1932

Abstract

Translation initiation in eukaryotes is a highly regulated and rate-limiting process. It results in the assembly and disassembly of numerous transient and intermediate complexes involving over a dozen eukaryotic initiation factors (eIFs). This process culminates in the accommodation of a start codon marking the beginning of an open reading frame at the appropriate ribosomal site. Although this process has been extensively studied by hundreds of groups for nearly half a century, it has been only recently, especially during the last decade, that we have gained deeper insight into the mechanics of the eukaryotic translation initiation process. This advance in knowledge is due in part to the contributions of structural biology, which have shed light on the molecular mechanics underlying the different functions of various eukaryotic initiation factors. In this review, we focus exclusively on the contribution of structural biology to the understanding of the eukaryotic initiation process, a long-standing jigsaw puzzle that is just starting to yield the bigger picture.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070816-034034
2018-05-20
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070816-034034.html?itemId=/content/journals/10.1146/annurev-biophys-070816-034034&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA 2016. Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. eLife 5:e14874
    [Google Scholar]
  2. 2.  Aitken CE, Lorsch JR 2012. A mechanistic overview of translation initiation in eukaryotes. Nat. Struct. Mol. Biol. 19:568–76
    [Google Scholar]
  3. 3.  Algire MA, Maag D, Lorsch JR 2005. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol. Cell 20:251–62
    [Google Scholar]
  4. 4.  Anger AM, Armache J-P, Beninghausen O, Habeck M, Subklewe M et al. 2013. Structures of the human and Drosophila 80S ribosome. Nature 497:80–85
    [Google Scholar]
  5. 5.  Apadopoulos E, Jenni S, Kabha E, Takrouri KJ, Yi T et al. 2014. Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G. PNAS 111:E3187–95
    [Google Scholar]
  6. 6.  Armache J-P, Jarasch A, Anger AM, Villa E, Becker T et al. 2010. Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution. PNAS 107:19748–53
    [Google Scholar]
  7. 7.  Armache J-P, Jarasch A, Anger AM, Villa E, Becker T et al. 2010. Localization of eukaryote-specific ribosomal proteins in a 5.5-Å cryo-EM map of the 80S eukaryotic ribosome. PNAS 107:19754–59
    [Google Scholar]
  8. 8.  Aylett CHS, Boehringer D, Erzberger JP, Schaefer T, Ban N 2015. Structure of a yeast 40S–eIF1–eIF1A–eIF3–eIF3j initiation complex. Nat. Struct. Mol. Biol. 22:269–71
    [Google Scholar]
  9. 9.  Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G et al. 2012. Near-atomic resolution structural model of the yeast 26S proteasome. PNAS 109:14870–75
    [Google Scholar]
  10. 10.  Becker T, Franckenberg S, Wickles S, Shoemaker CJ, Anger AM et al. 2012. Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature 482:501–6
    [Google Scholar]
  11. 11.  Behrmann E Loerke J, Budkevich TV, Yamamoto K, Schmidt A, et al. 2015. Structural snapshots of actively translating human ribosomes. Cell 161:845–57
    [Google Scholar]
  12. 12.  Bellsolell L, Cho-Park PF, Poulin F, Sonenberg N, Burley SK 2006. Two structurally atypical HEAT domains in the C-terminal portion of human eIF4G support binding to eIF4A and Mnk1. Structure 14:913–23
    [Google Scholar]
  13. 13.  Benne R, Hershey JWB 1978. The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Bio. Chem. 253:3078–87
    [Google Scholar]
  14. 14.  Ben-Shem A, Garreau de Loubresse N, Molnikov S, Jenner L, Yusupova G, Yusupov M 2011. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334:1524–29
    [Google Scholar]
  15. 15.  Ben-Shem A, Jenner L, Yusupova G, Yusupov M 2010. Crystal structure of the eukaryotic ribosome. Science 330:1203–9
    [Google Scholar]
  16. 16.  Benz J, Trachsel H, Baumann U 1999. Crystal structure of the ATPase domain of translation initiation factor 4A from Saccharomyces cerevisiae—the prototype of the DEAD box protein family. Structure 7:671–79
