1932

Abstract

Force transmission through the actin cytoskeleton plays a central role in cell movements, shape change, and internal organization. Dynamic reorganization of actin filaments by an array of specialized binding proteins creates biochemically and architecturally distinct structures, many of which are finely tuned to exert or resist mechanical loads. The molecular complexity of the actin cytoskeleton continues to be revealed by detailed biochemical assays, and the architectural diversity and dynamics of actin structures are being uncovered by advances in super-resolution fluorescence microscopy and electron microscopy. However, our understanding of how mechanical forces feed back on cytoskeletal architecture and actin-binding protein organization is comparatively limited. In this review, we discuss recent work investigating how mechanical forces applied to cytoskeletal proteins are transduced into biochemical signals. We explore multiple mechanisms for mechanical signal transduction, including the mechanosensitive behavior of actin-binding proteins, the effect of mechanical force on actin filament dynamics, and the influence of mechanical forces on the structure of single actin filaments. The emerging picture is one in which the actin cytoskeleton is defined not only by the set of proteins that constitute a network but also by the constant interplay of mechanical forces and biochemistry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070816-033547
2018-05-20
2024-05-23
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070816-033547.html?itemId=/content/journals/10.1146/annurev-biophys-070816-033547&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Aramaki S, Mayanagi K, Jin M, Aoyama K, Yasunaga T 2016. Filopodia formation by crosslinking of F‐actin with fascin in two different binding manners. Cytoskeleton 73:7365–74
    [Google Scholar]
  2. 2.  Beach JR, Bruun KS, Shao L, Li D, Swider Z et al. 2017. Actin dynamics and competition for myosin monomer govern the sequential amplification of myosin filaments. Nat. Cell Biol. 19:285–93
    [Google Scholar]
  3. 3.  Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 31357931642–45
    [Google Scholar]
  4. 4.  Deleted in proof
  5. 5.  Bieling P, Weichsel J, McGorty R, Jreij P, Huang B et al. 2016. Force feedback controls motor activity and mechanical properties of self-assembling branched actin networks. Cell 164:1115–27
    [Google Scholar]
  6. 6.  Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J 2014. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94:1235–63
    [Google Scholar]
  7. 7.  Bornschlögl T. 2013. How filopodia pull: what we know about the mechanics and dynamics of filopodia. Cytoskeleton 70:10590–603
    [Google Scholar]
  8. 8.  Bouissou A, Proag A, Bourg N, Pingris K, Cabriel C et al. 2017. Podosome force generation machinery: a local balance between protrusion at the core and traction at the ring. ACS Nano 11:44028–40
    [Google Scholar]
  9. 9.  Bovellan M, Romeo Y, Biro M, Boden A, Chugh P et al. 2014. Cellular control of cortical actin nucleation. Curr. Biol. 24:141628–35
    [Google Scholar]
  10. 10.  Buckley CD, Tan J, Anderson KL, Hanein D, Volkmann N et al. 2014. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346:62091254211
    [Google Scholar]
  11. 11.  Burkel BM, von Dassow G, Bement WM 2007. Versatile fluorescent probes for actin filaments based on the actin‐binding domain of utrophin. Cytoskeleton 64:11822–32
