1932

Abstract

Dynamic neutron scattering directly probes motions in biological systems on femtosecond to microsecond timescales. When combined with molecular dynamics simulation and normal mode analysis, detailed descriptions of the forms and frequencies of motions can be derived. We examine vibrations in proteins, the temperature dependence of protein motions, and concepts describing the rich variety of motions detectable using neutrons in biological systems at physiological temperatures. New techniques for deriving information on collective motions using coherent scattering are also reviewed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070317-033358
2018-05-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070317-033358.html?itemId=/content/journals/10.1146/annurev-biophys-070317-033358&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Acbas G, Niessen KA, Snell EH, Markelz AG 2014. Optical measurements of long-range protein vibrations. Nat. Commun. 5:3076
    [Google Scholar]
  2. 2.  Ackerson BJ, Pusey PN, Tough RJA 1982. Interpretation of the intermediate scattering function at short times. J. Chem. Phys. 76:1279–82
    [Google Scholar]
  3. 3.  Alberts B. 1998. The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–94
    [Google Scholar]
  4. 4.  Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I 2001. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80:505–15
    [Google Scholar]
  5. 5.  Balog E, Becker T, Oettl M, Lechner R, Daniel R et al. 2004. Direct determination of vibrational density of states change on ligand binding to a protein. Phys. Rev. Lett. 93:28103
    [Google Scholar]
  6. 6.  Balog E, Perahia D, Smith JC, Merzel F 2011. Vibrational softening of a protein on ligand binding. J. Phys. Chem. B 115:6811–17
    [Google Scholar]
  7. 7.  Becker T, Hayward JA, Finney JL, Daniel RM, Smith JC 2004. Neutron frequency windows and the protein dynamical transition. Biophys. J. 87:1436–44
    [Google Scholar]
  8. 8.  Becker T, Smith JC 2003. Energy resolution and dynamical heterogeneity effects on elastic incoherent neutron scattering from molecular systems. Phys. Rev. E 67:21904
    [Google Scholar]
  9. 9.  Bee M. 1988. Quasielastic Neutron Scattering: Principles and Application in Solid-State Chemistry, Biology and Materials Science Bristol, UK: Adam Hilger
  10. 10.  Bicout DJ, Zaccai G 2001. Protein flexibility from the dynamical transition: a force constant analysis. Biophys. J. 80:1115–23
    [Google Scholar]
  11. 11.  Biehl R, Hoffmann B, Monkenbusch M, Falus P, Préost S et al. 2008. Direct observation of correlated interdomain motion in alcohol dehydrogenase. Phys. Rev. Lett. 101:138102
    [Google Scholar]
  12. 12.  Boura E, Różycki B, Herrick DZ, Chung HS, Vecer J et al. 2011. Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy. PNAS 108:9437–42
    [Google Scholar]
  13. 13.  Bu Z, Biehl R, Monkenbusch M, Richter D, Callaway DJE 2005. Coupled protein domain motion in Taq polymerase revealed by neutron spin-echo spectroscopy. PNAS 102:17646–51
    [Google Scholar]
  14. 14.  Busch S, Smuda C, Pardo LC, Unruh T 2010. Molecular mechanism of long-range diffusion in phospholipid membranes studied by quasielastic neutron scattering. J. Am. Chem. Soc. 132:3232–33
    [Google Scholar]
  15. 15.  Calandrini V, Hamon V, Hinsen K, Calligari P, Bellissent-Funel M-C, Kneller GR 2008. Relaxation dynamics of lysozyme in solution under pressure: combining molecular dynamics simulations and quasielastic neutron scattering. Chem. Phys. 345:289–97
    [Google Scholar]
  16. 16.  Capaccioli S, Ngai KL, Ancherbak S, Paciaroni A 2012. Evidence of coexistence of change of caged dynamics at Tg and the dynamic transition at Td in solvated proteins. J. Phys. Chem. B 116:1745–57
    [Google Scholar]
