]
  33. 33.
    DeMond AL, Groves JT 2007. Interrogating the T cell synapse with patterned surfaces and photoactivated proteins. Curr. Opin. Immunol. 19:722–27
    [Google Scholar]
  34. 34.
    DeMond AL, Mossman KD, Starr T, Dustin ML, Groves JT 2008. T cell receptor microcluster transport through molecular mazes reveals mechanism of translocation. Biophys. J. 94:3286–92
    [Google Scholar]
  35. 35.
    DeMond AL, Starr T, Dustin ML, Groves JT 2006. Control of antigen presentation with a photoreleasable agonist peptide. J. Am. Chem. Soc. 128:15354–55
    [Google Scholar]
  36. 36.
    Engler AJ, Sen S, Sweeney HL, Discher DE 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:677–89
    [Google Scholar]
  37. 37.
    Fierro-Gonzalez JC, White MD, Silva JC, Plachta N 2013. Cadherin-dependent filopodia control preimplantation embryo compaction. Nat. Cell Biol. 15:1424–33
    [Google Scholar]
  38. 38.
    Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS et al. 1999. The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–27
    [Google Scholar]
  39. 39.
    Greene AC, Lord SJ, Tian A, Rhodes C, Kai H, Groves JT 2014. Spatial organization of EphA2 at the cell-cell interface modulates trans-endocytosis of ephrinA1. Biophys. J. 106:2196–205
    [Google Scholar]
  40. 40.
    Groves JT 2005. Learning the chemical language of cell-surface interactions. Sci. STKE 2005:pe45
    [Google Scholar]
  41. 41.
    Groves JT 2006. Spatial mutation of the T cell immunological synapse. Curr. Opin. Chem. Biol. 10:544–50
    [Google Scholar]
  42. 42.
    Groves JT 2007. Bending mechanics and molecular organization in biological membranes. Annu. Rev. Phys. Chem. 58:697–717
    [Google Scholar]
  43. 43.
    Groves JT, Dustin ML 2003. Supported planar bilayers in studies on immune cell adhesion and communication. J. Immunol. Methods 278:19–32
    [Google Scholar]
  44. 44.
    Groves JT, Kuriyan J 2010. Molecular mechanisms in signal transduction at the membrane. Nat. Struct. Mol. Biol. 17:659–65
    [Google Scholar]
  45. 45.
    Groves JT, Mahal LK, Bertozzi CR 2001. Control of cell adhesion and growth with micropatterned supported lipid membranes. Langmuir 17:5129–33
    [Google Scholar]
  46. 46.
    Groves JT, Parthasarathy R, Forstner MB 2008. Fluorescence imaging of membrane dynamics. Annu. Rev. Biomed. Eng. 10:311–38
    [Google Scholar]
  47. 47.
    Groves JT, Ulman N, Boxer SG 1997. Micropatterning fluid lipid bilayers on solid supports. Science 275:651–53
    [Google Scholar]
  48. 48.
    Guo Z, Neilson LJ, Zhong H, Murray PS, Zanivan S, Zaidel-Bar R 2014. E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Sci. Signal. 7:rs7
    [Google Scholar]
  49. 49.
    Harrison OJ, Bahna F, Katsamba PS, Jin X, Brasch J et al. 2010. Two-step adhesive binding by classical cadherins. Nat. Struct. Mol. Biol. 17:348–57
    [Google Scholar]
  50. 50.
    Harrison OJ, Jin X, Hong S, Bahna F, Ahlsen G et al. 2011. The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19:244–56
    [Google Scholar]
  51. 51.
    Hartman NC, Nye JA, Groves JT 2009. Cluster size regulates protein sorting in the immunological synapse. PNAS 106:12729–34
    [Google Scholar]
  52. 52.
    Himanen JP, Yermekbayeva L, Janes PW, Walker JR, Xu K et al. 2010. Architecture of Eph receptor clusters. PNAS 107:10860–65
    [Google Scholar]
  53. 53.
    Hori K, Sen A, Artavanis-Tsakonas S 2013. Notch signaling at a glance. J. Cell Sci. 126:2135–40
    [Google Scholar]
  54. 54.
    Horton ER, Humphries JD, James J, Jones MC, Askari JA, Humphries MJ 2016. The integrin adhesome network at a glance. J. Cell Sci. 129:4159–63
    [Google Scholar]
  55. 55.
