Biological functions of RNA molecules are dependent upon sustained specific three-dimensional (3D) structures of RNA, with or without the help of proteins. Understanding of RNA structure is frequently based on 2D structures, which describe only the Watson–Crick (WC) base pairs. Here, we hierarchically review the structural elements of RNA and how they contribute to RNA 3D structure. We focus our analysis on the non-WC base pairs and on RNA modules. Several computer programs have now been designed to predict RNA modules. We describe the RNA-Puzzles initiative, which is a community-wide, blind assessment of RNA 3D structure prediction programs to determine the capabilities and bottlenecks of current predictions. The assessment metrics used in RNA-Puzzles are briefly described. The detection of RNA 3D modules from sequence data and their automatic implementation belong to the current challenges in RNA 3D structure prediction.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Atkins J, Gesteland RF, Cech TR. 1.  2011. RNA Worlds: From Life's Origins to Diversity in Gene Regulation Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press
  2. Auffinger P, Grover N, Westhof E. 2.  2011. Metal ion binding to RNA. Met. Ions Life Sci. 9:1–35 [Google Scholar]
  3. Batey RT, Gilbert SD, Montange RK. 3.  2004. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432:411–15 [Google Scholar]
  4. Biesiada M, Pachulska-Wieczorek K, Adamiak RW, Purzycka KJ. 4.  2016. RNAComposer and RNA 3D structure prediction for nanotechnology. Methods 103:120–27 [Google Scholar]
  5. Boniecki MJ, Lach G, Dawson WK, Tomala K, Lukasz P. 5.  et al. 2016. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res 44:e63 [Google Scholar]
  6. Caprara MG, Nilsen TW. 6.  2000. RNA: versatility in form and function. Nat. Struct. Biol. 7:831–33 [Google Scholar]
  7. Cech TR, Steitz JA. 7.  2014. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157:77–94 [Google Scholar]
  8. Chang KY, Tinoco I Jr.. 8.  1997. The structure of an RNA “kissing” hairpin complex of the HIV TAR hairpin loop and its complement. J. Mol. Biol. 269:52–66 [Google Scholar]
  9. Chen Y, Varani G. 9.  2001. RNA structure. eLS doi: 10.1002/9780470015902.a0001339.pub2
  10. Collin D, van Heijenoort C, Boiziau C, Toulme JJ, Guittet E. 10.  2000. NMR characterization of a kissing complex formed between the TAR RNA element of HIV-1 and a DNA aptamer. Nucleic Acids Res 28:3386–91 [Google Scholar]
  11. Cordero P, Das R. 11.  2015. Rich RNA structure landscapes revealed by mutate-and-map analysis. PLOS Comput. Biol. 11:e1004473 [Google Scholar]
  12. Correll CC, Freeborn B, Moore PB, Steitz TA. 12.  1997. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell 91:705–12 [Google Scholar]
  13. Correll CC, Munishkin A, Chan YL, Ren Z, Wool IG, Steitz TA. 13.  1998. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. PNAS 95:13436–41 [Google Scholar]
  14. Cruz JA, Blanchet MF, Boniecki M, Bujnicki JM, Chen SJ. 14.  et al. 2012. RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. RNA 18:610–25 [Google Scholar]
  15. Cruz JA, Westhof E. 15.  2011. Sequence-based identification of 3D structural modules in RNA with RMDetect. Nat. Methods 8:513–21 [Google Scholar]
  16. Das R, Baker D. 16.  2007. Automated de novo prediction of native-like RNA tertiary structures. PNAS 104:14664–69 [Google Scholar]
  17. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ. 17.  et al. 2007. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–83 [Google Scholar]
  18. De Leonardis E, Lutz B, Ratz S, Cocco S, Monasson R. 18.  et al. 2015. Direct-coupling analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction. Nucleic Acids Res 43:10444–55 [Google Scholar]
  19. Ding F, Sharma S, Chalasani P, Demidov VV, Broude NE, Dokholyan NV. 19.  2008. Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms. RNA 14:1164–73 [Google Scholar]
  20. Dirks RM, Pierce NA. 20.  2004. An algorithm for computing nucleic acid base-pairing probabilities including pseudoknots. J. Comput. Chem. 25:1295–304 [Google Scholar]