  17. 17.  Chen S-H, Lagi M, Chu X, Zhang Y, Kim C et al. 2010. Dynamics of a globular protein and its hydration water studied by neutron scattering and MD simulations. Spectrosc. Int. J. 24:1–24
    [Google Scholar]
  18. 18.  Chen S-H, Liu L, Fratini E, Baglioni P, Faraone A, Mamontov E 2006. Observation of fragile-to-strong dynamic crossover in protein hydration water. PNAS 103:9012–16
    [Google Scholar]
  19. 19.  Chudley CT, Elliott RJ 1961. Neutron scattering from a liquid on a jump diffusion model. Proc. Phys. Soc. 77:353
    [Google Scholar]
  20. 20.  Conti Nibali V, D'Angelo G, Paciaroni A, Tobias DJ, Tarek M 2014. On the coupling between the collective dynamics of proteins and their hydration water. J. Phys. Chem. Lett. 5:1181–86
    [Google Scholar]
  21. 21.  Cusack S, Smith J, Finney J, Tidor B, Karplus M 1988. Inelastic neutron scattering analysis of picosecond internal protein dynamics: comparison of harmonic theory with experiment. J. Mol. Biol. 202:903–8
    [Google Scholar]
  22. 22.  Daniel RM, Dunn R V, Finney JL, Smith JC 2003. The role of dynamics in enzyme activity. Annu. Rev. Biophys. Biomol. Struct. 32:69–92
    [Google Scholar]
  23. 23.  De Gennes PG 1959. Liquid dynamics and inelastic scattering of neutrons. Physica 25:825–39
    [Google Scholar]
  24. 24.  Doster W. 2010. The protein-solvent glass transition. Biochim. Biophys. Acta 1804:3–14
    [Google Scholar]
  25. 25.  Doster W. 2011. The two-step scenario of the protein dynamical transition. J. Non-Cryst. Solids 357:622–28
    [Google Scholar]
  26. 26.  Doster W, Cusack S, Petry W 1989. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337:754–56
    [Google Scholar]
  27. 27.  Doster W, Cusack S, Petry W 1990. Dynamic instability of liquidlike motions in a globular protein observed by inelastic neutron scattering. Phys. Rev. Lett. 65:1080–83
    [Google Scholar]
  28. 28.  Doster W, Settles M 2005. Protein-water displacement distributions. Biochim. Biophys. Acta 1749:173–86
    [Google Scholar]
  29. 29.  Evans BR, Bali G, Foston M, Ragauskas AJ, O'Neill HM et al. 2015. Production of deuterated switchgrass by hydroponic cultivation. Planta 242:215–22
    [Google Scholar]
  30. 30.  Farago B, Li J, Cornilescu G, Callaway DJE, Bu Z 2010. Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy. Biophys. J. 99:3473–82
    [Google Scholar]
  31. 31.  Faure P, Micu A, Perahia D, Doucet J, Smith JC, Benoit JP 1994. Correlated intramolecular motions and diffuse X-ray scattering in lysozyme. Nat. Struct. Mol. Biol. 1:124–28
    [Google Scholar]
  32. 32.  Fenimore PW, Frauenfelder H, McMahon BH, Parak FG 2002. Slaving: solvent fluctuations dominate protein dynamics and functions. PNAS 99:16047–51
    [Google Scholar]
  33. 33.  Ferrand M, Dianoux AJ, Petry W, Zaccai G 1993. Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. PNAS 90:9668–72
    [Google Scholar]
  34. 34.  Fischer S, Smith JC, Verma CS 2001. Dissecting the vibrational entropy change on protein/ligand binding: burial of a water molecule in bovine pancreatic trypsin inhibitor. J. Phys. Chem. B 105:8050–55
    [Google Scholar]
  35. 35.  Fischer S, Verma CS 1999. Binding of buried structural water increases the flexibility of proteins. PNAS 96:9613–15
    [Google Scholar]
  36. 36.  Frauenfelder H, Chen G, Berendzen J, Fenimore PW, Jansson H et al. 2009. A unified model of protein dynamics. PNAS 106:5129–34
    [Google Scholar]
  37. 37.  Frauenfelder H, Sligar SG, Wolynes PG 1991. The energy landscapes and motions of proteins. Urbana 51:61801
    [Google Scholar]
  38. 38.  Fuglebakk E, Reuter N, Hinsen K 2013. Evaluation of protein elastic network models based on an analysis of collective motions. J. Chem. Theory Comput. 9:5618–28
    [Google Scholar]
  39. 39.  Gabel F, Bicout D, Lehnert U, Tehei M, Weik M, Zaccai G 2002. Protein dynamics studied by neutron scattering. Q. Rev. Biophys. 35:327–67
