1932

Abstract

Proteins often undergo large-scale conformational transitions, in which secondary and tertiary structure elements (loops, helices, and domains) change their structures or their positions with respect to each other. Simple considerations suggest that such dynamics should be relatively fast, but the functional cycles of many proteins are often relatively slow. Sophisticated experimental methods are starting to tackle this dichotomy and shed light on the contribution of large-scale conformational dynamics to protein function. In this review, we focus on the contribution of single-molecule Förster resonance energy transfer and nuclear magnetic resonance (NMR) spectroscopies to the study of conformational dynamics. We briefly describe the state of the art in each of these techniques and then point out their similarities and differences, as well as the relative strengths and weaknesses of each. Several case studies, in which the connection between fast conformational dynamics and slower function has been demonstrated, are then introduced and discussed. These examples include both enzymes and large protein machines, some of which have been studied by both NMR and fluorescence spectroscopies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070323-022428
2024-07-16
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-070323-022428.html?itemId=/content/journals/10.1146/annurev-biophys-070323-022428&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ainslie GR Jr., Shill JP, Neet KE. 1972.. Transients and cooperativity: a slow transition model for relating transients and cooperative kinetics of enzymes. . J. Biol. Chem. 247:(21):708896
    [Crossref] [Google Scholar]
  2. 2.
    Alexiev U, Farrens DL. 2014.. Fluorescence spectroscopy of rhodopsins: insights and approaches. . Biochim. Biophys. Acta 1837:(5):694709
    [Crossref] [Google Scholar]
  3. 3.
    Ando T, Uchihashi T, Scheuring S. 2014.. Filming biomolecular processes by high-speed atomic force microscopy. . Chem. Rev. 114:(6):312088
    [Crossref] [Google Scholar]
  4. 4.
    Andrews DL, Demidov AA. 1999.. Resonance Energy Transfer. Hoboken, NJ:: Wiley
    [Google Scholar]
  5. 5.
    Anthis NJ, Clore GM. 2015.. Visualizing transient dark states by NMR spectroscopy. . Q. Rev. Biophys. 48:(1):35116
    [Crossref] [Google Scholar]
  6. 6.
    Appolaire A, Colombo M, Basbous H, Gabel F, Girard E, Franzetti B. 2016.. TET peptidases: a family of tetrahedral complexes conserved in prokaryotes. . Biochimie 122::18896
    [Crossref] [Google Scholar]
  7. 7.
    Ashkinadze D, Kadavath H, Pokharna A, Chi CN, Friedmann M, et al. 2022.. Atomic resolution protein allostery from the multi-state structure of a PDZ domain. . Nat. Commun. 13::6232
    [Crossref] [Google Scholar]
  8. 8.
    Astumian RD, Hanggi P. 2002.. Brownian motors. . Phys. Today 55:(11):3339
    [Crossref] [Google Scholar]
  9. 9.
    Aviram HY, Pirchi M, Mazal H, Barak Y, Riven I, Haran G. 2018.. Direct observation of ultrafast large-scale dynamics of an enzyme under turnover conditions. . PNAS 115:(13):324348
    [Crossref] [Google Scholar]
  10. 10.
    Bahar I, Jernigan RL, Dill KA. 2017.. Protein Actions: Principles and Modeling. New York:: Garland Sci.
    [Google Scholar]
  11. 11.
    Bahar I, Lezon TR, Yang LW, Eyal E. 2010.. Global dynamics of proteins: bridging between structure and function. . Annu. Rev. Biophys. 39::2342
    [Crossref] [Google Scholar]
  12. 12.
    Ban D, Smith CA, de Groot BL, Griesinger C, Lee D. 2017.. Recent advances in measuring the kinetics of biomolecules by NMR relaxation dispersion spectroscopy. . Arch. Biochem. Biophys. 628::8191
    [Crossref] [Google Scholar]
  13. 13.
    Barthelme D, Sauer RT. 2016.. Origin and functional evolution of the Cdc48/p97/VCP AAA+ protein unfolding and remodeling machine. . J. Mol. Biol. 428:(9 Pt B):186169
    [Crossref] [Google Scholar]
  14. 14.
    Beismann-Driemeyer S, Sterner R. 2001.. Imidazole glycerol phosphate synthase from Thermotoga maritima: quarternary structure, steady-state kinetics and reaction mechanism of the bienzyme complex. . J. Biol. Chem. 276:(23):2038796
    [Crossref] [Google Scholar]
  15. 15.