  21. Draper DE. 21.  2008. RNA folding: thermodynamic and molecular descriptions of the roles of ions. Biophys. J. 95:5489–95 [Google Scholar]
  22. Draper DE, Grilley D, Soto AM. 22.  2005. Ions and RNA folding. Annu. Rev. Biophys. Biomol. Struct. 34:221–43 [Google Scholar]
  23. Eddy SR. 23.  2014. Computational analysis of conserved RNA secondary structure in transcriptomes and genomes. Annu. Rev. Biophys. 43:433–56 [Google Scholar]
  24. Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B. 24.  1987. Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–28 [Google Scholar]
  25. Flores SC, Sherman M, Bruns CM, Eastman P, Altman RB. 25.  2011. Fast flexible modeling of RNA structure using internal coordinates. IEEE/ACM Trans. Comput. Biol. Bioinform. 8:1247–57 [Google Scholar]
  26. Forsdyke DR. 26.  1995. A stem-loop “kissing” model for the initiation of recombination and the origin of introns. Mol. Biol. Evol. 12:949–58 [Google Scholar]
  27. Gilbert SD, Stoddard CD, Wise SJ, Batey RT. 27.  2006. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. J. Mol. Biol. 359:754–68 [Google Scholar]
  28. Gultyaev AP, Olsthoorn RCL, Pleij CWA, Westhof E. 28.  2001. RNA structure: pseudoknots. eLS doi: 10.1002/9780470015902.a0003134.pub2
  29. Hajdin CE, Ding F, Dokholyan NV, Weeks KM. 29.  2010. On the significance of an RNA tertiary structure prediction. RNA 16:1340–49 [Google Scholar]
  30. Hernandez AR, Shao Y, Hoshika S, Yang Z, Shelke SA. 30.  et al. 2015. A crystal structure of a functional RNA molecule containing an artificial nucleobase pair. Angew. Chem. Int. Ed. 54:9853–56 [Google Scholar]
  31. Howe JA, Wang H, Fischmann TO, Balibar CJ, Xiao L. 31.  et al. 2015. Selective small-molecule inhibition of an RNA structural element. Nature 526:672–77 [Google Scholar]
  32. Jonikas MA, Radmer RJ, Laederach A, Das R, Pearlman S. 32.  et al. 2009. Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15:189–99 [Google Scholar]
  33. Kempf G, Wild K, Sinning I. 33.  2014. Structure of the complete bacterial SRP Alu domain. Nucleic Acids Res 42:12284–94 [Google Scholar]
  34. Kim CH, Tinoco I Jr.. 34.  2000. A retroviral RNA kissing complex containing only two G·C base pairs. PNAS 97:9396–401 [Google Scholar]
  35. Kladwang W, VanLang CC, Cordero P, Das R. 35.  2011. A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat. Chem. 3:954–62 [Google Scholar]
  36. Klein DJ, Ferré-D'Amaré AR. 36.  2006. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313:1752–56 [Google Scholar]
  37. Klein DJ, Schmeing TM, Moore PB, Steitz TA. 37.  2001. The kink-turn: a new RNA secondary structure motif. EMBO J 20:4214–21 [Google Scholar]
  38. Knudsen B, Hein J. 38.  2003. Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31:3423–28 [Google Scholar]
  39. Krokhotin A, Houlihan K, Dokholyan NV. 39.  2015. iFoldRNA v2: folding RNA with constraints. Bioinformatics 31:2891–93 [Google Scholar]
  40. Kubota M, Tran C, Spitale RC. 40.  2015. Progress and challenges for chemical probing of RNA structure inside living cells. Nat. Chem. Biol. 11:933–41 [Google Scholar]
  41. Laughrea M, Jette L. 41.  1994. A 19-nucleotide sequence upstream of the 5′ major splice donor is part of the dimerization domain of human immunodeficiency virus 1 genomic RNA. Biochemistry 33:13464–74 [Google Scholar]
  42. Lebars I, Richard T, Di Primo C, Toulme JJ. 42.  2007. NMR structure of a kissing complex formed between the TAR RNA element of HIV-1 and a LNA-modified aptamer. Nucleic Acids Res 35:6103–14 [Google Scholar]
  43. Leontis NB, Lescoute A, Westhof E. 43.  2006. The building blocks and motifs of RNA architecture. Curr. Opin. Struct. Biol. 16:279–87 [Google Scholar]
  44. Leontis NB, Stombaugh J, Westhof E. 44.  2002. The non-Watson–Crick base pairs and their associated isostericity matrices. Nucleic Acids Res 30:3497–531 [Google Scholar]
  45. Leontis NB, Westhof E. 45.  1998. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. RNA 4:1134–53 [Google Scholar]