    [Google Scholar]
  17. 17.  Beznosková P, Cuchalová L, Wagner S, Shoemaker CJ, Gunišová S et al. 2013. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLOS Genet 9:e1003962
    [Google Scholar]
  18. 18.  Beznosková P, Wagner S, Jansen ME, von der Haar T, Valášek LS 2015. Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res 43:5099–111
    [Google Scholar]
  19. 19.  Bieniossek C, Schütz P, Bumann M, Limacher A, Uson I, Baumann U 2006. The crystal structure of the carboxy-terminal domain of human translation initiation factor eIF5. J. Mol. Biol. 360:457–65
    [Google Scholar]
  20. 20.  Boehringer D, Thermann R, Ostareck-Lederer A, Lewis JD, Stark H 2005. Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure 13:1695–706
    [Google Scholar]
  21. 21.  Brown CJ, Verma CS, Walkinshaw MD, Lane DP 2009. Crystallization of eIF4E complexed with eIF4GI peptide and glycerol reveals distinct structural differences around the cap-binding site. Cell Cycle 8:1905–11
    [Google Scholar]
  22. 22.  Carter AP, Clemons WM Jr., Brodersen DE, Morgan-Warren RJ, Hartsch T et al. 2001. Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291:498–501
    [Google Scholar]
  23. 23.  Cheung Y-N, Maag D, Mitchell SF, Fekete CA, Algire MA et al. 2007. Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo. Genes Dev 21:1217–30
    [Google Scholar]
  24. 24.  Cho S, Hoffman DW 2002. Structure of the β subunit of translation initiation factor 2 from the archaeon Methanococcus jannaschii: a representative of the eIF2β/eIF5 family of proteins. Biochemistry 41:5730–42
    [Google Scholar]
  25. 25.  Choi SK, Olsen DS, Roll-Mecak A, Martung A, Remo KL et al. 2000. Physical and functional interaction between the eukaryotic orthologs of prokaryotic translation initiation factors IF1 and IF2. Mol. Cell. Biol. 20:7183–91
    [Google Scholar]
  26. 26.  Colussi TM, Costantino DA, Zhu J, Donohue JP, Korostelev AA et al. 2015. Initiation of translation in bacteria by a structured eukaryotic IRES RNA. Nature 519:110–13
    [Google Scholar]
  27. 27.  Conte MR, Kelly G, Babon J, Sanfelice D, Youell J et al. 2006. Structure of the eukaryotic initiation factor (eIF) 5 reveals a fold common to several translation factors. Biochemistry 45:4550–58
    [Google Scholar]
  28. 28.  Costantino DA, Pfingsten JS, Rambo RP, Kieft JS 2008. tRNA-mRNA mimicry drives translation initiation from a viral IRES. Nat. Struct. Mol. Biol. 15:57–64
    [Google Scholar]
  29. 29.  Cuchalová L, Kouba T, Herrmannová A, Dányi I, Chiu W, Valášek L 2010. The RNA recognition motif of eukaryotic translation initiation factor 3g (eIF3g) is required for resumption of scanning of posttermination ribosomes for reinitiation on GCN4 and together with eIF3i stimulates linear scanning. Mol. Cell. Biol. 30:4671–86
    [Google Scholar]
  30. 30.  des Georges A, Dhote V, Kuhn L, Hellen CU, Pestova TV et al. 2015. Structure of mammalian eIF3 in the context of the 43S preinitiation complex. Nature 525:491–95
    [Google Scholar]
  31. 31.  Dhaliwal S, Hoffman DW 2003. The crystal structure of the N-terminal region of the alpha subunit of translation initiation factor 2 (eIF2α) from Saccharomyces cerevisiae provides a view of the loop containing serine 51, the target of the eIF2α-specific kinases. J. Mol. Biol. 334:187–95
    [Google Scholar]
  32. 32.  Dhote V, Sweeney TR, Kim N, Hellen CU, Pestova TV 2012. Roles of individual domains in the function of DHX29, an essential factor required for translation of structured mammalian mRNAs. PNAS 109:E3150–59
    [Google Scholar]
  33. 33.  Dube P, Bacher G, Stark H, Mueller F, Zemlin F et al. 1998. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 Å resolution. J. Mol. Biol. 279:403–21
    [Google Scholar]
  34. 34.  ElAntak L, Tzakos AG, Locker N, Lukavsky PJ 2007. Structure of eIF3b RNA recognition motif and its interaction with eIF3j: structural insights into the recruitment of eIF3b to the 40 S ribosomal subunit. J. Biol. Chem. 282:8165–74
    [Google Scholar]