    Hsu CJ, Hsieh WT, Waldman A, Clarke F, Huseby ES et al. 2012. Ligand mobility modulates immunological synapse formation and T cell activation. PLOS ONE 7:e32398
    [Google Scholar]
  56. 56.
    Humpolickova J, Gielen E, Benda A, Fagulova V, Vercammen J et al. 2006. Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys. J. 91:L23–25
    [Google Scholar]
  57. 57.
    Iino R, Koyama I, Kusumi A 2001. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 80:2667–77
    [Google Scholar]
  58. 58.
    Jackson BL, Groves JT 2004. Scanning probe lithography on fluid lipid membranes. J. Am. Chem. Soc. 126:13878–79
    [Google Scholar]
  59. 59.
    James JR, Vale RD 2012. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487:64–69
    [Google Scholar]
  60. 60.
    Kaizuka Y, Groves JT 2004. Structure and dynamics of supported intermembrane junctions. Biophys. J. 86:905–12
    [Google Scholar]
  61. 61.
    Kaizuka Y, Groves JT 2010. Bending-mediated superstructural organizations in phase-separated lipid membranes. New J. Phys. 12:095001
    [Google Scholar]
  62. 62.
    Ketchum C, Miller H, Song W, Upadhyaya A 2014. Ligand mobility regulates B cell receptor clustering and signaling activation. Biophys. J. 106:26–36
    [Google Scholar]
  63. 63.
    Klein R 2012. Eph/ephrin signalling during development. Development 139:4105–9
    [Google Scholar]
  64. 64.
    Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K et al. 2005. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34:351–78
    [Google Scholar]
  65. 65.
    le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N et al. 2010. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J. Cell Biol. 189:1107–15
    [Google Scholar]
  66. 66.
    Leckband DE, de Rooij J 2014. Cadherin adhesion and mechanotransduction. Annu. Rev. Cell Dev. Biol. 30:291–315
    [Google Scholar]
  67. 67.
    Lee IH, Kai H, Carlson LA, Groves JT, Hurley JH 2015. Negative membrane curvature catalyzes nucleation of endosomal sorting complex required for transport (ESCRT)-III assembly. PNAS 112:15892–97
    [Google Scholar]
  68. 68.
    Lillemeier BF, Mortelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM 2010. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11:90–96
    [Google Scholar]
  69. 69.
    Lin WC, Yu CH, Triffo S, Groves JT 2010. Supported membrane formation, characterization, functionalization, and patterning for application in biological science and technology. Curr. Protoc. Chem. Biol. 2:235–69
    [Google Scholar]
  70. 70.
    Liu J, Qi S, Groves JT, Chakraborty AK 2005. Phase segregation on different length scales in a model cell membrane system. J. Phys. Chem. B 109:19960–69
    [Google Scholar]
  71. 71.
    Liu W, Won Sohn H, Tolar P, Meckel T, Pierce SK 2010. Antigen-induced oligomerization of the B cell receptor is an early target of Fcγ RIIB inhibition. J. Immunol. 184:1977–89
    [Google Scholar]
  72. 72.
    Lohmuller T, Iversen L, Schmidt M, Rhodes C, Tu HL et al. 2012. Single molecule tracking on supported membranes with arrays of optical nanoantennas. Nano Lett 12:1717–21
    [Google Scholar]
  73. 73.
    Lohmuller T, Triffo S, O'Donoghue GP, Xu Q, Coyle MP, Groves JT 2011. Supported membranes embedded with fixed arrays of gold nanoparticles. Nano Lett 11:4912–18
    [Google Scholar]
  74. 74.
    Lohmuller T, Xu Q, Groves JT 2013. Nanoscale obstacle arrays frustrate transport of EphA2-Ephrin-A1 clusters in cancer cell lines. Nano Lett 13:3059–64
    [Google Scholar]
  75. 75.
    Manz BN, Groves JT 2010. Spatial organization and signal transduction at intercellular junctions. Nat. Rev. Mol. Cell Biol. 11:342–52
    [Google Scholar]
  76. 76.
    Manz BN, Jackson BL, Petit RS, Dustin ML, Groves J 2011. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters. PNAS 108:9089–94
    [Google Scholar]
  77. 77.
    McMahon HT, Gallop JL 2005. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–96
    [Google Scholar]
  78. 78.
