A central goal in biochemistry is to explain the causes of protein sequence, structure, and function. Mainstream approaches seek to rationalize sequence and structure in terms of their effects on function and to identify function's underlying determinants by comparing related proteins to each other. Although productive, both strategies suffer from intrinsic limitations that have left important aspects of many proteins unexplained. These limits can be overcome by reconstructing ancient proteins, experimentally characterizing their properties, and retracing their evolution through time. This approach has proven to be a powerful means for discovering how historical changes in sequence produced the functions, structures, and other physical/chemical characteristics of modern proteins. It has also illuminated whether protein features evolved because of functional optimization, historical constraint, or blind chance. Here we review recent studies employing ancestral protein reconstruction and show how they have produced new knowledge not only of molecular evolutionary processes but also of the underlying determinants of modern proteins’ physical, chemical, and biological properties.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abascal F, Zardoya R, Posada D. 1.  2005. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–5 [Google Scholar]
  2. Agafonov RV, Wilson C, Otten R, Buosi V, Kern D. 2.  2014. Energetic dissection of Gleevec's selectivity toward human tyrosine kinases. Nat. Struct. Mol. Biol. 21:848–53 [Google Scholar]
  3. Aharoni A, Gaidukov L, Khersonsky O, McQ Gould S, Roodveldt C, Tawfik DS. 3.  2005. The ‘evolvability’ of promiscuous protein functions. Nat. Genet. 37:73–76 [Google Scholar]
  4. Ahnert SE, Marsh JA, Hernández H, Robinson CV, Teichmann SA. 4.  2015. Principles of assembly reveal a periodic table of protein complexes. Science 350:aaa2245 [Google Scholar]
  5. Anderson DP, Whitney DS, Hanson-Smith V, Woznica A, Campodonico-Burnett W. 5.  et al. 2016. Evolution of an ancient protein function involved in organized multicellularity in animals. eLife 5:e10147 [Google Scholar]
  6. Anderson DW, McKeown AN, Thornton JW. 6.  2015. Intermolecular epistasis shaped the function and evolution of an ancient transcription factor and its DNA binding sites. eLife 4:e07864 [Google Scholar]
  7. Baker CR, Hanson-Smith V, Johnson AD. 7.  2013. Following gene duplication, paralog interference constrains transcriptional circuit evolution. Science 342:104–8 [Google Scholar]
  8. Baldwin AJ, Kay LE. 8.  2009. NMR spectroscopy brings invisible protein states into focus. Nat. Chem. Biol. 5:8–14 [Google Scholar]
  9. Bloom JD, Gong LI, Baltimore D. 9.  2010. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 328:1272–75 [Google Scholar]
  10. Bloom JD, Romero PA, Lu Z, Arnold FH. 10.  2007. Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution. Biol. Direct 2:17 [Google Scholar]
  11. Boucher JI, Jacobowitz JR, Beckett BC, Classen S, Theobald DL. 11.  2014. An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases. eLife 3:e02304 [Google Scholar]
  12. Bridgham JT, Carroll SM, Thornton JW. 12.  2006. Evolution of hormone-receptor complexity by molecular exploitation. Science 312:97–101 [Google Scholar]
  13. Bridgham JT, Ortlund EA, Thornton JW. 13.  2009. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature 461:515–19 [Google Scholar]
  14. Brown CJ, Johnson AK, Daughdril GW. 14.  2010. Comparing models of evolution for ordered and disordered proteins. Mol. Biol. Evol. 27:609–21 [Google Scholar]
  15. Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW. 15.  et al. 2002. Evolutionary rate heterogeneity in proteins with long disordered regions. J. Mol. Evol. 55:104–10 [Google Scholar]
  16. Clifton BE, Jackson CJ. 16.  2016. Ancestral protein reconstruction yields insights into adaptive evolution of binding specificity in solute-binding proteins. Cell Chem. Biol. 2:236–45An ancestral amino acid binding protein was promiscuous because of large-scale active-site conformational plasticity. [Google Scholar]