  35. 35.  ElAntak L, Wagner S, Herrmannová A, Karásková M, Rutkai E et al. 2010. The indispensable N-terminal half of eIF3j/HCR1 cooperates with its structurally conserved binding partner eIF3b/PRT1-RRM and with eIF1A in stringent AUG selection. J. Mol. Biol. 396:1097–116
    [Google Scholar]
  36. 36.  Erzberger JP, Stengel F, Pellarin R, Zhang S, Schaefer T et al. 2014. Molecular architecture of the 40S-eIF1-eIF3 translation initiation complex. Cell 158:1123–35
    [Google Scholar]
  37. 37.  Fernández IS, Bai X-C, Hussain T, Kelley AC, Lorsch JR et al. 2013. Molecular architecture of a eukaryotic translational initiation complex. Science 342:1240585
    [Google Scholar]
  38. 38.  Fernández IS, Bai X-C, Murshudov G, Scheres SHW, Ramakrishnan V 2014. Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome. Cell 157:823–31
    [Google Scholar]
  39. 39.  Filbin ME, Vollmar BS, Shi D, Gonen T, Kieft JS 2013. HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation. Nat. Struct. Mol. Biol. 20:150–58
    [Google Scholar]
  40. 40.  Fleming K, Ghuman J, Yuan X, Simpson P, Szendröi A et al. 2003. Solution structure and RNA interactions of the RNA recognition motif from eukaryotic translation initiation factor 4B. Biochemistry 42:8966–75
    [Google Scholar]
  41. 41.  Fletcher CM, Pestova TV, Hellen CU, Wagner G 1999. Structure and interactions of the translation initiation factor eIF1. EMBO J 18:2631–37
    [Google Scholar]
  42. 42.  Fringer JM, Acker MG, Fekete CA, Lorsch JR, Dever TE 2007. Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining. Mol. Cell. Biol. 27:2384–97
    [Google Scholar]
  43. 43.  Gartmann M, Blau M, Armache JP, Mielke T, Topf M, Beckmann R 2010. Mechanism of eIF6-mediated inhibition of ribosomal subunit joining. J. Biol. Chem. 285:14848–51
    [Google Scholar]
  44. 44.  Gerbi SA. 1996. Expansion segments: regions of variable size that interrupt the universal core secondary structure of ribosomal RNA. Ribosomal RNA—Structure, Evolution, Processing, and Function in Protein Synthesis RA Zimmermann, AE Dahlberg 71–87 Boca Raton, FL: CRC Press
    [Google Scholar]
  45. 45.  Greber BJ, Boehringer D, Godinic-Mikulcic V, Crnkovic A, Ibba M et al. 2012. Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution. J. Mol. Biol. 418:145–60
    [Google Scholar]
  46. 46.  Groft CM, Beckmann R, Sali A, Burley SK 2000. Crystal structures of ribosome anti-association factor IF6. Nat. Struct. Biol. 12:1156–64
    [Google Scholar]
  47. 47.  Gross JD, Moerke NJ, von der Haar T, Lugovskoy AA, Sachs AB et al. 2003. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115:739–50
    [Google Scholar]
  48. 48.  Grüner S, Peter D, Weber R, Wohlbold L, Chung MY et al. 2016. The structures of eIF4E-eIF4G complexes reveal an extended interface to regulate translation initiation. Mol. Cell 64:467–79
    [Google Scholar]
  49. 49.  Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY et al. 2013a. Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell 153:1108–19
    [Google Scholar]
  50. 50.  Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY et al. 2013. Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit. Nature 503:539–43
    [Google Scholar]
  51. 51.  Hashem Y, des Georges A, Fu J, Buss SN, Jossinet F et al. 2013. High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome. Nature 494:385–89
    [Google Scholar]
  52. 52.  Henshaw EC, Guiney DG, Hirsch CA 1973. The ribosome cycle in mammalian protein synthesis. I. The place of monomeric ribosomes and ribosomal subunits in the cycle. J. Biol. Chem. 248:4367–76
    [Google Scholar]
  53. 53.  Herrmannová A, Daujotyte D, Yang JC, Cuchalová L, Gorrec F et al. 2012. Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-initiation complex assembly. Nucleic Acids Res 40:2294–311
    [Google Scholar]
  54. 54.  Heuer A, Gerovac M, Schmidt C, Trowitzsch S, Preis A et al. 2017. Structure of the 40S-ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat. Struct. Mol. Biol. 24:453–60
    [Google Scholar]
  55. 55.  Hinnebusch AG. 2006. eIF3: a versatile scaffold for translation initiation complexes. TIBS 31:553–62
    [Google Scholar]