    Miao H, Burnett E, Kinch M, Simon E, Wang B 2000. Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat. Cell Biol. 2:62–69
    [Google Scholar]
  79. 79.
    Milstein O, Tseng SY, Starr T, Llodra J, Nans A et al. 2008. Nanoscale increases in CD2-CD48-mediated intermembrane spacing decrease adhesion and reorganize the immunological synapse. J. Biol. Chem. 283:34414–22
    [Google Scholar]
  80. 80.
    Miura K, Nam JM, Kojima C, Mochizuki N, Sabe H 2009. EphA2 engages Git1 to suppress Arf6 activity modulating epithelial cell-cell contacts. Mol. Biol. Cell 20:1949–59
    [Google Scholar]
  81. 81.
    Mosch B, Reissenweber B, Neuber C, Pietzsch J 2010. Eph receptors and ephrin ligands: important players in angiogenesis and tumor angiogenesis. J. Oncol. 2010:135285
    [Google Scholar]
  82. 82.
    Mossman KD, Campi G, Groves JT, Dustin ML 2005. Altered TCR signaling from geometrically repatterned immunological synapses. Science 310:1191–93
    [Google Scholar]
  83. 83.
    Murai KK, Pasquale EB 2003. ‘Eph'ective signaling: forward, reverse and crosstalk. J. Cell Sci. 116:2823–32
    [Google Scholar]
  84. 84.
    Murphy DA, Courtneidge SA 2011. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 12:413–26
    [Google Scholar]
  85. 85.
    Nair PM, Salaita K, Petit RS, Groves JT 2011. Using patterned supported lipid membranes to investigate the role of receptor organization in intercellular signaling. Nat. Protoc. 6:523–39
    [Google Scholar]
  86. 86.
    Nam JM, Nair PM, Neve RM, Gray JW, Groves JT 2006. A fluid membrane-based soluble ligand-display system for live-cell assays. ChemBioChem 7:436–40
    [Google Scholar]
  87. 87.
    Natkanski E, Lee WY, Mistry B, Casal A, Molloy JE, Tolar P 2013. B cells use mechanical energy to discriminate antigen affinities. Science 340:1587–90
    [Google Scholar]
  88. 88.
    O'Donoghue GP, Pielak RM, Smoligovets AA, Lin JJ, Groves JT 2013. Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells. eLife 2:e00778
    [Google Scholar]
  89. 89.
    Ozono K, Komiya S, Shimamura K, Ito T, Nagafuchi A 2011. Defining the roles of α-catenin in cell adhesion and cytoskeleton organization: isolation of F9 cells completely lacking cadherin-catenin complex. Cell Struct. Funct. 36:131–43
    [Google Scholar]
  90. 90.
    Parthasarathy R, Groves JT 2004. Optical techniques for imaging membrane topography. Cell Biochem. Biophys. 41:391–414
    [Google Scholar]
  91. 91.
    Parthasarathy R, Groves JT 2004. Protein patterns at lipid bilayer junctions. PNAS 101:12798–803
    [Google Scholar]
  92. 92.
    Parthasarathy R, Groves JT 2007. Curvature and spatial organization in biological membranes. Soft Matter 3:24–33
    [Google Scholar]
  93. 93.
    Parthasarathy R, Yu CH, Groves JT 2006. Curvature-modulated phase separation in lipid bilayer membranes. Langmuir 22:5095–99
    [Google Scholar]
  94. 94.
    Pasquale EB 2008. Eph-ephrin bidirectional signaling in physiology and disease. Cell 133:38–52
    [Google Scholar]
  95. 95.
    Pautot S, Lee H, Isacoff EY, Groves JT 2005. Neuronal synapse interaction reconstituted between live cells and supported lipid bilayers. Nat. Chem. Biol. 1:283–89
    [Google Scholar]
  96. 96.
    Perez TD, Nelson WJ, Boxer SG, Kam L 2005. E-cadherin tethered to micropatterned supported lipid bilayers as a model for cell adhesion. Langmuir 21:11963–68
    [Google Scholar]
  97. 97.
    Pielak RM, O'Donoghue GP, Lin JJ, Alfieri KN, Fay NC et al. 2017. Early T cell receptor signals globally modulate ligand:receptor affinities during antigen discrimination. PNAS 114:12190–95
    [Google Scholar]
  98. 98.