    [Google Scholar]
  40. 40.  Gallat FX, Laganowsky A, Wood K, Gabel F, Van Eijck L et al. 2012. Dynamical coupling of intrinsically disordered proteins and their hydration water: comparison with folded soluble and membrane proteins. Biophys. J. 103:129–36
    [Google Scholar]
  41. 41.  Gliss C, Randel O, Casalta H, Sackmann E, Zorn R, Bayerl T 1999. Anisotropic motion of cholesterol in oriented DPPC bilayers studied by quasielastic neutron scattering: the liquid-ordered phase. Biophys. J. 77:331–40
    [Google Scholar]
  42. 42.  Glöckle WG, Nonnenmacher TF 1995. A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68:46–53
    [Google Scholar]
  43. 43.  Goupil-Lamy AV, Smith JC, Yunoki J, Parker SF, Kataoka M 1997. High-resolution vibrational inelastic neutron scattering: a new spectroscopic tool for globular proteins. J. Am. Chem. Soc. 119:9268–73
    [Google Scholar]
  44. 44.  Granek R, Klafter J 2005. Fractons in proteins: Can they lead to anomalously decaying time autocorrelations?. Phys. Rev. Lett. 95:098106
    [Google Scholar]
  45. 45.  Grigera TS, Martin-Mayor V, Parisi G, Verrocchio P 2003. Phonon interpretation of the ‘boson peak’ in supercooled liquids. Nature 422:289–92
    [Google Scholar]
  46. 46.  Hammes GG, Chang YC, Oas TG 2009. Conformational selection or induced fit: a flux description of reaction mechanism. PNAS 106:13737–41
    [Google Scholar]
  47. 47.  Hartmann H, Parak F, Steigemann W, Petsko GA, Ponzi DR, Frauenfelder H 1982. Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K. PNAS 79:4967–71
    [Google Scholar]
  48. 48.  Hayward JA, Finney JL, Daniel RM, Smith JC 2003. Molecular dynamics decomposition of temperature-dependent elastic neutron scattering by a protein solution. Biophys. J. 85:679–85
    [Google Scholar]
  49. 49.  Hayward JA, Smith JC 2002. Temperature dependence of protein dynamics: computer simulation analysis of neutron scattering properties. Biophys. J. 82:1216–25
    [Google Scholar]
  50. 50.  Héry S, Genest D, Smith JC 1998. X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation. J. Mol. Biol. 279:303–19
    [Google Scholar]
  51. 51.  Hinsen K, Pellegrini E, Stachura S, Kneller GR 2012. nMoldyn 3: using task farming for a parallel spectroscopy-oriented analysis of molecular dynamics simulations. J. Comput. Chem. 33:2043–48
    [Google Scholar]
  52. 52.  Hinsen K, Petrescu A-J, Dellerue S, Bellissent-Funel M-C, Kneller GR 2000. Harmonicity in slow protein dynamics. Chem. Phys. 261:25–37
    [Google Scholar]
  53. 53.  Hong L, Cheng X, Glass DC, Smith JC 2012. Surface hydration amplifies single-well protein atom diffusion propagating into the macromolecular core. Phys. Rev. Lett. 108:238102
    [Google Scholar]
  54. 54.  Hong L, Glass DC, Nickels JD, Perticaroli S, Yi Z et al. 2013. Elastic and conformational softness of a globular protein. Phys. Rev. Lett. 110:028104
    [Google Scholar]
  55. 55.  Hong L, Jain N, Cheng X, Bernal A, Tyagi M, Smith JC 2016. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering. Sci. Adv. 2:1–8
    [Google Scholar]
  56. 56.  Hong L, Smolin N, Lindner B, Sokolov AP, Smith JC 2011. Three classes of motion in the dynamic neutron-scattering susceptibility of a globular protein. Phys. Rev. Lett. 107:148102
    [Google Scholar]
  57. 57.  Hong L, Smolin N, Smith JC 2014. de Gennes narrowing describes the relative motion of protein domains. Phys. Rev. Lett. 112:158102
    [Google Scholar]
  58. 58.  Hu X, Hong L, Smith MD, Neusius T, Cheng X, Smith JC 2016. The dynamics of single protein molecules is non-equilibrium and self-similar over thirteen decades in time. Nat. Phys. 12:171–74
    [Google Scholar]
  59. 59.  Igumenova TI, Frederick KK, Wand AJ 2006. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem. Rev. 106:1672–99
    [Google Scholar]