  56. 56.  Hinnebusch AG. 2014. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83:779–812
    [Google Scholar]
  57. 57.  Hinnebusch AG. 2017. Structural insights into the mechanism of scanning and start codon recognition in eukaryotic translation initiation. Trends Biochem. Sci. 42:589–611
    [Google Scholar]
  58. 58.  Hinnebusch AG, Lorsch JR 2012. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb. Perspect. Biol. 4:a011544
    [Google Scholar]
  59. 59.  Hiyama TB, Ito T, Imataka H, Yokoyama S 2009. Crystal structure of the α subunit of human translation initiation factor 2B. J. Mol. Biol. 392:937–51
    [Google Scholar]
  60. 60.  Hussain T, Llácer JL, Fernández IS, Munoz A, Martin-Marcos P et al. 2014. Structural changes enable start codon recognition by the eukaryotic translation initiation complex. Cell 159:597–607
    [Google Scholar]
  61. 61.  Ito T, Marintchev A, Wagner G 2004. Solution structure of human initiation factor eIF2α reveals homology to the elongation factor eEF1B. Structure 12:1693–704
    [Google Scholar]
  62. 62.  Jackson RJ. 2007. The missing link in the eukaryotic ribosome cycle. Mol. Cell 28:356–58
    [Google Scholar]
  63. 63.  Jackson RJ, Hellen CUT, Pestova TV 2010. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell. Biol. 11:113–27
    [Google Scholar]
  64. 64.  Jia MZ, Horita S, Nagata K, Tanokura M 2010. An archaeal Dim2-like protein, aDim2p, forms a ternary complex with a/eIF2α and the 3′ end fragment of 16S rRNA. J. Mol. Biol. 398:774–85
    [Google Scholar]
  65. 65.  Kakuta Y, Tahara M, Maetani S, Yao M, Tanaka I, Kimura M 2004. Crystal structure of the regulatory subunit of archaeal initiation factor 2B (aIF2B) from hyperthermophilic archaeon Pyrococcus horikoshii OT3: a proposed structure of the regulatory subcomplex of eukaryotic IF2B. Biochem. Biophys. Res. Commun. 319:725–32
    [Google Scholar]
  66. 66.  Kashiwagi K, Takahashi M, Nishimoto M, Hiyama TB, Higo T et al. 2016. Crystal structure of eukaryotic translation initiation factor 2B. Nature 531:122–25
    [Google Scholar]
  67. 67.  Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP 2015. Structure of the human 80S ribosome. Nature 520:640–45
    [Google Scholar]
  68. 68.  Kieft JS. 2008. Viral IRES RNA structures and ribosome interactions. Trends Biochem. Sci. 33:274–83
    [Google Scholar]
  69. 69.  Kiosze-Becker K, Ori A, Gerovac M, Heuer A, Nürenberg-Goloub E et al. 2016. Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry. Nat. Commun. 7:13248
    [Google Scholar]
  70. 70.  Khoshnevis S, Gunišová S, Vlčková V, Kouba T, Neumann P et al. 2014. Structural integrity of the PCI domain of eIF3a/TIF32 is required for mRNA recruitment to the 43S pre-initiation complexes. Nucleic Acids Res 42:4123–39
    [Google Scholar]
  71. 71.  Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N 2011. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334:941–48
    [Google Scholar]
  72. 72.  Klinge S, Voigts-Hoffmann F, Leibundgut M, Ban N 2012. Atomic structures of the eukaryotic ribosome. Trends Biochem. Sci. 37:189–98
    [Google Scholar]
  73. 73.  Koh CS, Brilot AF, Grigorieff N, Korostelev AA 2014. Taura syndrome virus IRES initiates translation by binding its tRNA-mRNA-like structural element in the ribosomal decoding center. PNAS 111:9139–44
    [Google Scholar]
  74. 74.  Kuhle B, Eulig NK, Ficner R 2015. Architecture of the eIF2B regulatory subcomplex and its implications for the regulation of guanine nucleotide exchange on eIF2. Nucleic Acids Res 43:9994–10014
    [Google Scholar]
  75. 75.  Kuhle B, Ficner R 2014. Structural insight into the recognition of amino-acylated initiator tRNA by eIF5B in the 80S initiation complex. BMC Struct. Biol. 14:20
    [Google Scholar]
  76. 76.  Kumar P, Hellen CU, Pestova TV 2016. Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs. Genes Dev 30:1573–88
    [Google Scholar]
  77. 77.  Lee AS, Kranzusch PJ, Doudna JA, Cate JH 2016. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature 536:96–99
    [Google Scholar]