    [Google Scholar]
  12. 12.  Burnette DT, Manley S, Sengupta P, Sougrat R, Davidson MW et al. 2011. A role for actin arcs in the leading-edge advance of migrating cells. Nat. Cell Biol. 13:4371–82
    [Google Scholar]
  13. 13.  Carlsson AE. 2003. Growth velocities of branched actin networks. Biophys. J. 84:52907–18
    [Google Scholar]
  14. 14.  Chanet S, Miller CJ, Vaishnav ED, Ermentrout B, Davidson LA, Martin AC 2017. Actomyosin meshwork mechanosensing enables tissue shape to orient cell force. Nat. Commun. 8:15014
    [Google Scholar]
  15. 15.  Christensen JR, Hocky GM, Homa KE, Morganthaler AN, Hitchcock-DeGregori SE et al. 2017. Competition between Tropomyosin, Fimbrin, and ADF/Cofilin drives their sorting to distinct actin filament networks. eLife 6:e23152
    [Google Scholar]
  16. 16.  Chugh P, Clark AG, Smith MB, Cassani DA, Dierkes K et al. 2017. Actin cortex architecture regulates cell surface tension. Nat. Cell Biol. 19:6689–97
    [Google Scholar]
  17. 17.  Clark AG, Dierkes K, Paluch EK 2013. Monitoring actin cortex thickness in live cells. Biophys. J. 105:3570–80
    [Google Scholar]
  18. 18.  Clark AR, Sawyer GM, Robertson SP, Sutherland-Smith AJ 2009. Skeletal dysplasias due to filamin A mutations result from a gain-of-function mechanism distinct from allelic neurological disorders. Hum. Mol. Genet. 18:244791–4800
    [Google Scholar]
  19. 19.  Cojoc D, Difato F, Ferrari E, Shahapure RB, Laishram J et al. 2007. Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PLOS ONE 2:10e1072
    [Google Scholar]
  20. 20.  Courtemanche N, Lee JY, Pollard TD, Greene EC 2013. Tension modulates actin filament polymerization mediated by formin and profilin. PNAS 110:249752–57
    [Google Scholar]
  21. 21.  del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP 2009. Stretching single talin rod molecules activates vinculin binding. Science 323:5914638–41
    [Google Scholar]
  22. 22.  Diz-Muñoz A, Thurley K, Chintamen S, Altschuler SJ, Wu LF et al. 2016. Membrane tension acts through PLD2 and mTORC2 to limit actin network assembly during neutrophil migration. PLOS Biol 14:6e1002474
    [Google Scholar]
  23. 23.  Ehrlicher AJ, Krishnan R, Guo M, Bidan CM, Weitz DA, Pollak MR 2015. Alpha-actinin binding kinetics modulate cellular dynamics and force generation. PNAS 112:216619–24
    [Google Scholar]
  24. 24.  Ehrlicher AJ, Nakamura F, Hartwig JH, Weitz DA, Stossel TP 2011. Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478:7368260
    [Google Scholar]
  25. 25.  Elam WA, Kang H, De La Cruz EM 2013. Biophysics of actin filament severing by cofilin. FEBS Lett 587:81215–19
    [Google Scholar]
  26. 26.  Endlich K, Kliewe F, Endlich N 2017. Stressed podocytes—mechanical forces, sensors, signaling and response. Pflüg. Arch. Eur. J. Physiol. 469:7–8937–49
    [Google Scholar]
  27. 27.  Finer JT, Mehta AD, Spudich JA 1995. Characterization of single actin-myosin interactions. Biophys. J. 68:Suppl. 4291S
    [Google Scholar]
  28. 28.  Freikamp A, Mehlich A, Klingner C, Grashoff C 2017. Investigating piconewton forces in cells by FRET-based molecular force microscopy. J. Struct. Biol. 197:137–42
    [Google Scholar]
  29. 29.  Fritzsche M, Li D, Colin-York H, Chang VT, Moeendarbary E et al. 2017. Self-organizing actin patterns shape membrane architecture but not cell mechanics. Nat. Commun. 8:14347
    [Google Scholar]
  30. 30.  Fujii T, Iwane AH, Yanagida T, Namba K 2010. Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature 467:7316724–28