    Benitez JJ, Keller AM, Ochieng P, Yatsunyk LA, Huffman DL, et al. 2008.. Probing transient copper chaperone-Wilson disease protein interactions at the single-molecule level with nanovesicle trapping. . J. Am. Chem. Soc. 130:(8):244647
    [Crossref] [Google Scholar]
  16. 16.
    Bottaro S, Lindorff-Larsen K. 2018.. Biophysical experiments and biomolecular simulations: a perfect match?. Science 361:(6400):35560
    [Crossref] [Google Scholar]
  17. 17.
    Bouvignies G, Vallurupalli P, Hansen DF, Correia BE, Lange O, et al. 2011.. Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. . Nature 477:(7362):11114
    [Crossref] [Google Scholar]
  18. 18.
    Brustad EM, Lemke EA, Schultz PG, Deniz AA. 2008.. A general and efficient method for the site-specific dual-labeling of proteins for single molecule fluorescence resonance energy transfer. . J. Am. Chem. Soc. 130:(52):1766465
    [Crossref] [Google Scholar]
  19. 19.
    Burmann BM, Wang C, Hiller S. 2013.. Conformation and dynamics of the periplasmic membrane-protein–chaperone complexes OmpX–Skp and tOmpA–Skp. . Nat. Struct. Mol. Biol. 20:(11):126572
    [Crossref] [Google Scholar]
  20. 20.
    Callaway DJ, Bu Z. 2017.. Visualizing the nanoscale: protein internal dynamics and neutron spin echo spectroscopy. . Curr. Opin. Struct. Biol. 42::15
    [Crossref] [Google Scholar]
  21. 21.
    Carroni M, Kummer E, Oguchi Y, Wendler P, Clare DK, et al. 2014.. Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. . eLife 3::e02481
    [Crossref] [Google Scholar]
  22. 22.
    Cavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ. 1996.. Protein NMR Spectroscopy: Principles and Practice. Cambridge, MA:: Academic
    [Google Scholar]
  23. 23.
    Charlier C, Courtney JM, Alderson TR, Anfinrud P, Bax A. 2018.. Monitoring 15N chemical shifts during protein folding by pressure-jump NMR. . J. Am. Chem. Soc. 140:(26):809699
    [Crossref] [Google Scholar]
  24. 24.
    Chen H, Chipot C. 2022.. Enhancing sampling with free-energy calculations. . Curr. Opin. Struct. Biol. 77::102497
    [Crossref] [Google Scholar]
  25. 25.
    Chi CN, Vögeli B, Bibow S, Strotz D, Orts J, et al. 2015.. A structural ensemble for the enzyme cyclophilin reveals an orchestrated mode of action at atomic resolution. . Angew. Chem. Int. Ed. 54:(40):1165761
    [Crossref] [Google Scholar]
  26. 26.
    Chowdhury A, Nettels D, Schuler B. 2023.. Interaction dynamics of intrinsically disordered proteins from single-molecule spectroscopy. . Annu. Rev. Biophys. 52::43362
    [Crossref] [Google Scholar]
  27. 27.
    Corbella M, Pinto GP, Kamerlin SC. 2023.. Loop dynamics and the evolution of enzyme activity. . Nat. Rev. Chem. 7:(8):53647
    [Crossref] [Google Scholar]
  28. 28.
    Crean RM, Biler M, van der Kamp MW, Hengge AC, Kamerlin SC. 2021.. Loop dynamics and enzyme catalysis in protein tyrosine phosphatases. . J. Am. Chem. Soc. 143:(10):383045
    [Crossref] [Google Scholar]
  29. 29.
    Cui DS, Lipchock JM, Brookner D, Loria JP. 2019.. Uncovering the molecular interactions in the catalytic loop that modulate the conformational dynamics in protein tyrosine phosphatase 1B. . J. Am. Chem. Soc. 141:(32):1263447
    [Crossref] [Google Scholar]
  30. 30.
    Deville C, Carroni M, Franke KB, Topf M, Bukau B, et al. 2017.. Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. . Sci. Adv. 3:(8):e1701726
    [Crossref] [Google Scholar]
  31. 31.
    Doyle SM, Genest O, Wickner S. 2013.. Protein rescue from aggregates by powerful molecular chaperone machines. . Nat. Rev. Mol. Cell Biol. 14:(10):61729
    [Crossref] [Google Scholar]
  32. 32.