    Qi SY, Groves JT, Chakraborty AK 2001. Synaptic pattern formation during cellular recognition. PNAS 98:6548–53
    [Google Scholar]
  99. 99.
    Ruoslahti E 1996. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12:697–715
    [Google Scholar]
  100. 100.
    Sackmann E 1996. Supported membranes: scientific and practical applications. Science 271:43–48
    [Google Scholar]
  101. 101.
    Salaita K, Groves JT 2010. Roles of the cytoskeleton in regulating EphA2 signals. Commun. Integr. Biol. 3:454–57
    [Google Scholar]
  102. 102.
    Salaita K, Nair PM, Petit RS, Neve RM, Das D et al. 2010. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327:1380–85
    [Google Scholar]
  103. 103.
    Sanchez MF, Levi V, Weidemann T, Carrer DC 2015. Agonist mobility on supported lipid bilayers affects Fas mediated death response. FEBS Lett 589:3527–33
    [Google Scholar]
  104. 104.
    Sapuri AR, Baksh MM, Groves JT 2003. Electrostatically targeted intermembrane lipid exchange with micropatterned supported membranes. Langmuir 19:1606–10
    [Google Scholar]
  105. 105.
    Schmid EM, Bakalar MH, Choudhuri K, Weichsel J, Ann H et al. 2016. Size-dependent protein segregation at membrane interfaces. Nat. Phys. 12:704–11
    [Google Scholar]
  106. 106.
    Seguin L, Desgrosellier JS, Weis SM, Cheresh DA 2015. Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends Cell Biol 25:234–40
    [Google Scholar]
  107. 107.
    Seiradake E, Harlos K, Sutton G, Aricescu AR, Jones EY 2010. An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat. Struct. Mol. Biol. 17:398–402
    [Google Scholar]
  108. 108.
    Seiradake E, Schaupp A, del Toro Ruiz D, Kaufmann R, Mitakidis N et al. 2013. Structurally encoded intraclass differences in EphA clusters drive distinct cell responses. Nat. Struct. Mol. Biol. 20:958–64
    [Google Scholar]
  109. 109.
    Shen B, Delaney MK, Du X 2012. Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction. Curr. Opin. Cell Biol. 24:600–6
    [Google Scholar]
  110. 110.
    Singer SJ, Nicolson GL 1972. The fluid mosaic model of the structure of cell membranes. Science 175:720–31
    [Google Scholar]
  111. 111.
    Smith AW, Smoligovets AA, Groves JT 2011. Patterned two-photon photoactivation illuminates spatial reorganization in live cells. J. Phys. Chem. A 115:3867–75
    [Google Scholar]
  112. 112.
    Smoligovets AA, Smith AW, Groves JT 2013. Ratiometric imaging of the T-cell actin cytoskeleton reveals the nature of receptor-induced cytoskeletal enrichment. Biophys. J. 105:L11–13
    [Google Scholar]
  113. 113.
    Smoligovets AA, Smith AW, Wu HJ, Petit RS, Groves JT 2012. Characterization of dynamic actin associations with T-cell receptor microclusters in primary T cells. J. Cell Sci. 125:735–42
    [Google Scholar]
  114. 114.
    Tanaka M, Sackmann E 2005. Polymer-supported membranes as models of the cell surface. Nature 437:656–63
    [Google Scholar]
  115. 115.
    Taylor MJ, Husain K, Gartner ZJ, Mayor S, Vale RD 2017. A DNA-based T cell receptor reveals a role for receptor clustering in ligand discrimination. Cell 169:108–19.e20
    [Google Scholar]
  116. 116.
    Treanor B, Harwood NE, Batista FD 2009. Microsignalosomes: spatially resolved receptor signalling. Biochem. Soc. Trans. 37:1014–18
    [Google Scholar]
  117. 117.
    Vafaei S, Tabaei SR, Biswas KH, Groves JT, Cho N-J 2017. Dynamic cellular interactions with extracellular matrix triggered by biomechanical tuning of low-rigidity, supported lipid membranes. Adv. Healthc. Mater. 6:1700243
    [Google Scholar]
  118. 118.
    Vasioukhin V 2012. Adherens junctions and cancer. Subcell. Biochem. 60:379–414
    [Google Scholar]
  119. 119.
    Vasioukhin V, Bauer C, Yin M, Fuchs E 2000. Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100:209–19
    [Google Scholar]
  120. 120.