    [Google Scholar]
  31. 31.  Galkin VE, Orlova A, Cherepanova O, Lebart M-C, Egelman EH 2008. High-resolution cryo-EM structure of the F-actin-fimbrin/plastin ABD2 complex. PNAS 105:51494–98
    [Google Scholar]
  32. 32.  Galkin VE, Orlova A, Egelman EH 2012. Actin filaments as tension sensors. Curr. Biol. 22:3R96–101
    [Google Scholar]
  33. 33.  Galkin VE, Orlova A, Vos MR, Schröder GF, Egelman EH 2015. Near-atomic resolution for one state of F-actin. Structure 23:1173–82
    [Google Scholar]
  34. 34.  Gateva G, Kremneva E, Reindl T, Kotila T, Kogan K et al. 2017. Tropomyosin isoforms specify functionally distinct actin filament populations in vitro. Curr. Biol. 27:5705–13
    [Google Scholar]
  35. 35.  Grimm HP, Verkhovsky AB, Mogilner A Meister J-J 2003. Analysis of actin dynamics at the leading edge of crawling cells: implications for the shape of keratocyte lamellipodia. Eur. Biophys. J. 32:6563–77
    [Google Scholar]
  36. 36.  Guo J, Sachs F, Meng F 2014. Fluorescence-based force/tension sensors: a novel tool to visualize mechanical forces in structural proteins in live cells. Antioxid. Redox Signal. 20:6986–99
    [Google Scholar]
  37. 37.  Hanein D, Matsudaira P, DeRosier DJ 1997. Evidence for a conformational change in actin induced by fimbrin (N375) binding. J. Cell Biol. 139:2387–96
    [Google Scholar]
  38. 38.  Hayakawa K, Sakakibara S, Sokabe M, Tatsumi H 2014. Single-molecule imaging and kinetic analysis of cooperative cofilin–actin filament interactions. PNAS 111:279810–15
    [Google Scholar]
  39. 39.  Hayakawa K, Tatsumi H, Sokabe M 2011. Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J. Cell Biol. 195:5721–27
    [Google Scholar]
  40. 40.  Henderson DM, Lee A, Ervasti JM 2010. Disease-causing missense mutations in actin binding domain 1 of dystrophin induce thermodynamic instability and protein aggregation. PNAS 107:219632–37
    [Google Scholar]
  41. 41.  Henderson JM, Alexander MP, Pollak MR 2009. Patients with ACTN4 mutations demonstrate distinctive features of glomerular injury. J. Am. Soc. Nephrol. 20:5961–68
    [Google Scholar]
  42. 42.  Higashida C, Kiuchi T, Akiba Y, Mizuno H, Maruoka M et al. 2013. F- and G-actin homeostasis regulates mechanosensitive actin nucleation by formins. Nat. Cell Biol. 15:4395–405
    [Google Scholar]
  43. 43.  Hodgkinson JL, El-Mezgueldi M, Craig R, Vibert P, Marston SB, Lehman W 1997. 3-D image reconstruction of reconstituted smooth muscle thin filaments containing calponin: visualization of interactions between F-actin and calponin. J. Mol. Biol. 273:1150–59
    [Google Scholar]
  44. 44.  Hu S, Dasbiswas K, Guo Z, Tee Y-H, Thiagarajan V et al. 2017. Long-range self-organization of cytoskeletal myosin II filament stacks. Nat. Cell Biol. 19:2133–41
    [Google Scholar]
  45. 45.  Huang DL, Bax NA, Buckley CD, Weis WI, Dunn AR 2017. Vinculin forms a directionally asymmetric catch bond with F-actin. Science 357:6352703–6
    [Google Scholar]
  46. 46.  Huelsmann S, Rintanen N, Sethi R, Brown NH, Ylänne J 2016. Evidence for the mechanosensor function of filamin in tissue development. Sci. Rep. 6:32798
    [Google Scholar]
  47. 47.  Jaiswal R, Breitsprecher D, Collins A, Corrêa IR, Xu M-Q, Goode BL 2013. The formin Daam1 and fascin directly collaborate to promote filopodia formation. Curr. Biol. 23:141373–79
    [Google Scholar]