    Dzeja P, Terzic A. 2009.. Adenylate kinase and AMP signaling networks: metabolic monitoring, signal communication and body energy sensing. . Int. J. Mol. Sci. 10:(4):172972
    [Crossref] [Google Scholar]
  33. 33.
    Felekyan S, Sanabria H, Kalinin S, Kuhnemuth R, Seidel CA. 2013.. Analyzing Förster resonance energy transfer with fluctuation algorithms. . Methods Enzymol. 519::3985
    [Crossref] [Google Scholar]
  34. 34.
    Fetrow JS. 1995.. Omega loops: nonregular secondary structures significant in protein function and stability. . FASEB J. 9:(9):70817
    [Crossref] [Google Scholar]
  35. 35.
    Formoso E, Limongelli V, Parrinello M. 2015.. Energetics and structural characterization of the large-scale functional motion of adenylate kinase. . Sci. Rep. 5::8425
    [Crossref] [Google Scholar]
  36. 36.
    Förster T. 1948.. Zwischenmoleculare Energiewanderung und Fluoreszenz. . Ann. Phys. 2::5575
    [Crossref] [Google Scholar]
  37. 37.
    Frauenfelder H, Sligar SG, Wolynes PG. 1991.. The energy landscapes and motions of proteins. . Science 254:(5038):1598603
    [Crossref] [Google Scholar]
  38. 38.
    Galazzo L, Bordignon E. 2023.. Electron paramagnetic resonance spectroscopy in structural-dynamic studies of large protein complexes. . Prog. Nucl. Magn. Reson. Spectrosc. 134–135::119
    [Crossref] [Google Scholar]
  39. 39.
    Gauto DF, Macek P, Malinverni D, Fraga H, Paloni M, et al. 2022.. Functional control of a 0.5 MDa TET aminopeptidase by a flexible loop revealed by MAS NMR. . Nat. Commun. 13::1927
    [Crossref] [Google Scholar]
  40. 40.
    Gerstein M, Chothia C. 1991.. Analysis of protein loop closure: two types of hinges produce one motion in lactate dehydrogenase. . J. Mol. Biol. 220:(1):13349
    [Crossref] [Google Scholar]
  41. 41.
    Ghosh A, Ostrander JS, Zanni MT. 2017.. Watching proteins wiggle: mapping structures with two-dimensional infrared spectroscopy. . Chem. Rev. 117:(16):1072659
    [Crossref] [Google Scholar]
  42. 42.
    Good D, Pham C, Jagas J, Lewandowski R, Ladizhansky V. 2017.. Solid-state NMR provides evidence for small-amplitude slow domain motions in a multispanning transmembrane α-helical protein. . J. Am. Chem. Soc. 139::924658
    [Crossref] [Google Scholar]
  43. 43.
    Gopich IV, Szabo A. 2007.. Single-molecule FRET with diffusion and conformational dynamics. . J. Phys. Chem. B 111:(44):1292532
    [Crossref] [Google Scholar]
  44. 44.
    Gopich IV, Szabo A. 2009.. Decoding the pattern of photon colors in single-molecule fret. . J. Phys. Chem. B 113:(31):1096573
    [Crossref] [Google Scholar]
  45. 45.
    Grason JP, Gresham JS, Lorimer GH. 2008.. Setting the chaperonin timer: a two-stroke, two-speed, protein machine. . PNAS 105:(45):1733944
    [Crossref] [Google Scholar]
  46. 46.
    Guo J, Zhou HX. 2016.. Protein allostery and conformational dynamics. . Chem. Rev. 116:(11):650315
    [Crossref] [Google Scholar]
  47. 47.
    Gurunathan K, Levitus M. 2010.. FRET fluctuation spectroscopy of diffusing biopolymers: contributions of conformational dynamics and translational diffusion. . J. Phys. Chem. B 114:(2):98086
    [Crossref] [Google Scholar]
  48. 48.
    Haas E. 2005.. The study of protein folding and dynamics by determination of intramolecular distance distributions and their fluctuations using ensemble and single-molecule fret measurements. . ChemPhysChem 6:(5):85870
    [Crossref] [Google Scholar]
  49. 49.
    Hanson JA, Duderstadt K, Watkins LP, Bhattacharyya S, Brokaw J, et al. 2007.. Illuminating the mechanistic roles of enzyme conformational dynamics. . PNAS 104:(46):1805560
    [Crossref] [Google Scholar]
  50. 50.