  78. 78.  Lingaraju GM, Bunker RD, Cavadini S, Hess D, Hassiepen U et al. 2014. Crystal structure of the human COP9 signalosome. Nature 512:161–65
    [Google Scholar]
  79. 79.  Liu Y, Neumann P, Kuhle B, Monecke T, Schell S et al. 2014. Translation initiation factor eIF3b contains a nine-bladed b-propeller and interacts with the 40S ribosomal subunit. Structure 22:923–30
    [Google Scholar]
  80. 80.  Liu Z, Gutierrez-Vargas C, Wei J, Grassucci RA, Ramesh M et al. 2016. Structure and assembly model for the Trypanosoma cruzi 60S ribosomal subunit. PNAS 113:12174–79
    [Google Scholar]
  81. 81.  Llácer JL, Hussain T, Marler L, Aitken CE, Thakur A et al. 2015. Conformational differences between open and closed states of the eukaryotic translation initiation complex. Mol. Cell 59:399–412
    [Google Scholar]
  82. 82.  Loh PG, Yang H-S, Walsh MA, Wang Q, Wang X et al. 2009. Structural basis for translational inhibition by the tumour suppressor Pdcd4. EMBO J 28:274–85
    [Google Scholar]
  83. 83.  Lomakin IB, Kolupaeva VG, Marintchev A, Wagner G, Pestova TV 2003. Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev 17:2786–97
    [Google Scholar]
  84. 84.  Lomakin IB, Steitz TA 2013. The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature 500:307–11
    [Google Scholar]
  85. 85.  Lukavsky PJ. 2009. Structure and function of HCV IRES domains. Virus Res 139:166–71
    [Google Scholar]
  86. 86.  Luna RE, Arthanari H, Hiraishi H, Akabayov B, Tang L et al. 2013. The interaction between eukaryotic initiation factor 1A and eIF5 retains eIF1 within scanning preinitiation complexes. Biochemistry 52:9510–18
    [Google Scholar]
  87. 87.  Majumdar R, Bandyopadhyay A, Maitra U 2003. Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40S preinitiation complex. J. Biol. Chem. 278:6580–87
    [Google Scholar]
  88. 88.  Majzoub K, Hafirassou ML, Meignin C, Goto A, Marzi S et al. 2014. RACK1 controls IRES-mediated translation of viruses. Cell 159:1086–95
    [Google Scholar]
  89. 89.  Mancera-Martínez E, Brito Querido J, Valasek LS, Simonetti A, Hashem Y 2017. ABCE1: a special factor that orchestrates translation at the crossroad between recycling and initiation. RNA Biol 12:1–7
    [Google Scholar]
  90. 90.  Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK 1997. Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–61
    [Google Scholar]
  91. 91.  Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK 1999. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol. Cell 3:707–16
    [Google Scholar]
  92. 92.  Marcotrigiano J, Lomakin IB, Sonenberg N, Pestova TV, Hellen CU, Burley SK 2001. A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol. Cell 7:193–203
    [Google Scholar]
  93. 93.  McKeegan KS, Borges-Walmsley MI, Walmsley AR 2003. The structure and function of drug pumps: an update. Trends Microbiol 11:21–29
    [Google Scholar]
  94. 94.  Meleppattu S, Kamus-Elimeleh D, Zinoviev A, Cohen-Mor S, Orr I, Shapira M 2015. The eIF3 complex of Leishmania-subunit composition and mode of recruitment to different cap-binding complexes. Nucleic Acids Res 43:6222–35
    [Google Scholar]
  95. 95.  Melinkov S, Ben-Shem A, Garreau de Loubresse N, Jenner L, Yusupova G, Yusupov M 2012. One core, two shells: bacterial and eukaryotic ribosomes. Nat. Struct. Mol. Biol. 19:560–67
    [Google Scholar]
  96. 96.  Muhs M, Hilal T, Mielke T, Skabkin MA, Sanbonmatsu KY et al. 2015. Cryo-EM of ribosomal 80S complexes with termination factors reveals the translocated cricket paralysis virus IRES. Mol. Cell 57:422–32
    [Google Scholar]
  97. 97.  Murray J, Savva CG, Shin BS, Dever TE, Ramakrishnan V, Fernández IS 2016. Structural characterization of ribosome recruitment and translocation by type IV IRES. eLife 5:e13567
    [Google Scholar]
  98. 98.  Nag N, Lin KY, Edmonds KA, Yu J, Nadkarni D et al. 2016. eIF1A/eIF5B interaction network and its functions in translation initiation complex assembly and remodeling. Nucleic Acids Res 44:7441–56
    [Google Scholar]