  60. 60.  Inoue R, Biehl R, Rosenkranz T, Fitter J, Monkenbusch M et al. 2010. Large domain fluctuations on 50-ns timescale enable catalytic activity in phosphoglycerate kinase. Biophys. J. 99:2309–17
    [Google Scholar]
  61. 61.  Jasnin M, Moulin M, Haertlein M, Zaccai G, Tehei M 2008. In vivo measurement of internal and global macromolecular motions in Escherichia coli. Biophys. J. 95:857–64
    [Google Scholar]
  62. 62.  Jasnin M, Van Eijck L, Koza MM, Peters J, Laguri C et al. 2010. Dynamics of heparan sulfate explored by neutron scattering. Phys. Chem. Chem. Phys. 12:3360–62
    [Google Scholar]
  63. 63.  Johs A, Harwood IM, Parks JM, Nauss RE, Smith JC et al. 2011. Structural characterization of intramolecular Hg2+ transfer between flexibly linked domains of mercuric ion reductase. J. Mol. Biol. 413:639–56
    [Google Scholar]
  64. 64.  Katava M, Maccarini M, Villain G, Paciaroni A, Sztucki M et al. 2017. Thermal activation of “allosteric-like” large-scale motions in a eukaryotic lactate dehydrogenase. Sci. Rep. 7:41092
    [Google Scholar]
  65. 65.  Kearley GJ, Fillaux F, Baron MH, Bennington S, Tomkinson J 1994. A new look at proton transfer dynamics along the hydrogen bonds in amides and peptides. Science 264:1285–88
    [Google Scholar]
  66. 66.  Kearley GJ, Johnson MR, Plazanet M, Suard E 2001. Structure and vibrational dynamics of the strongly hydrogen-bonded model peptide: N-methyl acetamide. J. Chem. Phys. 115:2614–20
    [Google Scholar]
  67. 67.  Keller BG, Prinz J-H, Noé F 2012. Markov models and dynamical fingerprints: unraveling the complexity of molecular kinetics. Chem. Phys. 396:92–107
    [Google Scholar]
  68. 68.  Khodadadi S, Malkovskiy A, Kisliuk A, Sokolov AP 2010. A broad glass transition in hydrated proteins. Biochim. Biophys. Acta 1804:15–19
    [Google Scholar]
  69. 69.  Khodadadi S, Pawlus S, Roh JH, Garcia Sakai V, Mamontov E, Sokolov AP 2008. The origin of the dynamic transition in proteins. J. Chem. Phys. 128:195106
    [Google Scholar]
  70. 70.  Khodadadi S, Pawlus S, Sokolov AP 2008. Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data. J. Phys. Chem. B 112:14273–80
    [Google Scholar]
  71. 71.  Khodadadi S, Sokolov AP 2015. Protein dynamics: from rattling in a cage to structural relaxation. Soft Matter 11:4984–98
    [Google Scholar]
  72. 72.  Kneller GR. 2000. Inelastic neutron scattering from damped collective vibrations of macromolecules. Chem. Phys. 261:1–24
    [Google Scholar]
  73. 73.  Kneller GR. 2005. Quasielastic neutron scattering and relaxation processes in proteins: analytical and simulation-based models. Phys. Chem. Chem. Phys. 7:2641–55
    [Google Scholar]
  74. 74.  Kneller GR, Hinsen K 2004. Fractional Brownian dynamics in proteins. J. Chem. Phys. 121:10278–83
    [Google Scholar]
  75. 75.  Kneller GR, Hinsen K 2009. Quantitative model for the heterogeneity of atomic position fluctuations in proteins: a simulation study. J. Chem. Phys. 131:045104
    [Google Scholar]
  76. 76.  Kou SC, Xie XS 2004. Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett. 93:180603
    [Google Scholar]
  77. 77.  Krishnan M, Kurkal-Siebert V, Smith JC 2008. Methyl group dynamics and the onset of anharmonicity in myoglobin. J. Phys. Chem. B 112:5522–33
    [Google Scholar]
  78. 78.  Kurkal-Siebert V, Smith JC 2006. Low-temperature protein dynamics: a simulation analysis of interprotein vibrations and the boson peak at 150 K. J. Am. Chem. Soc. 128:2356–64
    [Google Scholar]
  79. 79.  Langan P, Petridis L, O'Neill HM, Pingali SV, Foston M et al. 2014. Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16:63–68
    [Google Scholar]
  80. 80.  Lindner B, Smith JC 2012. Sassena—X-ray and neutron scattering calculated from molecular dynamics trajectories using massively parallel computers. Comput. Phys. Commun. 183:1491–501