  48. 48.  Jégou A, Carlier M-F, Romet-Lemonne G 2013. Formin mDia1 senses and generates mechanical forces on actin filaments. Nat. Commun. 4:1883
    [Google Scholar]
  49. 49.  Jégou A, Romet-Lemonne G 2016. Single filaments to reveal the multiple flavors of actin. Biophys. J. 110:102138–46
    [Google Scholar]
  50. 50.  Jensen MH, Morris EJ, Huang R, Rebowski G, Dominguez R et al. 2012. The conformational state of actin filaments regulates branching by actin-related protein 2/3 (Arp2/3) complex. J. Biol. Chem. 287:3731447–53
    [Google Scholar]
  51. 51.  Kassianidou E, Brand CA, Schwarz US, Kumar S 2017. Geometry and network connectivity govern the mechanics of stress fibers. PNAS 114:2622–27
    [Google Scholar]
  52. 52.  Katoh K, Kano Y, Amano M, Kaibuchi K, Fujiwara K 2001. Stress fiber organization regulated by MLCK and Rho-kinase in cultured human fibroblasts. Am. J. Physiol. Cell Physiol. 280:6C1669–79
    [Google Scholar]
  53. 53.  Kress H, Stelzer EH, Holzer D, Buss F, Griffiths G, Rohrbach A 2007. Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. PNAS 104:2811633–38
    [Google Scholar]
  54. 54.  Kubota H, Miyazaki M, Ogawa T, Shimozawa T, Kinosita K Jr., Ishiwata S 2017. Biphasic effect of profilin impacts the formin mDia1 force-sensing mechanism in actin polymerization. Biophys. J. 113:2461–71
    [Google Scholar]
  55. 55.  Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP et al. 2006. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90:103762–73
    [Google Scholar]
  56. 56.  Labernadie A, Bouissou A, Delobelle P, Balor S, Voituriez R et al. 2014. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nat. Commun. 5:5343
    [Google Scholar]
  57. 57.  Labouesse C, Gabella C, Meister J-J, Vianay B, Verkhovsky AB 2016. Microsurgery-aided in-situ force probing reveals extensibility and viscoelastic properties of individual stress fibers. Sci. Rep. 6:23722
    [Google Scholar]
  58. 58.  Lee SH, Weins A, Hayes DB, Pollak MR, Dominguez R 2008. Crystal structure of the actin-binding domain of α-actinin-4 Lys255Glu mutant implicated in focal segmental glomerulosclerosis. J. Mol. Biol. 376:2317–24
    [Google Scholar]
  59. 59.  Lomakin AJ, Lee K-C, Han SJ, Bui DA, Davidson M et al. 2015. Competition of two distinct actin networks for actin defines a bistable switch for cell polarization. Nat. Cell Biol. 17:111435
    [Google Scholar]
  60. 60.  Luo T, Mohan K, Iglesias PA, Robinson DN 2013. Molecular mechanisms of cellular mechanosensing. Nat. Mater. 12:111064–71
    [Google Scholar]
  61. 61.  Luxenburg C, Geblinger D, Klein E, Anderson K, Hanein D et al. 2007. The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLOS ONE 2:1e179
    [Google Scholar]
  62. 62.  Machesky LM, Mullins RD, Higgs HN, Kaiser DA, Blanchoin L et al. 1999. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. PNAS 96:73739–44
    [Google Scholar]
  63. 62a.  Marcy Y, Prost J, Carlier MF, Sykes C 2004. Forces generated during actin-based propulsion: a direct measurement by micromanipulation. PNAS 101:165992–97
    [Google Scholar]
  64. 63.  McCullough BR, Blanchoin L, Martiel J-L, Enrique M 2008. Cofilin increases the bending flexibility of actin filaments: implications for severing and cell mechanics. J. Mol. Biol. 381:3550–58
    [Google Scholar]
  65. 64.  McCullough BR, Grintsevich EE, Chen CK, Kang H, Hutchison AL et al. 2011. Cofilin-linked changes in actin filament flexibility promote severing. Biophys. J. 101:1151–59
    [Google Scholar]