  46. Leontis NB, Westhof E. 46.  1998. A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. J. Mol. Biol. 283:571–83 [Google Scholar]
  47. Leontis NB, Westhof E. 47.  2001. Geometric nomenclature and classification of RNA base pairs. RNA 7:499–512 [Google Scholar]
  48. Lescoute A, Leontis NB, Massire C, Westhof E. 48.  2005. Recurrent structural RNA motifs, Isostericity Matrices and sequence alignments. Nucleic Acids Res 33:2395–409 [Google Scholar]
  49. Levitt M. 49.  1969. Detailed molecular model for transfer ribonucleic acid. Nature 224:759–63 [Google Scholar]
  50. Levitt M, Gerstein M. 50.  1998. A unified statistical framework for sequence comparison and structure comparison. PNAS 95:5913–20 [Google Scholar]
  51. Liu Y, Wilson TJ, McPhee SA, Lilley DM. 51.  2014. Crystal structure and mechanistic investigation of the twister ribozyme. Nat. Chem. Biol 10:739–44 [Google Scholar]
  52. Lorenz R, Wolfinger MT, Tanzer A, Hofacker IL. 52.  2016. Predicting RNA secondary structures from sequence and probing data. Methods 103:86–98 [Google Scholar]
  53. Loughrey D, Watters KE, Settle AH, Lucks JB. 53.  2014. SHAPE-Seq 2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res 42:e165 [Google Scholar]
  54. Lukasiak P, Antczak M, Ratajczak T, Bujnicki JM, Szachniuk M. 54.  et al. 2013. RNAlyzer—novel approach for quality analysis of RNA structural models. Nucleic Acids Res 41:5978–90 [Google Scholar]
  55. Lukasiak P, Antczak M, Ratajczak T, Szachniuk M, Popenda M. 55.  et al. 2015. RNAssess—a web server for quality assessment of RNA 3D structures. Nucleic Acids Res 43:W502–6 [Google Scholar]
  56. Lyngsø RB. 56.  2004. Complexity of pseudoknot prediction in simple models. Automata, Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July 12–16, 2004, Proceedings J Díaz, J Karhumäki, A Lepistö, D Sannella 919–31 Berlin: Springer-Verlag [Google Scholar]
  57. Lyngso RB, Pedersen CN. 57.  2000. RNA pseudoknot prediction in energy-based models. J. Comput. Biol. 7:409–27 [Google Scholar]
  58. Magnus M, Boniecki MJ, Dawson W, Bujnicki JM. 58.  2016. SimRNAweb: a web server for RNA 3D structure modeling with optional restraints. Nucleic Acids Res 44:W315–19 [Google Scholar]
  59. Marino JP, Gregorian RS Jr., Csankovszki G, Crothers DM. 59.  1995. Bent helix formation between RNA hairpins with complementary loops. Science 268:1448–54 [Google Scholar]
  60. Massire C, Jaeger L, Westhof E. 60.  1998. Derivation of the three-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. J. Mol. Biol. 279:773–93 [Google Scholar]
  61. Mathews DH, Moss WN, Turner DH. 61.  2010. Folding and finding RNA secondary structure. Cold Spring Harb. Perspect. Biol. 2:a003665 [Google Scholar]
  62. Miao Z, Adamiak RW, Antczak M, Batey RT, Becka AJ. 62.  et al. 2017. RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme. RNA In press. https://doi.org/10.1261/rna.060368.116 [Crossref]
  63. Miao Z, Adamiak RW, Blanchet MF, Boniecki M, Bujnicki JM. 63.  et al. 2015. RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures. RNA 21:1066–84 [Google Scholar]
  64. Michel F, Westhof E. 64.  1990. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J. Mol. Biol. 216:585–610 [Google Scholar]
  65. Montange RK, Batey RT. 65.  2006. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441:1172–75 [Google Scholar]
  66. Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. 66.  2016. Critical assessment of methods of protein structure prediction (CASP)—progress and new directions in round XI. Proteins 84:4–14 [Google Scholar]
  67. Muriaux D, Girard PM, Bonnet-Mathoniere B, Paoletti J. 67.  1995. Dimerization of HIV-1Lai RNA at low ionic strength. An autocomplementary sequence in the 5′ leader region is evidenced by an antisense oligonucleotide. J. Biol. Chem. 270:8209–16 [Google Scholar]
  68. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY. 68.  et al. 2015. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res 43:D130–37 [Google Scholar]
  69. Olechnovic K, Kulberkyte E, Venclovas C. 69.  2013. CAD-score: a new contact area difference-based function for evaluation of protein structural models. Proteins 81:149–62 [Google Scholar]