    [Google Scholar]
  81. 81.  Lindner B, Yi Z, Prinz J-H, Smith JC, Noé F 2013. Dynamic neutron scattering from conformational dynamics. I. Theory and Markov models. J. Chem. Phys. 139:175102
    [Google Scholar]
  82. 82.  Liu Z, Huang J, Tyagi M, O'Neill H, Zhang Q et al. 2017. Dynamical transition of collective motions in dry proteins. Phys. Rev. Lett. 119:048101
    [Google Scholar]
  83. 83.  Luo G, Andricioaei I, Xie XS, Karplus M 2006. Dynamic distance disorder in proteins is caused by trapping. J. Phys. Chem. B 110:9363–67
    [Google Scholar]
  84. 84.  Ma B, Nussinov R 2010. Enzyme dynamics point to stepwise conformational selection in catalysis. Curr. Opin. Chem. Biol. 14:652–59
    [Google Scholar]
  85. 85.  Magazù S, Migliardo F, Benedetto A 2010. Mean square displacements from elastic incoherent neutron scattering evaluated by spectrometers working with different energy resolution on dry and hydrated (H2O and D2O) lysozyme. J. Phys. Chem. B 114:9268–74
    [Google Scholar]
  86. 86.  Magazù S, Migliardo F, Benedetto A 2011. Puzzle of protein dynamical transition. J. Phys. Chem. B 115:7736–43
    [Google Scholar]
  87. 87.  Marty V, Jasnin M, Fabiani E, Vauclare P, Gabel F et al. 2013. Neutron scattering: a tool to detect in vivo thermal stress effects at the molecular dynamics level in micro-organisms. J. R. Soc. Interface 10:20130003
    [Google Scholar]
  88. 88.  McCammon JA, Gelin BR, Karplus M, Wolynes PG 1976. The hinge-bending mode in lysozyme. Nature 262:325–26
    [Google Scholar]
  89. 89.  Meinhold L, Clement D, Tehei M, Daniel R, Finney JL, Smith JC 2008. Protein dynamics and stability: the distribution of atomic fluctuations in thermophilic and mesophilic dihydrofolate reductase derived using elastic incoherent neutron scattering. Biophys. J. 94:4812–18
    [Google Scholar]
  90. 90.  Meinhold L, Merzel F, Smith JC 2007. Lattice dynamics of a protein crystal. Phys. Rev. Lett. 99:138101
    [Google Scholar]
  91. 91.  Meinhold L, Smith JC 2005. Correlated dynamics determining X-ray diffuse scattering from a crystalline protein revealed by molecular dynamics simulation. Phys. Rev. Lett. 95:218103
    [Google Scholar]
  92. 92.  Meinhold L, Smith JC 2007. Protein dynamics from X-ray crystallography: anisotropic, global motion in diffuse scattering patterns. Proteins Struct. Funct. Bioinform. 66:941–53
    [Google Scholar]
  93. 93.  Miao Y, Yi Z, Cantrell C, Glass DC, Baudry J et al. 2012. Coupled flexibility change in cytochrome P450cam substrate binding determined by neutron scattering, NMR, and molecular dynamics simulation. Biophys. J. 103:2167–76
    [Google Scholar]
  94. 94.  Miao Y, Yi Z, Glass DC, Hong L, Tyagi M et al. 2012. Temperature-dependent dynamical transitions of different classes of amino acid residue in a globular protein. J. Am. Chem. Soc. 134:19576–79
    [Google Scholar]
  95. 95.  Min W, Luo G, Cherayil BJ, Kou SC, Xie XS 2005. Observation of a power-law memory kernel for fluctuations within a single protein molecule. Phys. Rev. Lett. 94:198302
    [Google Scholar]
  96. 96.  Moritsugu K, Kidera A, Smith JC 2014. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes. J. Phys. Chem. B 118:8559–65
    [Google Scholar]
  97. 97.  Moritsugu K, Njunda BM, Smith JC 2009. Theory and normal-mode analysis of change in protein vibrational dynamics on ligand binding. J. Phys. Chem. B 114:1479–85
    [Google Scholar]
  98. 98.  Moritsugu K, Smith JC 2007. Coarse-grained biomolecular simulation with REACH: realistic extension algorithm via covariance Hessian. Biophys. J. 93:3460–69
    [Google Scholar]
  99. 99.  Motlagh HN, Hilser VJ 2012. Agonism/antagonism switching in allosteric ensembles. PNAS 109:4134–39
    [Google Scholar]
  100. 100.  Nagao M. 2009. Observation of local thickness fluctuations in surfactant membranes using neutron spin echo. Phys. Rev. E 80:031606