  66. 65.  McGough A, Pope B, Chiu W, Weeds A 1997. Cofilin changes the twist of F-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138:4771–81
    [Google Scholar]
  67. 66.  Melak M, Plessner M, Grosse R 2017. Actin visualization at a glance. J. Cell Sci. 130:3525–30
    [Google Scholar]
  68. 67.  Meng F, Sachs F 2011. Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor. J. Cell Sci. 124:2261–69
    [Google Scholar]
  69. 68.  Meng F, Sachs F 2012. Orientation-based FRET sensor for real-time imaging of cellular forces. J. Cell Sci. 125:3743–50
    [Google Scholar]
  70. 69.  Michelot A, Drubin DG 2011. Building distinct actin filament networks in a common cytoplasm. Curr. Biol. 21:14R560–69
    [Google Scholar]
  71. 70.  Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA et al. 2013. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12:3253
    [Google Scholar]
  72. 71.  Mogilner A, Edelstein-Keshet L 2002. Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J. 83:31237–58
    [Google Scholar]
  73. 71a.  Mogliner A, Oster G 1996. Cell motility driven by actin polymerization. Biophys. J. 71:63030–45
    [Google Scholar]
  74. 71b.  Mogliner A, Oster G 2003. Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys. J. 84:31591–605
    [Google Scholar]
  75. 72.  Mueller J, Szep G, Nemethova M, de Vries I, Lieber AD et al. 2017. Load adaptation of lamellipodial actin networks. Cell 1:188–200.e16
    [Google Scholar]
  76. 73.  Ngo KX, Umeki N, Kijima ST, Kodera N, Ueno H et al. 2016. Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin. Sci. Rep. 6:35449
    [Google Scholar]
  77. 74.  Papp G, Bugyi B, Ujfalusi Z, Barkó S, Hild G et al. 2006. Conformational changes in actin filaments induced by formin binding to the barbed end. Biophys. J. 91:72564–72
    [Google Scholar]
  78. 74a.  Parekh SH, Chaudhuri O, Theriot JA, Fletcher DA 2005. Loading history determines the velocity of actin-network growth. Nat. Cell Biol. 7:1219–23
    [Google Scholar]
  79. 75.  Peskin CS, Odell GM, Oster GF 1993. Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65:1316–24
    [Google Scholar]
  80. 76.  Pollard TD. 2016. Actin and actin-binding proteins. Cold Spring Harb. Perspect. Biol. 8:a018226
    [Google Scholar]
  81. 77.  Prass M, Jacobson K, Mogilner A, Radmacher M 2006. Direct measurement of the lamellipodial protrusive force in a migrating cell. J. Cell Biol. 174:6767–72
    [Google Scholar]
  82. 78.  Prochniewicz E, Janson N, Thomas DD, Enrique M 2005. Cofilin increases the torsional flexibility and dynamics of actin filaments. J. Mol. Biol. 353:5990–1000
    [Google Scholar]
  83. 79.  Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D et al. 2008. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5:7605–7
    [Google Scholar]
  84. 80.  Risca VI, Wang EB, Chaudhuri O, Chia JJ, Geissler PL, Fletcher DA 2012. Actin filament curvature biases branching direction. PNAS 109:82913–18
    [Google Scholar]
  85. 81.  Rognoni L, Stigler J, Pelz B, Ylänne J, Rief M 2012. Dynamic force sensing of filamin revealed in single-molecule experiments. PNAS 109:4819679–84
    [Google Scholar]
  86. 82.  Romet-Lemonne G, Jégou A 2013. Mechanotransduction down to individual actin filaments. Eur. J. Cell Biol. 92:10333–38
    [Google Scholar]
  87. 83.  Salbreux G, Charras G, Paluch E 2012. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol 22:10536–45
    [Google Scholar]