    Hanson PI, Whiteheart SW. 2005.. AAA+ proteins: have engine, will work. . Nat. Rev. Mol. Cell Biol. 6:(7):51929
    [Crossref] [Google Scholar]
  51. 51.
    Haran G, Mazal H. 2020.. How fast are the motions of tertiary-structure elements in proteins?. J. Chem. Phys. 153:(13):130902
    [Crossref] [Google Scholar]
  52. 52.
    Henzler-Wildman K, Kern D. 2007.. Dynamic personalities of proteins. . Nature 450:(7172):96472
    [Crossref] [Google Scholar]
  53. 53.
    Henzler-Wildman KA, Thai V, Lei M, Ott M, Wolf-Watz M, et al. 2007.. Intrinsic motions along an enzymatic reaction trajectory. . Nature 450:(7171):83844
    [Crossref] [Google Scholar]
  54. 54.
    Howard J. 2001.. Mechanics of Motor Proteins and the Cytoskeleton. Sunderland, MA:: Sinauer Assoc.
    [Google Scholar]
  55. 55.
    Hvidt A, Nielsen SO. 1966.. Hydrogen exchange in proteins. . Adv. Prot. Chem. 21::287386
    [Google Scholar]
  56. 56.
    Hyeon C, Thirumalai D. 2011.. Capturing the essence of folding and functions of biomolecules using coarse-grained models. . Nat. Commun. 2::487
    [Crossref] [Google Scholar]
  57. 57.
    Iljina M, Mazal H, Goloubinoff P, Riven I, Haran G. 2021.. Entropic inhibition: how the activity of a AAA+ machine is modulated by its substrate-binding domain. . ACS Chem. Biol. 16:(4):77585
    [Crossref] [Google Scholar]
  58. 58.
    Johnson TA, Holyoak T. 2010.. Increasing the conformational entropy of the ω-loop lid domain in phosphoenolpyruvate carboxykinase impairs catalysis and decreases catalytic fidelity. . Biochemistry 49:(25):517687
    [Crossref] [Google Scholar]
  59. 59.
    Keedy DA, Hill ZB, Biel JT, Kang E, Rettenmaier TJ, et al. 2018.. An expanded allosteric network in PTP1B by multitemperature crystallography, fragment screening, and covalent tethering. . eLife 7::e36307
    [Crossref] [Google Scholar]
  60. 60.
    Khan YA, White KI, Brunger AT. 2022.. The AAA+ superfamily: a review of the structural and mechanistic principles of these molecular machines. . Crit. Rev. Biochem. Mol. Biol. 57:(2):15687
    [Crossref] [Google Scholar]
  61. 61.
    Kovermann M, Ådén J, Grundström C, Sauer-Eriksson AE, Sauer UH, Wolf-Watz M. 2015.. Structural basis for catalytically restrictive dynamics of a high-energy enzyme state. . Nat. Commun. 6::7644
    [Crossref] [Google Scholar]
  62. 62.
    Krushelnitsky A, Gauto D, Rodriguez DC, Schanda P, Saalwächter K. 2018.. Microsecond motions probed by near-rotary-resonance R1ρ 15N MAS NMR experiments: the model case of protein overall-rocking in crystals. . J. Biomol. NMR 71:(1):5367
    [Crossref] [Google Scholar]
  63. 63.
    Kurauskas V, Izmailov SA, Rogacheva ON, Hessel A, Ayala I, et al. 2017.. Slow conformational exchange and overall rocking motion in ubiquitin protein crystals. . Nat. Commun. 8::145
    [Crossref] [Google Scholar]
  64. 64.
    Lamley JM, Öster C, Stevens RA, Lewandowski JR. 2015.. Intermolecular interactions and protein dynamics by solid-state NMR spectroscopy. . Angew. Chem. Int. Ed. 54:(51):1537478
    [Crossref] [Google Scholar]
  65. 65.
    Lee J, Joo K, Brooks BR, Lee J. 2015.. The atomistic mechanism of conformational transition of adenylate kinase investigated by lorentzian structure-based potential. . J. Chem. Theory Comput. 11:(7):321124
    [Crossref] [Google Scholar]
  66. 66.
    Lee J, Sung N, Yeo L, Chang C, Lee S, Tsai FTF. 2017.. Structural determinants for protein unfolding and translocation by the Hsp104 protein disaggregase. . Biosci. Rep. 37:(6):BSR20171399
    [Crossref] [Google Scholar]
  67. 67.
    Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, et al. 2021.. FRET-based dynamic structural biology: challenges, perspectives and an appeal for open-science practices. . eLife 10::e60416
    [Crossref] [Google Scholar]
  68. 68.
    Li W, Wang J, Zhang J, Takada S, Wang W. 2019.. Overcoming the bottleneck of the enzymatic cycle by steric frustration. . Phys. Rev. Lett. 122:(23):238102
    [Crossref] [Google Scholar]
  69. 69.
    Lin J, Shorter J, Lucius AL. 2022.. AAA+ proteins: one motor, multiple ways to work. . Biochem. Soc. Trans. 50:(2):895906
    [Crossref] [Google Scholar]
  70. 70.
    Lindskog S. 1997.. Structure and mechanism of carbonic anhydrase. . Pharmacol. Ther. 74:(1):120
    [Crossref] [Google Scholar]
  71. 71.
    Lisi GP, Loria JP. 2016.. Solution NMR spectroscopy for the study of enzyme allostery. . Chem. Rev. 116:(11):632369
    [Crossref] [Google Scholar]
  72. 72.
    List F, Vega MC, Razeto A, Häger MC, Sterner R, Wilmanns M. 2012.. Catalysis uncoupling in a glutamine amidotransferase bienzyme by unblocking the glutaminase active site. . Chem. Biol. 19:(12):158999
    [Crossref] [Google Scholar]
  73. 73.
    Lorimer GH, Horovitz A, McLeish T. 2018.. Allostery and molecular machines. . Philos. Trans. R. Soc. Lond. B 373:(1749):20170173
    [Crossref] [Google Scholar]
  74. 74.
    Lu J, Scheerer D, Wang W, Haran G, Li W. 2022.. Role of repeated conformational transitions in substrate binding of adenylate kinase. . J. Phys. Chem. B 126:(41):81889201
    [Crossref] [Google Scholar]
  75. 75.
    Luchinat E, Barbieri L, Campbell TF, Banci L. 2020.. Real-time quantitative in-cell NMR: ligand binding and protein oxidation monitored in human cells using multivariate curve resolution. . Anal. Chem. 92:(14):999710006
    [Crossref] [Google Scholar]
  76. 76.
    Maity H, Muttathukattil AN, Reddy G. 2018.. Salt effects on protein folding thermodynamics. . J. Phys. Chem. Lett. 9:(17):506370
    [Crossref] [Google Scholar]
  77. 77.
    Maragakis P, Karplus M. 2005.. Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinase. . J. Mol. Biol. 352:(4):80722
    [Crossref] [Google Scholar]
  78. 78.
    Markwick PRL, McCammon JA. 2011.. Studying functional dynamics in bio-molecules using accelerated molecular dynamics. . Phys. Chem. Chem. Phys. 13:(45):2005365
    [Crossref] [Google Scholar]
  79. 79.
    Mas G, Guan JY, Crublet E, Debled EC, Moriscot C, et al. 2018.. Structural investigation of a chaperonin in action reveals how nucleotide binding regulates the functional cycle. . Sci. Adv. 4:(9):eaau4196
    [Crossref] [Google Scholar]
  80. 80.
    Mazal H, Haran G. 2019.. Single-molecule fret methods to study the dynamics of proteins at work. . Curr. Opin. Biomed. Eng. 12::817
    [Crossref] [Google Scholar]
  81. 81.
    Mazal H, Iljina M, Barak Y, Elad N, Rosenzweig R, et al. 2019.. Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine. . Nat. Commun. 10::1438
    [Crossref] [Google Scholar]
  82. 82.
    Mazal H, Iljina M, Riven I, Haran G. 2021.. Ultrafast pore-loop dynamics in a AAA+ machine point to a Brownian-ratchet mechanism for protein translocation. . Sci. Adv. 7::eabg4674
    [Crossref] [Google Scholar]
  83. 83.
    Mizuno S, Nakazaki Y, Yoshida M, Watanabe YH. 2012.. Orientation of the amino-terminal domain of ClpB affects the disaggregation of the protein. . FEBS J. 279:(8):147484
    [Crossref] [Google Scholar]
  84. 84.
    Mouilleron S, Golinelli-Pimpaneau B. 2007.. Conformational changes in ammonia-channeling glutamine amidotransferases. . Curr. Opin. Struct. Biol. 17:(6):65364
    [Crossref] [Google Scholar]
  85. 85.