  99. 99.  Nanda JS, Saini AK, Muñoz AM, Hinnebusch AG, Lorsch JR 2013. Coordinated movements of eukaryotic translation initiation factors eIF1, eIF1A, and eIF5 trigger phosphate release from eIF2 in response to start codon recognition by the ribosomal preinitiation complex. J. Biol. Chem. 288:5316–29
    [Google Scholar]
  100. 100.  Nielsen KH, Szamecz B, Valásek L, Jivotovskaya A, Shin BS, Hinnebusch AG 2004. Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control. EMBO J 23:1166–77
    [Google Scholar]
  101. 101.  Nielsen KH, Valášek L, Sykes C, Jivotovskaya A, Hinnebusch AG 2006. Interaction of the RNP1 motif in PRT1 with HCR1 promotes 40S binding of eukaryotic initiation factor 3 in yeast. Mol. Cell. Biol. 26:2984–98
    [Google Scholar]
  102. 102.  Nikonov O, Stolboushkina E, Nikulin A, Hasenöhrl D, Bläsi U et al. 2007. New insights into the interactions of the translation initiation factor 2 from archaea with guanine nucleotides and initiator tRNA. J. Mol. Biol. 373:328–36
    [Google Scholar]
  103. 103.  Obayashi E, Luna RE, Nagata T, Martin-Marcos P, Hiraishi H et al. 2017. Molecular landscape of the ribosome pre-initiation complex during mRNA scanning: structural role for eIF3c and its control by eIF5. Cell Rep 18:2651–63
    [Google Scholar]
  104. 104.  Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG et al. 2007. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol. Cell 26:41–50
    [Google Scholar]
  105. 105.  Pause A, Méthot N, Svitkin Y, Merrick WC, Sonenberg N 1994. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J 13:1205–15
    [Google Scholar]
  106. 106.  Pestova TV, Borukhov SI, Hellen CU 1998. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394:854–59
    [Google Scholar]
  107. 107.  Pestova TV, Kolupaeva VG 2002. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev 16:2906–22
    [Google Scholar]
  108. 108.  Peter D, Igreja C, Weber R, Wohlbold L, Weiler C et al. 2015. Molecular architecture of 4E-BP translational inhibitors bound to eIF4E. Mol. Cell 57:1074–87
    [Google Scholar]
  109. 109.  Pisarev AV, Hellen CUT, Pestova TV 2007. Recycling of eukaryotic posttermination ribosomal complexes. Cell 131:286–99
    [Google Scholar]
  110. 110.  Pisarev AV, Skabkin MA, Pisareva VP, Skabkina OV, Rakotondrafara AM et al. 2010. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell 37:196–210
    [Google Scholar]
  111. 111.  Pisareva VP, Pisarev AV, Komar AA, Hellen CU, Pestova TV 2008. Translation initiation on mammalian mRNAs with structured 5′UTRs requires DExH-box protein DHX29. Cell 135:1237–50
    [Google Scholar]
  112. 112.  Pöyry TAA, Kaminski A, Connell EJ, Fraser CS, Jackson RJ 2007. The mechanism of an exceptional case of reinitiation after translation of a long ORF reveals why such events do not generally occur in mammalian mRNA translation. Genes Dev 21:3149–62
    [Google Scholar]
  113. 113.  Quade N, Boehringer D, Leibundgut M, van den Heuvel J, Ban N 2015. Cryo-EM structure of Hepatitis C virus IRES bound to the human ribosome at 3.9-Å resolution. Nat. Commun. 6:7646
    [Google Scholar]
  114. 114.  Querol-Audi J, Sun C, Vogan JM, Smith MD, Gu Y 2013. Architecture of human translation initiation factor 3. Structure 21:920–28
    [Google Scholar]
  115. 115.  Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N 2011. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331:730–36
    [Google Scholar]
  116. 116.  Rees DC, Johnson E, Lewinson O 2009. ABC transporters: the power to change. Nat. Rev. Mol. Cell Biol. 10:218–27
    [Google Scholar]
  117. 117.  Reibarkh M, Yamamoto Y, Singh CR, del Rio F, Fahmy A et al. 2008. Eukaryotic initiation factor (eIF) 1 carries two distinct eIF5-binding faces important for multifactor assembly and AUG selection. J. Biol. Chem. 283:1094–103
    [Google Scholar]
  118. 118.  Rezende AM, Assis LA, Nunes EC, da Costa Lima TD, Marchini FK et al. 2014. The translation initiation complex eIF3 in trypanosomatids and other pathogenic excavates—identification of conserved and divergent features based on orthologue analysis. BMC Genom 15:1175
    [Google Scholar]
  119. 119.  Roll-Mecak A, Alone P, Cao C, Dever TE, Burley SK 2004. X-ray structure of translation initiation factor eIF2γ: implications for tRNA and eIF2α binding. J. Biol. Chem. 279:10634–42