  17. Crick F. 17.  1988. What Mad Pursuit: A Personal View of Scientific Discovery. New York: Basic Books [Google Scholar]
  18. Cunningham BC, Jhurani P, Ng P, Wells JA. 18.  1989. Receptor and antibody epitopes in human growth hormone identified by homolog-scanning mutagenesis. Science 243:1330–36 [Google Scholar]
  19. Danielsen M, Hinck L, Ringold GM. 19.  1989. Two amino acids within the knuckle of the first zinc finger specify DNA response element activation by the glucocorticoid receptor. Cell 57:1131–38 [Google Scholar]
  20. Dawkins R. 20.  1986. The Blind Watchmaker. New York: Norton [Google Scholar]
  21. Devamani T, Rauwerdink AM, Lunzer M, Jones BJ. 21.  2016. Catalytic promiscuity of ancestral esterases and hydroxynitrile lyases. J. Am. Chem. Soc. 138:1046–56 [Google Scholar]
  22. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM. 22.  et al. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77 [Google Scholar]
  23. Eick GN, Bridgham JT, Anderson DP, Harms MJ, Thornton JW. 23.  2017. Robustness of reconstructed ancestral protein functions to statistical uncertainty. Mol. Biol. Evol. 34:2247–61 [Google Scholar]
  24. Ekici OD, Paetzel M, Dalbey RE. 24.  2008. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci 17:2023–37 [Google Scholar]
  25. Elleuche S, Fodor K, von der Heyde A, Klippel B, Wilmanns M, Antranikian G. 25.  2014. Group III alcohol dehydrogenase from Pectobacterium atrosepticum: insights into enzymatic activity and organization of the metal ion-containing region. Appl. Microbiol. Biotechnol. 98:4041–51 [Google Scholar]
  26. Felsenstein J. 26.  2004. Inferring Phylogenies. Sunderland, Mass.: Sinauer Assoc. [Google Scholar]
  27. Field SF, Bulina MY, Kelmanson IV, Bielawski JP, Matz MV. 27.  2006. Adaptive evolution of multicolored fluorescent proteins in reef-building corals. J. Mol. Evol. 62:332–39 [Google Scholar]
  28. Field SF, Matz MV. 28.  2010. Retracing evolution of red fluorescence in GFP-like proteins from Faviina corals. Mol. Biol. Evol. 27:225–33 [Google Scholar]
  29. Finnigan GC, Hanson-Smith V, Stevens TH, Thornton JW. 29.  2012. Evolution of increased complexity in a molecular machine. Nature 481:360–64 [Google Scholar]
  30. Gaucher EA, Thomson JM, Burgan MF, Benner SA. 30.  2003. Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425:285–88This study and Reference 72 were the first to use modern phylogenetic methods to reconstruct and characterize very ancient proteins. [Google Scholar]
  31. Gerlt JA, Babbitt PC. 31.  2009. Enzyme (re)design: lessons from natural evolution and computation. Curr. Opin. Chem. Biol. 13:10–18 [Google Scholar]
  32. Goldstein RA. 32.  2011. The evolution and evolutionary consequences of marginal thermostability in proteins. Proteins 79:1396–407 [Google Scholar]
  33. Goodsell DS, Olson AJ. 33.  2000. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29:105–53 [Google Scholar]
  34. Gould SJ, Lewontin RC. 34.  1979. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205:581–98 [Google Scholar]
  35. Hanson-Smith V, Johnson A. 35.  2016. PhyloBot: a web portal for automated phylogenetics, ancestral sequence reconstruction, and exploration of mutational trajectories. PLOS Comput. Biol. 12:e1004976 [Google Scholar]
  36. Harms MJ, Eick GN, Goswami D, Colucci JK, Griffin PR. 36.  et al. 2013. Biophysical mechanisms for large-effect mutations in the evolution of steroid hormone receptors. PNAS 110:11475–80Used ancestral sequence reconstruction to trace apparently neutral fluctuations in the biophysical causes of protein stability during ancient evolution of RNaseHs. [Google Scholar]
  37. Harms MJ, Thornton JW. 37.  2013. Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat. Rev. Genet. 14:559–71First study using ancestral sequence reconstruction to show how evolution of a protein's conformational ensemble conferred a new function. [Google Scholar]