    Muller BK, Zaychikov E, Brauchle C, Lamb DC. 2005.. Pulsed interleaved excitation. . Biophys. J. 89:(5):350822
    [Crossref] [Google Scholar]
  86. 86.
    Müller CW, Schulz GE. 1992.. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 Å resolution: a model for a catalytic transition state. . J. Mol. Biol. 224:(1):15977
    [Crossref] [Google Scholar]
  87. 87.
    Naudi-Fabra S, Blackledge M, Milles S. 2022.. Synergies of single molecule fluorescence and NMR for the study of intrinsically disordered proteins. . Biomolecules 12:(1):27
    [Crossref] [Google Scholar]
  88. 88.
    Naudi-Fabra S, Tengo M, Jensen MR, Blackledge M, Milles S. 2021.. Quantitative description of intrinsically disordered proteins using single-molecule FRET, NMR, and SAXS. . J. Am. Chem. Soc. 143:(48):2010921
    [Crossref] [Google Scholar]
  89. 89.
    Neu A, Neu U, Fuchs AL, Schlager B, Sprangers R. 2015.. An excess of catalytically required motions inhibits the scavenger decapping enzyme. . Nat. Chem. Biol. 11:(9):697704
    [Crossref] [Google Scholar]
  90. 90.
    Neudecker P, Robustelli P, Cavalli A, Walsh P, Lundstrom P, et al. 2012.. Structure of an intermediate state in protein folding and aggregation. . Science 336:(6079):36266
    [Crossref] [Google Scholar]
  91. 91.
    Noma T. 2005.. Dynamics of nucleotide metabolism as a supporter of life phenomena. . J. Med. Investig. 52:(3–4):12736
    [Crossref] [Google Scholar]
  92. 92.
    O'Brien EP, Brooks BR, Thirumalai D. 2012.. Effects of pH on proteins: predictions for ensemble and single-molecule pulling experiments. . J. Am. Chem. Soc. 134:(2):97987
    [Crossref] [Google Scholar]
  93. 93.
    Orts J, Vögeli B, Riek R. 2012.. Relaxation matrix analysis of spin diffusion for the NMR structure calculation with eNOEs. . J. Chem. Theor. Comput. 8:(10):348392
    [Crossref] [Google Scholar]
  94. 94.
    Palmer AG, Koss H. 2019.. Chemical exchange. . Methods Enzymol. 615::177236
    [Crossref] [Google Scholar]
  95. 95.
    Pirchi M, Tsukanov R, Khamis R, Tomov TE, Berger Y, et al. 2016.. Photon-by-photon hidden Markov model analysis for microsecond single-molecule FRET kinetics. . J. Phys. Chem. B 120:(51):1306575
    [Crossref] [Google Scholar]
  96. 96.
    Purcell EM. 1977.. Life at low Reynolds number. . Am. J. Phys. 45:(1):311
    [Crossref] [Google Scholar]
  97. 97.
    Rabiner LR. 1989.. A tutorial on hidden Markov models and selected applications in speech recognition. . Proc. IEEE 77:(2):25786
    [Crossref] [Google Scholar]
  98. 98.
    Reif B, Ashbrook SE, Emsley L, Hong M. 2021.. Solid-state NMR spectroscopy. . Nat. Rev. Methods Primers 1::2
    [Crossref] [Google Scholar]
  99. 99.
    Rennella E, Cutuil T, Schanda P, Ayala I, Forge V, Brutscher B. 2012.. Real-time NMR characterization of structure and dynamics in a transiently populated protein folding intermediate. . J. Am. Chem. Soc. 134:(19):806669
    [Crossref] [Google Scholar]
  100. 100.
    Rizo AN, Lin J, Gates SN, Tse E, Bart SM, et al. 2019.. Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase. . Nat. Commun. 10::2393
    [Crossref] [Google Scholar]
  101. 101.
    Rosenzweig R, Farber P, Velyvis A, Rennella E, Latham MP, Kay LE. 2015.. ClpB N-terminal domain plays a regulatory role in protein disaggregation. . PNAS 112:(50):E687281
    [Crossref] [Google Scholar]
  102. 102.
    Roy R, Hohng S, Ha T. 2008.. A practical guide to single-molecule FRET. . Nat. Methods 5:(6):50716
    [Crossref] [Google Scholar]
  103. 103.
    Rozovsky S, Jogl G, Tong L, McDermott AE. 2001.. Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics. . J. Mol. Biol. 310:(1):27180
    [Crossref] [Google Scholar]
  104. 104.