  70. Olechnovic K, Venclovas C. 70.  2014. The CAD-score web server: contact area-based comparison of structures and interfaces of proteins, nucleic acids and their complexes. Nucleic Acids Res 42:W259–63 [Google Scholar]
  71. Paillart JC, Skripkin E, Ehresmann B, Ehresmann C, Marquet R. 71.  1996. A loop-loop “kissing” complex is the essential part of the dimer linkage of genomic HIV-1 RNA. PNAS 93:5572–77 [Google Scholar]
  72. Parisien M, Cruz JA, Westhof E, Major F. 72.  2009. New metrics for comparing and assessing discrepancies between RNA 3D structures and models. RNA 15:1875–85 [Google Scholar]
  73. Parisien M, Major F. 73.  2008. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452:51–55 [Google Scholar]
  74. Parlea LG, Sweeney BA, Hosseini-Asanjan M, Zirbel CL, Leontis NB. 74.  2016. The RNA 3D Motif Atlas: computational methods for extraction, organization and evaluation of RNA motifs. Methods 103:99–119 [Google Scholar]
  75. Price IR, Gaballa A, Ding F, Helmann JD, Ke A. 75.  2015. Mn2+-sensing mechanisms of yybP-ykoY orphan riboswitches. Mol. Cell 57:1110–23 [Google Scholar]
  76. Purzycka KJ, Popenda M, Szachniuk M, Antczak M, Lukasiak P. 76.  et al. 2015. Automated 3D RNA structure prediction using the RNAComposer method for riboswitches. Methods Enzymol 553:3–34 [Google Scholar]
  77. Reinharz V, Major F, Waldispuhl J. 77.  2012. Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure. Bioinformatics 28:i207–14 [Google Scholar]
  78. Ren A, Patel DJ. 78.  2014. c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat. Chem. Biol 10:780–86 [Google Scholar]
  79. Ren A, Rajashankar KR, Patel DJ. 79.  2012. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. Nature 486:85–89 [Google Scholar]
  80. Ren A, Xue Y, Peselis A, Serganov A, Al-Hashimi HM, Patel DJ. 80.  2015. Structural and dynamic basis for low-affinity, high-selectivity binding of L-glutamine by the glutamine riboswitch. Cell Rep 13:1800–13 [Google Scholar]
  81. Rietveld K, van Poelgeest R, Pleij CW, van Boom JH, Bosch L. 81.  1982. The tRNA-like structure at the 3′ terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA. Nucleic Acids Res 10:1929–46 [Google Scholar]
  82. Rivas E, Eddy SR. 82.  1999. A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285:2053–68 [Google Scholar]
  83. Rose PW, Prlic A, Bi C, Bluhm WF, Christie CH. 83.  et al. 2015. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 43:D345–56 [Google Scholar]
  84. Rother M, Rother K, Puton T, Bujnicki JM. 84.  2011. ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res 39:4007–22 [Google Scholar]
  85. Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS. 85.  2014. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–5 [Google Scholar]
  86. Roychowdhury-Saha M, Burke DH. 86.  2006. Extraordinary rates of transition metal ion-mediated ribozyme catalysis. RNA 12:1846–52 [Google Scholar]
  87. Sarver M, Zirbel CL, Stombaugh J, Mokdad A, Leontis NB. 87.  2008. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J. Math. Biol. 56:215–52 [Google Scholar]
  88. Scarabino D, Crisari A, Lorenzini S, Williams K, Tocchini-Valentini GP. 88.  1999. tRNA prefers to kiss. EMBO J 18:4571–78 [Google Scholar]
  89. Seetin MG, Kladwang W, Bida JP, Das R. 89.  2014. Massively parallel RNA chemical mapping with a reduced bias MAP-seq protocol. Methods Mol. Biol. 1086:95–117 [Google Scholar]
  90. Serganov A, Huang L, Patel DJ. 90.  2009. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 458:233–37 [Google Scholar]
  91. Shi X, Khade PK, Sanbonmatsu KY, Joseph S. 91.  2012. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis. J. Mol. Biol. 419:125–38 [Google Scholar]
  92. Skripkin E, Paillart JC, Marquet R, Ehresmann B, Ehresmann C. 92.  1994. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. PNAS 91:4945–49 [Google Scholar]
  93. Spitale RC, Crisalli P, Flynn RA, Torre EA, Kool ET, Chang HY. 93.  2013. RNA SHAPE analysis in living cells. Nat. Chem. Biol. 9:18–20 [Google Scholar]