    [Google Scholar]
  101. 101.  Nakagawa H, Kamikubo H, Kataoka M 2010. Effect of conformational states on protein dynamical transition. Biochim. Biophys. Acta 1804:27–33
    [Google Scholar]
  102. 102.  Nakagawa H, Kamikubo H, Tsukushi I, Kanaya T, Kataoka M 2004. Protein dynamical heterogeneity derived from neutron incoherent elastic scattering. J. Phys. Soc. Jpn. 73:491–95
    [Google Scholar]
  103. 103.  Nardi F, Doster W, Tidor B, Karplus M, Cusack S, Smith JC 1994. Dynamics of tRNA: experimental neutron spectra compared with a normal mode analysis. Isr. J. Chem. 34:233–38
    [Google Scholar]
  104. 104.  Neusius T, Daidone I, Sokolov IM, Smith JC 2008. Subdiffusion in peptides originates from the fractal-like structure of configuration space. Phys. Rev. Lett. 100:188103
    [Google Scholar]
  105. 105.  Neusius T, Sokolov IM, Smith JC 2009. Subdiffusion in time-averaged, confined random walks. Phys. Rev. E 80:011109
    [Google Scholar]
  106. 106.  Nickels JD, Chatterjee S, Stanley CB, Qian S, Cheng X et al. 2017. The in vivo structure of biological membranes and evidence for lipid domains. PLOS Biol 15:e2002214
    [Google Scholar]
  107. 107.  Nickels JD, Cheng X, Mostofian B, Stanley C, Lindner B et al. 2015. Mechanical properties of nanoscopic lipid domains. J. Am. Chem. Soc. 137:15772–80
    [Google Scholar]
  108. 108.  Noé F, Doose S, Daidone I, Löllmann M, Sauer M et al. 2011. Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments. PNAS 108:4822–27
    [Google Scholar]
  109. 109.  Noé F, Fischer S 2008. Transition networks for modeling the kinetics of conformational change in macromolecules. Curr. Opin. Struct. Biol. 18:154–62
    [Google Scholar]
  110. 110.  Noé F, Horenko I, Schütte C, Smith JC 2007. Hierarchical analysis of conformational dynamics in biomolecules: transition networks of metastable states. J. Chem. Phys. 126:155102
    [Google Scholar]
  111. 111.  Paciaroni A, Bizzarri AR, Cannistraro S 1999. Neutron scattering evidence of a boson peak in protein hydration water. Phys. Rev. E 60:R2476–79
    [Google Scholar]
  112. 112.  Pande VS, Beauchamp K, Bowman GR 2010. Everything you wanted to know about Markov state models but were afraid to ask. Methods 52:99–105
    [Google Scholar]
  113. 113.  Parak F, Formanek H 1971. Untersuchung des Schwingungsanteils und des Kristallgitterfehleranteils des Temperaturfaktors in Myoglobin durch Vergleich von Mössbauer-absorptionsmessungen mit Röntgenstrukturdaten. Acta Crystallogr 27:573–78
    [Google Scholar]
  114. 114.  Parak F, Frolov EN, Mössbauer RL, Goldanskii VI 1981. Dynamics of metmyoglobin crystals investigated by nuclear gamma resonance absorption. J. Mol. Biol. 145:825–33
    [Google Scholar]
  115. 115.  Perticaroli S, Nickels JD, Ehlers G, Sokolov AP 2014. Rigidity, secondary structure, and the universality of the boson peak in proteins. Biophys. J. 106:2667–74
    [Google Scholar]
  116. 116.  Peters J, Kneller GR 2013. Motional heterogeneity in human acetylcholinesterase revealed by a non-Gaussian model for elastic incoherent neutron scattering. J. Chem. Phys. 139:165102
    [Google Scholar]
  117. 117.  Petridis L, O'Neill HM, Johnsen M, Fan B, Schulz R et al. 2014. Hydration control of the mechanical and dynamical properties of cellulose. Biomacromolecules 15:4152–59
    [Google Scholar]
  118. 118.  Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F et al. 2014. Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843
    [Google Scholar]
  119. 119.  Rheinstädter MC, Das J, Flenner EJ, Brüning B, Seydel T, Kosztin I 2008. Motional coherence in fluid phospholipid membranes. Phys. Rev. Lett. 101:248106
    [Google Scholar]
  120. 120.  Rheinstädter MC, Häußler W, Salditt T 2006. Dispersion relation of lipid membrane shape fluctuations by neutron spin-echo spectrometry. Phys. Rev. Lett. 97:048103