    Salvi N, Abyzov A, Blackledge M. 2017.. Atomic resolution conformational dynamics of intrinsically disordered proteins from NMR spin relaxation. . Prog. Nucl. Magn. Reson. Spectrosc. 102::4360
    [Crossref] [Google Scholar]
  105. 105.
    Sanabria H, Rodnin D, Hemmen K, Peulen TO, Felekyan S, et al. 2020.. Resolving dynamics and function of transient states in single enzyme molecules. . Nat. Commun. 11::1231
    [Crossref] [Google Scholar]
  106. 106.
    Schanda P, Ernst M. 2016.. Studying dynamics by magic-angle spinning solid-state NMR spectroscopy: principles and applications to biomolecules. . Prog. Nucl. Magn. Reson. Spectrosc. 96::146
    [Crossref] [Google Scholar]
  107. 107.
    Scheerer D, Adkar BV, Bhattacharyya S, Levy D, Iljina M, et al. 2023.. Allosteric communication between ligand binding domains modulates substrate inhibition in adenylate kinase. . PNAS 120:(18):e2219855120
    [Crossref] [Google Scholar]
  108. 108.
    Schrank TP, Bolen DW, Hilser VJ. 2009.. Rational modulation of conformational fluctuations in adenylate kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteins. . PNAS 106:(40):1698489
    [Crossref] [Google Scholar]
  109. 109.
    Schuetz AK, Kay LE. 2016.. A dynamic molecular basis for malfunction in disease mutants of p97/vcp. . eLife 5::e20143
    [Crossref] [Google Scholar]
  110. 110.
    Schulz GE, Müller CW, Diederichs K. 1990.. Induced-fit movements in adenylate kinases. . J. Mol. Biol. 213:(4):62730
    [Crossref] [Google Scholar]
  111. 111.
    Schutz AK, Rennella E, Kay LE. 2017.. Exploiting conformational plasticity in the AAA+ protein VCP/p97 to modify function. . PNAS 114:(33):E682229
    [Crossref] [Google Scholar]
  112. 112.
    Sekhar A, Kay LE. 2019.. An NMR view of protein dynamics in health and disease. . Annu. Rev. Biophys. 48::297319
    [Crossref] [Google Scholar]
  113. 113.
    Sinev MA, Sineva EV, Ittah V, Haas E. 1996.. Domain closure in adenylate kinase. . Biochemistry 35:(20):642537
    [Crossref] [Google Scholar]
  114. 114.
    Smith MJ, Marshall CB, Theillet FX, Binolfi A, Selenko P, Ikura M. 2015.. Real-time NMR monitoring of biological activities in complex physiological environments. . Curr. Opin. Struct. Biol. 32::3947
    [Crossref] [Google Scholar]
  115. 115.
    Squires CL, Pedersen S, Ross BM, Squires C. 1991.. ClpB is the Escherichia coli heat shock protein F84.1. . J. Bacteriol. 173:(14):425462
    [Crossref] [Google Scholar]
  116. 116.
    Šrajer V, Schmidt M. 2017.. Watching proteins function with time-resolved X-ray crystallography. . J. Phys. D 50:(37):373001
    [Crossref] [Google Scholar]
  117. 117.
    Strotz D, Orts J, Kadavath H, Friedmann M, Ghosh D, et al. 2020.. Protein allostery at atomic resolution. . Angew. Chem. Int. Ed. 59:(49):2213239
    [Crossref] [Google Scholar]
  118. 118.
    Stryer L. 1978.. Fluorescence energy transfer as a spectroscopic ruler. . Annu. Rev. Biochem. 47::81946
    [Crossref] [Google Scholar]
  119. 119.
    Sweeny EA, Jackrel ME, Go MS, Sochor MA, Razzo BM, et al. 2015.. The Hsp104 N-terminal domain enables disaggregase plasticity and potentiation. . Mol. Cell 57:(5):83649
    [Crossref] [Google Scholar]
  120. 120.
    Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH. 2019.. Symmetry, rigidity, and allosteric signaling: from monomeric proteins to molecular machines. . Chem. Rev. 119:(12):6788821
    [Crossref] [Google Scholar]
  121. 121.
    Torella JP, Holden SJ, Santoso Y, Hohlbein J, Kapanidis AN. 2011.. Identifying molecular dynamics in single-molecule fret experiments with burst variance analysis. . Biophys. J. 100:(6):156877
    [Crossref] [Google Scholar]
  122. 122.