  94. Staple DW, Butcher SE. 94.  2005. Pseudoknots: RNA structures with diverse functions. PLOS Biol 3:e213 [Google Scholar]
  95. Sun L-Z, Zhang D, Chen S-J. 95.  2017. Theory and modeling of RNA structure and interactions with metal ions and small molecules. Annu. Rev. Biophys. 46: In press [Google Scholar]
  96. Szewczak AA, Moore PB, Chang YL, Wool IG. 96.  1993. The conformation of the sarcin/ricin loop from 28S ribosomal RNA. PNAS 90:9581–85 [Google Scholar]
  97. Talkish J, May G, Lin Y, Woolford JL Jr., McManus CJ. 97.  2014. Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20:713–20 [Google Scholar]
  98. Theis C, Höner zu Siederdissen C, Hofacker IL, Gorodkin J. 98.  2013. Automated identification of RNA 3D modules with discriminative power in RNA structural alignments. Nucleic Acids Res 41:9999–10009 [Google Scholar]
  99. Theis C, Zirbel CL, Höner zu Siederdissen C, Anthon C, Hofacker IL. 99.  et al. 2015. RNA 3D modules in genome-wide predictions of RNA 2D structure. PLOS ONE 10:e0139900 [Google Scholar]
  100. Thore S, Leibundgut M, Ban N. 100.  2006. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 312:1208–11 [Google Scholar]
  101. Trausch JJ, Marcano-Velazquez JG, Matyjasik MM, Batey RT. 101.  2015. Metal ion-mediated nucleobase recognition by the ZTP riboswitch. Chem. Biol. 22:829–37 [Google Scholar]
  102. Vidovic I, Nottrott S, Hartmuth K, Lührmann R, Ficner R. 102.  2000. Crystal structure of the spliceosomal 15.5 kD protein bound to a U4 snRNA fragment. Mol. Cell 6:1331–42 [Google Scholar]
  103. Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY. 103.  2011. Understanding the transcriptome through RNA structure. Nat. Rev. Genet. 12:641–55 [Google Scholar]
  104. Warner KD, Chen MC, Song W, Strack RL, Thorn A. 104.  et al. 2014. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat. Struct. Mol. Biol. 21:658–63 [Google Scholar]
  105. Weeks KM. 105.  2010. Advances in RNA secondary and tertiary structure analysis by chemical probing. Curr. Opin. Struct. Biol. 20:295–304 [Google Scholar]
  106. Weinreb C, Riesselman AJ, Ingraham JB, Gross T, Sander C, Marks DS. 106.  2016. 3D RNA and functional interactions from evolutionary couplings. Cell 165:963–75 [Google Scholar]
  107. Westhof E, Jaeger L. 107.  1992. RNA pseudoknots. Curr. Opin. Struct. Biol. 2:334–37 [Google Scholar]
  108. Westhof E, Romby P, Romaniuk PJ, Ebel JP, Ehresmann C, Ehresmann B. 108.  1989. Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5 S rRNAs. J. Mol. Biol. 207:417–31 [Google Scholar]
  109. Wyatt JR, Puglisi JD, Tinoco I Jr.. 109.  1990. RNA pseudoknots: stability and loop size requirements. J. Mol. Biol. 214:455–70 [Google Scholar]
  110. Xu X, Chen SJ. 110.  2015. A method to predict the 3D structure of an RNA scaffold. Methods Mol. Biol. 1316:1–11 [Google Scholar]
  111. Zemla A, Venclovas C, Moult J, Fidelis K. 111.  1999. Processing and analysis of CASP3 protein structure predictions. Proteins 3:22–29 [Google Scholar]
  112. Zhang JW, Ferré-D'Amaré AR. 112.  2013. Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. Nature 500:363–66 [Google Scholar]
  113. Zhang Y, Skolnick J. 113.  2004. Scoring function for automated assessment of protein structure template quality. Proteins 57:702–10 [Google Scholar]
  114. Zhong C, Zhang S. 114.  2012. Clustering RNA structural motifs in ribosomal RNAs using secondary structural alignment. Nucleic Acids Res 40:1307–17 [Google Scholar]
  115. Ziehler WA, Engelke DR. 115.  2001. Probing RNA structure with chemical reagents and enzymes. Curr. Protoc. Nucleic Acid Chem. 6:6.1.1–21 [Google Scholar]
  116. Zirbel CL, Roll J, Sweeney BA, Petrov AI, Pirrung M, Leontis NB. 116.  2015. Identifying novel sequence variants of RNA 3D motifs. Nucleic Acids Res 43:7504–20 [Google Scholar]
  117. Zok T, Popenda M, Szachniuk M. 117.  2014. MCQ4Structures to compute similarity of molecule structures. Cent. Eur. J. Oper. Res. 22:457–73 [Google Scholar]
  118. Zuker M. 118.  2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–15 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error