    [Google Scholar]
  120. 120.  Roll-Mecak A, Cao C, Dever TE, Burley SK 2000. X-ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 103:781–92
    [Google Scholar]
  121. 121.  Rozen F, Edery I, Meerovitch K, Dever TE, Merrick WC, Sonenberg N 1990. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol. Cell. Biol. 10:1134–44
    [Google Scholar]
  122. 122.  Safaee N, Kozlov G, Noronha AM, Xie J, Wilds CJ, Gehring K 2012. Interdomain allostery promotes assembly of the poly(A) mRNA complex with PABP and eIF4G. Mol. Cell 48:375–86
    [Google Scholar]
  123. 123.  Schmitt E, Blanquet S, Mechulam Y 2002. The large subunit of initiation factor aIF2 is a close structural homologue of elongation factors. EMBO J 21:1821–32
    [Google Scholar]
  124. 124.  Schmitt E, Naveau M, Mechulam Y 2010. Eukaryotic and archaeal translation initiation factor 2: a heterotrimeric tRNA carrier. FEBS Lett 584:405–12
    [Google Scholar]
  125. 125.  Schmitt E, Panvert M, Lazennec-Schurdevin C, Coureux PD, Perez J et al. 2012. Structure of the ternary initiation complex aIF2-GDPNP-methionylated initiator tRNA. Nat. Struct. Mol. Biol. 19:450–54
    [Google Scholar]
  126. 126.  Schüler M, Connell SR, Lescoute A, Giesebrecht J, Dabrowski M et al. 2006. Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nat. Struct. Mol. Biol. 13:1092–96
    [Google Scholar]
  127. 127.  Schütz P, Bumann M, Oberholzer AE, Bieniossek C, Trachsel H et al. 2008. Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein–protein interactions. PNAS 105:9564–69
    [Google Scholar]
  128. 128.  Sekiyama N, Arthanari H, Papadopoulos E, Rodriguez-Mias RA, Wagner G, Léger-Abraham M 2015. Molecular mechanism of the dual activity of 4EGI-1: dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1. PNAS 112:E4036–45
    [Google Scholar]
  129. 129.  Shin B-S, Kim J-R, Walker SE, Dong J, Lorsch JR, Dever TE 2011. Initiation factor eIF2γ promotes eIF2–GTP–Met–tRNAiMet ternary complex binding to the 40S ribosome. Nat. Struct. Mol. Biol. 18:1227–34
    [Google Scholar]
  130. 130.  Shin B-S, Maag D, Roll-Mecak A, Arefin MS, Burley SK et al. 2002. Uncoupling of initiation factor eIF5B/IF2 GTPase and translational activities by mutations that lower ribosome affinity. Cell 111:1015–25
    [Google Scholar]
  131. 131.  Simonetti A, Brito Querido J, Myasnikov AG, Mancera-Martinez E, Renaud A et al. 2016. eIF3 peripheral subunits rearrangement after mRNA binding and start-codon recognition. Mol. Cell 63:206–17
    [Google Scholar]
  132. 132.  Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E 2005. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310:1513–15
    [Google Scholar]
  133. 133.  Smith MD, Arake-Tacca L, Nitido A, Montabana E, Park A, Cate JH 2016. Assembly of eIF3 mediated by mutually dependent subunit insertion. Structure 24:886–96
    [Google Scholar]
  134. 134.  Sokabe M, Yao M, Sakai N, Toya S, Tanaka I 2006. Structure of archaeal translational initiation factor 2 βγ-GDP reveals significant conformational change of the β-subunit and switch 1 region. PNAS 103:13016–21
    [Google Scholar]
  135. 135.  Spahn CM, Jan E, Mulder A, Grassucci RA, Sarnow P, Frank J 2004. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell 118:465–75
    [Google Scholar]
  136. 136.  Spahn CM, Kieft JS, Grassucci RA, Penczek PA, Zhou K et al. 2001. Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 291:1959–62
    [Google Scholar]
  137. 137.  Srivastava S, Verschoor A, Frank J 1992. Eukaryotic initiation factor 3 does not prevent association through physical blockage of the ribosomal subunit-subunit interface. J. Mol. Biol. 226:301–4
    [Google Scholar]
  138. 138.  Stolboushkina E, Nikonov S, Nikulin A, Bläsi U, Manstein DJ et al. 2008. Crystal structure of the intact archaeal translation initiation factor 2 demonstrates very high conformational flexibility in the α- and β-subunits. J. Mol. Biol. 382:680–91
    [Google Scholar]