  38. Harms MJ, Thornton JW. 38.  2014. Historical contingency and its biophysical basis in glucocorticoid receptor evolution. Nature 512:203–7First mutational scan of a reconstructed protein found strong historical contingency in functional evolution. [Google Scholar]
  39. Hart KM, Harms MJ, Schmidt BH, Elya C, Thornton JW, Marqusee S. 39.  2014. Thermodynamic system drift in protein evolution. PLOS Biol 12:e1001994 [Google Scholar]
  40. Hedstrom L, Farr-Jones S, Kettner CA, Rutter WJ. 40.  1994. Converting trypsin to chymotrypsin: ground-state binding does not determine substrate specificity. Biochemistry 33:8764–69 [Google Scholar]
  41. Hung S-H, Hedstrom L. 41.  1998. Converting trypsin to elastase: Substitution of the S1 site and adjacent loops reconstitutes esterase specificity but not amidase activity. Protein Eng 11:669–73 [Google Scholar]
  42. Jacob F. 42.  1977. Evolution and tinkering. Science 196:1161–66 [Google Scholar]
  43. Jones DT, Taylor WR, Thornton JM. 43.  1994. A mutation data matrix for transmembrane proteins. FEBS Lett 339:269–75 [Google Scholar]
  44. Khersonsky O, Tawfik DS. 44.  2010. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 79:471–505 [Google Scholar]
  45. Kim H, Grunkemeyer TJ, Modi C, Chen L, Fromme R. 45.  et al. 2013. Acid-base catalysis and crystal structures of a least evolved ancestral GFP-like protein undergoing green-to-red photoconversion. Biochemistry 52:8048–59 [Google Scholar]
  46. Kim H, Zou T, Modi C, Dörner K, Grunkemeyer TJ. 46.  et al. 2015. A hinge migration mechanism unlocks the evolution of green-to-red photoconversion in GFP-like proteins. Structure 23:34–43Last of an impressive series of studies that dissect the evolution of red fluorescent proteins. [Google Scholar]
  47. Kimura M. 47.  1983. The Neutral Theory of Molecular Evolution. New York: Cambridge Univ. Press [Google Scholar]
  48. Kobilka BK, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz RJ. 48.  1988. Chimeric alpha 2-,beta 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science 240:1310–16 [Google Scholar]
  49. Levy ED, Erba EB, Robinson CV, Teichmann SA. 49.  2008. Assembly reflects evolution of protein complexes. Nature 453:1262–65 [Google Scholar]
  50. Li Y, Suino K, Daugherty J, Xu HE. 50.  2005. Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor. Mol. Cell. 19:367–80 [Google Scholar]
  51. Liljas A, Laurberg M. 51.  2000. A wheel invented three times: the molecular structures of the three carbonic anhydrases. EMBO Rep 1:16–17 [Google Scholar]
  52. Lunzer M, Golding GB, Dean AM. 52.  2010. Pervasive cryptic epistasis in molecular evolution. PLOS Genet 6:e1001162 [Google Scholar]
  53. Lynch M. 53.  2012. The evolution of multimeric protein assemblages. Mol. Biol. Evol. 29:1353–66 [Google Scholar]
  54. Lynch M. 54.  2013. Evolutionary diversification of the multimeric states of proteins. PNAS 110:E2821–28 [Google Scholar]
  55. Marsh JA, Teichmann SA. 55.  2014. Protein flexibility facilitates quaternary structure assembly and evolution. PLOS Biol 12:e1001870 [Google Scholar]
  56. Marsh JA, Teichmann SA. 56.  2015. Structure, dynamics, assembly, and evolution of protein complexes. Annu. Rev. Biochem. 84:551–75 [Google Scholar]
  57. McKeown AN, Bridgham JT, Anderson DW, Murphy MN, Ortlund EA, Thornton JW. 57.  2014. Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module. Cell 159:58–68 [Google Scholar]
  58. Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D. 58.  et al. 2003. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112:859–71 [Google Scholar]
  59. Ortlund EA, Bridgham JT, Redinbo MR, Thornton JW. 59.  2007. Crystal structure of an ancient protein: evolution by conformational epistasis. Science 317:1544–48First X-ray crystallographic structure of a resurrected protein revealed mechanisms for evolution of a new function. [Google Scholar]