  88. 84.  Schiffhauer ES, Luo T, Mohan K, Srivastava V, Qian X et al. 2016. Mechanoaccumulative elements of the mammalian actin cytoskeleton. Curr. Biol. 26:1473–79
    [Google Scholar]
  89. 85.  Shimozawa T, Ishiwata S 2009. Mechanical distortion of single actin filaments induced by external force: detection by fluorescence imaging. Biophys. J. 96:31036–44
    [Google Scholar]
  90. 86.  Srivastava V, Robinson DN 2015. Mechanical stress and network structure drive protein dynamics during cytokinesis. Curr. Biol. 25:5663–70
    [Google Scholar]
  91. 87.  Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima S et al. 2003. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160:3409–21
    [Google Scholar]
  92. 88.  Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS 2003. Cells lying on a bed of microneedles: an approach to isolate mechanical force. PNAS 100:41484–89
    [Google Scholar]
  93. 89.  Tinevez J-Y, Schulze U, Salbreux G, Roensch J, Joanny J-F, Paluch E 2009. Role of cortical tension in bleb growth. PNAS 106:4418581–86
    [Google Scholar]
  94. 90.  Ujfalusi Z, Kovács M, Nagy NT, Barkó S, Hild G et al. 2012. Myosin and tropomyosin stabilize the conformation of formin-nucleated actin filaments. J. Biol. Chem. 287:3831894–904
    [Google Scholar]
  95. 91.  Ujfalusi Z, Vig A, Hild G, Nyitrai M 2009. Effect of tropomyosin on formin-bound actin filaments. Biophys. J. 96:1162–68
    [Google Scholar]
  96. 92.  Umeki N, Hirose K, Uyeda TQ 2016. Cofilin-induced cooperative conformational changes of actin subunits revealed using cofilin-actin fusion protein. Sci. Rep. 6:20406
    [Google Scholar]
  97. 93.  Uyeda TQ, Iwadate Y, Umeki N, Nagasaki A, Yumura S 2011. Stretching actin filaments within cells enhances their affinity for the myosin II motor domain. PLOS ONE 6:10e26200
    [Google Scholar]
  98. 94.  Vinzenz M, Nemethova M, Schur F, Mueller J, Narita A et al. 2012. Actin branching in the initiation and maintenance of lamellipodia. J. Cell Sci. 125:2775–85
    [Google Scholar]
  99. 95.  Wagner E, Glotzer M 2016. Local RhoA activation induces cytokinetic furrows independent of spindle position and cell cycle stage. J. Cell Biol. 213:6641–49
    [Google Scholar]
  100. 96.  Wang Y, Kanchanawong P 2016. Three-dimensional super resolution microscopy of F-actin filaments by Interferometric PhotoActivated Localization Microscopy (iPALM). JoVE 118:e54774
    [Google Scholar]
  101. 97.  Weins A, Schlondorff JS, Nakamura F, Denker BM, Hartwig JH et al. 2007. Disease-associated mutant α-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. PNAS 104:4116080–85
    [Google Scholar]
  102. 98.  Wu C, Asokan SB, Berginski ME, Haynes EM, Sharpless NE et al. 2012. Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148:5973–87
    [Google Scholar]
  103. 99.  Wyss HM, Henderson JM, Byfield FJ, Bruggeman LA, Ding Y et al. 2011. Biophysical properties of normal and diseased renal glomeruli. Am. J. Physiol. Cell Physiol. 300:3C397–405
    [Google Scholar]
  104. 100.  Yao M, Goult BT, Chen H, Cong P, Sheetz MP, Yan J 2014. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci. Rep. 4:4610
    [Google Scholar]
  105. 101.  Yao M, Qiu W, Liu R, Efremov AK, Cong P, Seddiki R 2014. Force-dependent conformational switch of α-catenin controls vinculin binding. Nat. Commun. 5:4525
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070816-033547
Loading
/content/journals/10.1146/annurev-biophys-070816-033547
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error