  139. 139.  Stolboushkina E, Nikonov S, Zelinskaya N, Arkhipova V, Nikulin A et al. 2013. Crystal structure of the archaeal translation initiation factor 2 in complex with a GTP analogue and Met-tRNAfMet. J. Mol. Biol. 425:989–98
    [Google Scholar]
  140. 140.  Sun C, Todorovic A, Querol-Audí J, Bai Y, Villa N et al. 2011. Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3). PNAS 108:20473–78
    [Google Scholar]
  141. 141.  Szamecz B, Rutkai E, Cuchalová L, Munzarová V, Herrmannová A et al. 2008. eIF3a cooperates with sequences 5′ of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA. Genes Dev 22:2414–25
    [Google Scholar]
  142. 142.  Trachsel H, Staehelin T 1979. Initiation of mammalian protein synthesis. The multiple functions of the initiation factor eIF-3. Biochim. Biophys. Acta 565:305–14
    [Google Scholar]
  143. 143.  Valášek LS. 2012. ‘Ribozoomin'—translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs). Curr. Protein Pept. Sci. 13:305–30
    [Google Scholar]
  144. 144.  Valášek LS, Nielsen KH, Zhang F, Fekete CA, Hinnebusch AG 2004. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol. Cell. Biol. 24:9437–55
    [Google Scholar]
  145. 145.  Vasile F, Pechkova E, Nicolini C 2008. Solution structure of the β-subunit of the translation initiation factor aIF2 from archaebacteria Sulfolobus solfataricus. Proteins 70:1112–15
    [Google Scholar]
  146. 146.  Virgili G, Frank F, Feoktistova K, Sawicki M, Sonenberg N et al. 2013. Structural analysis of the DAP5 MIF4G domain and its interaction with eIF4A. Structure 21:517–27
    [Google Scholar]
  147. 147.  Voorhees RM, Fernández IS, Scheres SHW, Hegde RS 2014. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Cell 157:1632–43
    [Google Scholar]
  148. 148.  Waters LC, Strong SL, Ferlemann E, Oka O, Muskett FW et al. 2011. Structure of the tandem MA-3 region of Pdcd4 protein and characterization of its interactions with eIF4A and eIF4G: molecular mechanisms of a tumor suppressor. J. Biol. Chem. 286:17270–80
    [Google Scholar]
  149. 149.  Wei Z, Zhang P, Zhou Z, Cheng Z, Wan M, Gong W 2004. Crystal structure of human eIF3k, the first structure of eIF3 subunits. J. Biol. Chem. 279:34983–90
    [Google Scholar]
  150. 150.  Weisser M, Voigts-Hoffmann F, Rabl J, Leibundgut M, Ban N 2013. The crystal structure of the eukaryotic 40S ribosomal subunit in complex with eIF1 and eIF1A. Nat. Struct. Mol. Biol. 20:1015–17
    [Google Scholar]
  151. 151.  Wilson DN, Doudna Cate JH 2012. The structure and function of the eukaryotic ribosome. Cold Spring Harb. Perspect. Biol. 4:a011536
    [Google Scholar]
  152. 152.  Yamamoto H, Collier M, Loerke J, Ismer J, Schmidt A et al. 2014. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA. EMBO J 34:3042–58
    [Google Scholar]
  153. 153.  Yamamoto H, Unbehaun A, Loerke J, Behrmann E, Collier M et al. 2014. Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA. Nat. Struct. Mol. Biol. 21:721–27
    [Google Scholar]
  154. 154.  Yatime L, Mechulam Y, Blanquet S, Schmitt E 2006. Structural switch of the γ subunit in an archaeal aIF2αγ heterodimer. Structure 14:119–28
    [Google Scholar]
  155. 155.  Yatime L, Mechulam Y, Blanquet S, Schmitt E 2007. Structure of an archaeal heterotrimeric initiation factor 2 reveals a nucleotide state between the GTP and the GDP states. PNAS 104:18445–50
    [Google Scholar]
  156. 156.  Yatime L, Schmitt E, Blanquet S, Mechulam Y 2005. Structure-function relationships of the intact aIF2α subunit from the archaeon Pyrococcus abyssi. Biochemistry 44:8749–56
    [Google Scholar]
  157. 157.  Yokoyama T, Suzuki T 2008. Ribosomal RNAs are tolerant toward genetic insertions: evolutionary origin of the expansion segments. Nucleic Acids Res 36:3539–51
    [Google Scholar]
  158. 158.  Zhang F, Saini AK, Shin B-S, Nanda J, Hinnebusch AG 2015. Conformational changes in the P site and mRNA entry channel evoked by AUG recognition in yeast translation preinitiation complexes. Nucleic Acids Res 43:2293–312
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070816-034034
Loading
/content/journals/10.1146/annurev-biophys-070816-034034
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error