    Vogel V, Sheetz M 2006. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:265–75
    [Google Scholar]
  121. 121.
    Wang W, Gulden PH, Pierce RA, Shabanowitz J, Man ST et al. 1997. A naturally processed peptide presented by HLA-A*0201 is expressed at low abundance and recognized by an alloreactive CD8+ cytotoxic T cell with apparent high affinity. J. Immunol. 158:5797–804
    [Google Scholar]
  122. 122.
    Weikl TR, Groves JT, Lipowsky R 2002. Pattern formation during adhesion of multicomponent membranes. Europhys. Lett. 59:916–22
    [Google Scholar]
  123. 123.
    Wise AR, Nye JA, Groves JT 2008. Discrete arrays of liquid-crystal-supported proteolipid monolayers as phantom cell surfaces. ChemPhysChem 9:1688–92
    [Google Scholar]
  124. 124.
    Wong AP, Groves JT 2002. Molecular topography imaging by intermembrane fluorescence resonance energy transfer. PNAS 99:14147–52
    [Google Scholar]
  125. 125.
    Wu SK, Yap AS 2013. Patterns in space: coordinating adhesion and actomyosin contractility at E-cadherin junctions. Cell Commun. Adhes. 20:201–12
    [Google Scholar]
  126. 126.
    Wu Y, Jin X, Harrison O, Shapiro L, Honig BH, Ben-Shaul A 2010. Cooperativity between trans and cis interactions in cadherin-mediated junction formation. PNAS 107:17592–97
    [Google Scholar]
  127. 127.
    Wu Y, Kanchanawong P, Zaidel-Bar R 2015. Actin-delimited adhesion-independent clustering of E-cadherin forms the nanoscale building blocks of adherens junctions. Dev. Cell 32:139–54
    [Google Scholar]
  128. 128.
    Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B 2011. Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475:510–13
    [Google Scholar]
  129. 129.
    Xu Q, Lin WC, Petit RS, Groves JT 2011. EphA2 receptor activation by monomeric Ephrin-A1 on supported membranes. Biophys. J. 101:2731–39
    [Google Scholar]
  130. 130.
    Yang B, Lieu ZZ, Wolfenson H, Hameed FM, Bershadsky AD, Sheetz MP 2016. Mechanosensing controlled directly by tyrosine kinases. Nano Lett 16:5951–61
    [Google Scholar]
  131. 131.
    Yao M, Qiu W, Liu R, Efremov AK, Cong P et al. 2014. Force-dependent conformational switch of α-catenin controls vinculin binding. Nat. Commun. 5:4525
    [Google Scholar]
  132. 132.
    Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M 2010. α-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12:533–42
    [Google Scholar]
  133. 133.
    Yu CH, Groves JT 2010. Engineering supported membranes for cell biology. Med. Biol. Eng. Comput. 48:955–63
    [Google Scholar]
  134. 134.
    Yu CH, Law JB, Suryana M, Low HY, Sheetz MP 2011. Early integrin binding to Arg-Gly-Asp peptide activates actin polymerization and contractile movement that stimulates outward translocation. PNAS 108:20585–90
    [Google Scholar]
  135. 135.
    Yu CH, Rafiq NB, Cao F, Zhou Y, Krishnasamy A et al. 2015. Integrin-β3 clusters recruit clathrin-mediated endocytic machinery in the absence of traction force. Nat. Commun. 6:8672
    [Google Scholar]
  136. 136.
    Yu CH, Rafiq NB, Krishnasamy A, Hartman KL, Jones GE et al. 2013. Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep 5:1456–68
    [Google Scholar]
  137. 137.
    Yu CH, Wu HJ, Kaizuka Y, Vale RD, Groves JT 2010. Altered actin centripetal retrograde flow in physically restricted immunological synapses. PLOS ONE 5:e11878
    [Google Scholar]
  138. 138.
    Yu Y, Fay NC, Smoligovets AA, Wu HJ, Groves JT 2012. Myosin IIA modulates T cell receptor transport and CasL phosphorylation during early immunological synapse formation. PLOS ONE 7:e30704
    [Google Scholar]
  139. 139.
    Yu Y, Smoligovets AA, Groves JT 2013. Modulation of T cell signaling by the actin cytoskeleton. J. Cell Sci. 126:1049–58
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070317-033330
Loading
/content/journals/10.1146/annurev-biophys-070317-033330
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error