    [Google Scholar]
  121. 121.  Rheinstädter MC, Ollinger C, Fragneto G, Demmel F, Salditt T 2004. Collective dynamics of lipid membranes studied by inelastic neutron scattering. Phys. Rev. Lett. 93:108107
    [Google Scholar]
  122. 122.  Riccardi D, Cui Q, Phillips GN 2010. Evaluating elastic network models of crystalline biological molecules with temperature factors, correlated motions, and diffuse X-ray scattering. Biophys. J. 99:2616–25
    [Google Scholar]
  123. 123.  Róg T, Murzyn K, Hinsen K, Kneller GR 2003. nMoldyn: a program package for a neutron scattering oriented analysis of molecular dynamics simulations. J. Comput. Chem. 24:657–67
    [Google Scholar]
  124. 124.  Roh JH, Briber RM, Damjanovic A, Thirumalai D, Woodson SA, Sokolov AP 2009. Dynamics of tRNA at different levels of hydration. Biophys. J. 96:2755–62
    [Google Scholar]
  125. 125.  Roh JH, Curtis JE, Azzam S, Novikov VN, Peral I et al. 2006. Influence of hydration on the dynamics of lysozyme. Biophys. J. 91:2573–88
    [Google Scholar]
  126. 126.  Roh JH, Novikov VN, Gregory RB, Curtis JE, Chowdhuri Z, Sokolov AP 2005. Onsets of anharmonicity in protein dynamics. Phys. Rev. Lett. 95:038101
    [Google Scholar]
  127. 127.  Rupley JA, Careri G 1991. Protein hydration and function. Adv. Protein Chem. 41:37–172
    [Google Scholar]
  128. 128.  Russo D, Rea G, Lambreva MD, Haertlein M, Moulin M et al. 2016. Water collective dynamics in whole photosynthetic green algae as affected by protein single mutation. J. Phys. Chem. Lett. 7:2429–33
    [Google Scholar]
  129. 129.  Schiró G, Caronna C, Natali F, Cupane A 2010. Direct evidence of the amino acid side chain and backbone contributions to protein anharmonicity. J. Am. Chem. Soc. 132:1371–76
    [Google Scholar]
  130. 130.  Schirò G, Fichou Y, Gallat F-X, Wood K, Gabel F et al. 2015. Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins. Nat. Commun. 6:6490
    [Google Scholar]
  131. 131.  Schiró G, Natali F, Cupane A 2012. Physical origin of anharmonic dynamics in proteins: new insights from resolution-dependent neutron scattering on homomeric polypeptides. Phys. Rev. Lett. 109:128102
    [Google Scholar]
  132. 132.  Schulz R, Lindner B, Petridis L, Smith JC 2009. Scaling of multimillion-atom biological molecular dynamics simulation on a petascale supercomputer. J. Chem. Theory Comput. 5:2798–808
    [Google Scholar]
  133. 133.  Shaw DE, Bowers KJ, Chow E, Eastwood MP, Ierardi DJ et al. 2009. Millisecond-scale molecular dynamics simulations on Anton. Proc. Conf. High Perform. Comput. Netw. Storage Anal Portland, Nov:14–20 article 9
    [Google Scholar]
  134. 134.  Smith J, Cusack S, Pezzeca U, Brooks B, Karplus M 1986. Inelastic neutron scattering analysis of low frequency motion in proteins: a normal mode study of the bovine pancreatic trypsin inhibitor. J. Chem. Phys. 85:3636–54
    [Google Scholar]
  135. 135.  Smith J, Cusack S, Tidor B, Karplus M 1990. Inelastic neutron scattering analysis of low-frequency motions in proteins: harmonic and damped harmonic models of bovine pancreatic tryspin inhibitor. J. Chem. Phys. 93:2974–91
    [Google Scholar]
  136. 136.  Smith JC. 1991. Protein dynamics: comparison of simulations with inelastic neutron scattering experiments. Q. Rev. Biophys. 24:227–91
    [Google Scholar]
  137. 137.  Smolin N, Biehl R, Kneller GR, Richter D, Smith JC 2012. Functional domain motions in proteins on the ∼1–100 ns timescale: comparison of neutron spin-echo spectroscopy of phosphoglycerate kinase with molecular-dynamics simulation. Biophys. J. 102:1108–17
    [Google Scholar]
  138. 138.  Svergun D, Barberato C, Koch MHJ 1995. CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28:768–73
    [Google Scholar]