  60. Pauling L, Zuckerkandl E. 60.  1963. Chemical paleogenetics: Molecular “restoration studies” of extinct forms of life. Acta. Chem. Scand. 17:S9–16 [Google Scholar]
  61. Perica T, Chothia C, Teichmann SA. 61.  2012. Evolution of oligomeric state through geometric coupling of protein interfaces. PNAS 109:8127–32 [Google Scholar]
  62. Perica T, Kondo Y, Tiwari SP, McLaughlin SH, Kemplen KR. 62.  et al. 2014. Evolution of oligomeric state through allosteric pathways that mimic ligand binding. Science 346:1254346 [Google Scholar]
  63. Perona JJ, Craik CS. 63.  1997. Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. J. Biol. Chem. 272:29987–90 [Google Scholar]
  64. Perutz M. 64.  1983. Species adaptation in a protein molecule. Mol. Biol. Evol. 1:1–28 [Google Scholar]
  65. Schwabe JWR, Chapman L, Finch JT, Rhodes D. 65.  1993. The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements. Cell 75:567–78 [Google Scholar]
  66. Seeliger MA, Nagar B, Frank F, Cao X, Henderson MN, Kuriyan J. 66.  2007. c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Structure 15:299–311 [Google Scholar]
  67. Siddiq MA, Loehlin DW, Montooth KL, Thornton JW. 67  2017. Experimental test and refutation of a classic case of molecular adaptation in Drosophila melanogaster. . Nature Ecol. Evol. 1:0025 [Google Scholar]
  68. Stackhouse J, Presnell SR, McGeehan GM, Nambiar KP, Benner SA. 68.  1990. The ribonuclease from an extinct bovid ruminant. FEBS Lett 262:104–6First study to resurrect and characterize an ancestral protein—in this case, a recent ribonuclease. [Google Scholar]
  69. Starr TN, Thornton JW. 69.  2016. Epistasis in protein evolution. Protein Sci 25:1204–18 [Google Scholar]
  70. Thorne JL, Goldman N, Jones DT. 70.  1996. Combining protein evolution and secondary structure. Mol. Biol. Evol. 13:666–73 [Google Scholar]
  71. Thornton JW. 71.  2004. Resurrecting ancient genes: experimental analysis of extinct molecules. Nat. Rev. Genet. 5:366–75 [Google Scholar]
  72. Thornton JW, Need E, Crews D. 72.  2003. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301:1714–17 [Google Scholar]
  73. Tokuriki N, Tawfik DS. 73.  2009. Protein dynamism and evolvability. Science 324:203–7 [Google Scholar]
  74. Ugalde JA, Chang BS, Matz MV. 74.  2004. Evolution of coral pigments recreated. Science 305:1433 [Google Scholar]
  75. Venekei I, Szilágyi L, Gráf L, Rutter WJ. 75.  1996. Attempts to convert chymotrypsin to trypsin. FEBS Lett 379:143–47 [Google Scholar]
  76. Voordeckers K, Brown CA, Vanneste K, van der Zande E, Voet A. 76.  et al. 2012. Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLOS Biol 10:e1001446Specific α-glucosidases evolved from a promiscuous ancestor through novel contacts that also exclude other substrates. [Google Scholar]
  77. Wheeler LC, Lim SA, Marqusee S, Harms MJ. 77.  2016. The thermostability and specificity of ancient proteins. Curr. Opin. Struct. Biol. 38:37–43 [Google Scholar]
  78. Wilson C, Agafonov RV, Hoemberger M, Kutter S, Zorba A. 78.  et al. 2015. Using ancient protein kinases to unravel a modern cancer drug's mechanism. Science 347:882–86First study to use ancestral sequence reconstruction for understanding the genetic and structural basis of protein dynamics. [Google Scholar]
  79. Wouters MA, Liu K, Riek P, Husain A. 79.  2003. A despecialization step underlying evolution of a family of serine proteases. Mol. Cell. 12:343–54 [Google Scholar]
  80. Yang Z. 80.  1994. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39:306–14 [Google Scholar]
  81. Yang Z. 81.  2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24:1586–91 [Google Scholar]
  82. Yang Z, Kumar S, Nei M. 82.  1995. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141:1641–50 [Google Scholar]
  83. Zuckerkandl E, Pauling L. 83.  1965. Evolutionary divergence and convergence in proteins. Evol. Gen. Prot. 97:97–166 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error