    Torricella F, Pierro A, Mileo E, Belle V, Bonucci A. 2021.. Nitroxide spin labels and EPR spectroscopy: a powerful association for protein dynamics studies. . Biochim. Biophys. Acta 1869:(7):140653
    [Crossref] [Google Scholar]
  123. 123.
    Troussicot L, Vallet A, Molin M, Burmann BM, Schanda P. 2023.. Disulfide-bond-induced structural frustration and dynamic disorder in a peroxiredoxin from MAS NMR. . J. Am. Chem. Soc. 145:(19):1070011
    [Crossref] [Google Scholar]
  124. 124.
    Uzawa T, Kimura T, Ishimori K, Morishima I, Matsui T, et al. 2006.. Time-resolved small-angle X-ray scattering investigation of the folding dynamics of heme oxygenase: implication of the scaling relationship for the submillisecond intermediates of protein folding. . J. Mol. Biol. 357:(3):9971008
    [Crossref] [Google Scholar]
  125. 125.
    Vallurupalli P, Bouvignies G, Kay LE. 2011.. Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR. . J. Phys. Chem. B 115:(49):14891900
    [Crossref] [Google Scholar]
  126. 126.
    Vallurupalli P, Bouvignies G, Kay LE. 2012.. Studying ``invisible'' excited protein states in slow exchange with a major state conformation. . J. Am. Chem. Soc. 134:(19):814861
    [Crossref] [Google Scholar]
  127. 127.
    Vögeli B. 2014.. The nuclear Overhauser effect from a quantitative perspective. . Prog. NMR Spectrosc. 78::146
    [Crossref] [Google Scholar]
  128. 128.
    Vögeli B, Orts J, Strotz D, Chi C, Minges M, et al. 2014.. Towards a true protein movie: a perspective on the potential impact of the ensemble-based structure determination using exact NOEs. . J. Magn. Reson. 241::5359
    [Crossref] [Google Scholar]
  129. 129.
    Vonrhein C, Schlauderer GJ, Schulz GE. 1995.. Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. . Structure 3:(5):48390
    [Crossref] [Google Scholar]
  130. 130.
    Wand AJ, Sharp KA. 2018.. Measuring entropy in molecular recognition by proteins. . Annu. Rev. Biophys. 47::4161
    [Crossref] [Google Scholar]
  131. 131.
    Wei G, Xi W, Nussinov R, Ma B. 2016.. Protein ensembles: How does nature harness thermodynamic fluctuations for life? The diverse functional roles of conformational ensembles in the cell. . Chem. Rev. 116:(11):651651
    [Crossref] [Google Scholar]
  132. 132.
    Weinhäupl K, Lindau C, Hessel A, Wang Y, Schütze C, et al. 2018.. Structural basis of membrane protein chaperoning through the mitochondrial intermembrane space. . Cell 175:(5):136579.e25
    [Crossref] [Google Scholar]
  133. 133.
    Whitford PC, Miyashita O, Levy Y, Onuchic JN. 2007.. Conformational transitions of adenylate kinase: switching by cracking. . J. Mol. Biol. 366:(5):166171
    [Crossref] [Google Scholar]
  134. 134.
    Whittier SK, Hengge AC, Loria JP. 2013.. Conformational motions regulate phosphoryl transfer in related protein tyrosine phosphatases. . Science 341:(6148):899903
    [Crossref] [Google Scholar]
  135. 135.
    Wolf-Watz M, Thai V, Henzler-Wildman K, Hadjipavlou G, Eisenmesser EZ, Kern D. 2004.. Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair. . Nat. Struct. Mol. Biol. 11:(10):94549
    [Crossref] [Google Scholar]
  136. 136.
    Wurm JP, Sung S, Kneuttinger AC, Hupfeld E, Sterner R, et al. 2021.. Molecular basis for the allosteric activation mechanism of the heterodimeric imidazole glycerol phosphate synthase complex. . Nat. Commun. 12::2748
    [Crossref] [Google Scholar]
  137. 137.
    Zeeb M, Balbach J. 2004.. Protein folding studied by real-time NMR spectroscopy. . Methods 34:(1):6574
    [Crossref] [Google Scholar]
  138. 138.
    Zheng Y, Cui Q. 2018.. Multiple pathways and time scales for conformational transitions in apo-adenylate kinase. . J. Chem. Theor. Comput. 14:(3):171626
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-070323-022428
Loading
/content/journals/10.1146/annurev-biophys-070323-022428
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error