  139. 139.  Swope WC, Pitera JW, Suits F 2004. Describing protein folding kinetics by molecular dynamics simulations. 1. Theory. J. Phys. Chem. B 108:6571–81
    [Google Scholar]
  140. 140.  Tarek M, Tobias DJ 2002. Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys. Rev. Lett. 88:138101
    [Google Scholar]
  141. 141.  Tehei M, Franzetti B, Wood K, Gabel F, Fabiani E et al. 2007. Neutron scattering reveals extremely slow cell water in a Dead Sea organism. PNAS 104:766–71
    [Google Scholar]
  142. 142.  Tidor B, Karplus M 1994. The contribution of vibrational entropy to molecular association: the dimerization of insulin. J. Mol. Biol. 238:405–14
    [Google Scholar]
  143. 143.  Tournier AL, Smith JC 2003. Principal components of the protein dynamical transition. Phys. Rev. Lett. 91:208106
    [Google Scholar]
  144. 144.  Tournier AL, Xu J, Smith JC 2003. Translational hydration water dynamics drives the protein glass transition. Biophys. J. 85:1871–75
    [Google Scholar]
  145. 145.  Van Hove L 1954. Correlations in space and time and Born approximation scattering in systems of interacting particles. Phys. Rev. 95:249
    [Google Scholar]
  146. 146.  Vitkup D, Ringe D, Petsko GA, Karplus M 2000. Solvent mobility and the protein'glass’ transition. Nat. Struct. Mol. Biol. 7:34
    [Google Scholar]
  147. 147.  Vural D, Hong L, Smith JC, Glyde HR 2013. Long-time mean-square displacements in proteins. Phys. Rev. E 88:052706
    [Google Scholar]
  148. 148.  Vural D, Hong L, Smith JC, Glyde HR 2015. Motional displacements in proteins: the origin of wave-vector-dependent values. Phys. Rev. E 91:052705
    [Google Scholar]
  149. 149.  Warshel A, Levitt M 1976. Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 103:227–49
    [Google Scholar]
  150. 150.  Wood K, Frölich A, Paciaroni A, Moulin M, Härtlein M et al. 2008. Coincidence of dynamical transitions in a soluble protein and its hydration water: direct measurements by neutron scattering and MD simulations. J. Am. Chem. Soc. 130:4586–87
    [Google Scholar]
  151. 151.  Wood K, Gallat F, Otten R, van Heel AJ, Lethier M et al. 2013. Protein surface and core dynamics show concerted hydration-dependent activation. Angew. Chem. 52:665–68
    [Google Scholar]
  152. 152.  Wood K, Grudinin S, Kessler B, Weik M, Johnson M et al. 2008. Dynamical heterogeneity of specific amino acids in bacteriorhodopsin. J. Mol. Biol. 380:581–91
    [Google Scholar]
  153. 153.  Wood K, Tobias DJ, Kessler B, Gabel F, Oesterhelt D et al. 2010. The low-temperature inflection observed in neutron scattering measurements of proteins is due to methyl rotation: direct evidence using isotope labeling and molecular dynamics simulations. J. Am. Chem. Soc. 132:4990–91
    [Google Scholar]
  154. 154.  Yang H, Luo G, Karnchanaphanurach P, Louie T-M, Rech I et al. 2003. Protein conformational dynamics probed by single-molecule electron transfer. Science 302:262–66
    [Google Scholar]
  155. 155.  Yang S, Blachowicz L, Makowski L, Roux B 2010. Multidomain assembled states of Hck tyrosine kinase in solution. PNAS 107:15757–62
    [Google Scholar]
  156. 156.  Yi Z, Lindner B, Prinz J-H, Noé F, Smith JC 2013. Dynamic neutron scattering from conformational dynamics. II. Application using molecular dynamics simulation and Markov modeling. J. Chem. Phys. 139:175102
    [Google Scholar]
  157. 157.  Yi Z, Miao Y, Baudry J, Jain N, Smith JC 2012. Derivation of mean-square displacements for protein dynamics from elastic incoherent neutron scattering. J. Phys. Chem. B 116:5028–36
    [Google Scholar]
  158. 158.  Zaccai G. 2000. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288:1604–7
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070317-033358
Loading
/content/journals/10.1146/annurev-biophys-070317-033358
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error