Regulation of protein stability and function in vivo begins during protein synthesis, when the ribosome translates a messenger RNA into a nascent polypeptide. Cotranslational processes involving a nascent protein include folding, binding to other macromolecules, enzymatic modification, and secretion through membranes. Experiments have shown that the rate at which the ribosome adds amino acids to the elongating nascent chain influences the efficiency of these processes, with alterations to these rates possibly contributing to diseases, including some types of cancer. In this review, we discuss recent insights into cotranslational processes gained from molecular simulations, how different computational approaches have been combined to understand cotranslational processes at multiple scales, and the new scenarios illuminated by these simulations. We conclude by suggesting interesting questions that computational approaches in this research area can address over the next few years.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abkevich VI, Gutin AM, Shakhnovich EI. 1.  1996. Improved design of stable and fast-folding model proteins. Fold. Des. 1:3221–30 [Google Scholar]
  2. Ayton GS, Noid WG, Voth GA. 2.  2007. Multiscale modeling of biomolecular systems: in serial and in parallel. Curr. Opin. Struct. Biol. 17:2192–98 [Google Scholar]
  3. Betancourt MR, Thirumalai D. 3.  1999. Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity. J. Mol. Biol. 287:3627–44 [Google Scholar]
  4. Bornberg-Bauer E.4.  1997. Chain growth algorithms for HP-type lattice proteins. Proc. Annu. Int. Conf. Comput. Mol. Biol. (RECOMB), 1st, New York47–55 New York: Assoc. Comput. Mach [Google Scholar]
  5. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG. 5.  1995. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21:3167–95 [Google Scholar]
  6. Chaney JL, Clark PL. 6.  2015. Roles for synonymous codon usage in protein biogenesis. Annu. Rev. Biophys. 44:143–66 [Google Scholar]
  7. Chiti F, Dobson CM. 7.  2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333–66 [Google Scholar]
  8. Ciryam P, Morimoto RI, Vendruscolo M, Dobson CM, O'Brien EP. 8.  2013. vivo translation rates can substantially delay the cotranslational folding of the Escherichia coli cytosolic proteome. PNAS 110:2E132–40 [Google Scholar]
  9. Comyn SA, Chan GT, Mayor T. 9.  2014. False start: cotranslational protein ubiquitination and cytosolic protein quality control. J. Proteomics 100:92–101 [Google Scholar]
  10. Contreras Martínez LM, Martínez-Veracoechea FJ, Pohkarel P, Stroock AD, Escobedo FA, DeLisa MP. 10.  2006. Protein translocation through a tunnel induces changes in folding kinetics: a lattice model study. Biotechnol. Bioeng. 94:1105–17 [Google Scholar]
  11. Davtyan A, Schafer NP, Zheng W, Clementi C, Wolynes PG, Papoian GA. 11.  2012. AWSEM-MD: protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing. J. Phys. Chem. B 116:298494–503 [Google Scholar]
  12. Dill KA.12.  1985. Theory for the folding and stability of globular proteins. Biochemistry 24:61501–9 [Google Scholar]
  13. Elcock AH.13.  2006. Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLOS Comput. Biol. 2:7e98 [Google Scholar]
  14. Foffi G, Pastore A, Piazza F, Temussi PA. 14.  2013. Macromolecular crowding: Chemistry and physics meet biology (Ascona, Switzerland, 10–14 June 2012). Phys. Biol. 10:4040301 [Google Scholar]
  15. Gershenson A, Gierasch LM. 15.  2011. Protein folding in the cell: challenges and progress. Curr. Opin. Struct. Biol. 21:132–41 [Google Scholar]
  16. Gloge F, Becker AH, Kramer G, Bukau B. 16.  2014. Co-translational mechanisms of protein maturation. Curr. Opin. Struct. Biol. 24:24–33 [Google Scholar]
  17. Goder V, Spiess M. 17.  2003. Molecular mechanism of signal sequence orientation in the endoplasmic reticulum. EMBO J. 22:143645–53 [Google Scholar]
  18. Gogala M, Becker T, Beatrix B, Armache J-P, Barrio-Garcia C. 18.  et al. 2014. Structures of the Sec61 complex engaged in nascent peptide translocation or membrane insertion. Nature 506:7486107–10 [Google Scholar]
  19. Goldman DH, Kaiser CM, Milin A, Righini M, Tinoco I Jr., Bustamante C. 19.  2015. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo. Science 348:6233457–60 [Google Scholar]
  20. Gumbart JC, Teo I, Roux B, Schulten K. 20.  2013. Reconciling the roles of kinetic and thermodynamic factors in membrane-protein insertion. J. Am. Chem. Soc. 135:62291–97 [Google Scholar]
  21. Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J. 21.  et al. 2005. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433:7024377–81 [Google Scholar]
  22. Heyden M, Freites JA, Ulmschneider MB, White SH, Tobias DJ. 22.  2012. Assembly and stability of α-helical membrane proteins. Soft Matter 8:307742–52 [Google Scholar]
  23. Hills RD, Brooks CL. 23.  2009. Insights from coarse-grained Gō models for protein folding and dynamics. Int. J. Mol. Sci. 10:3889–905 [Google Scholar]
  24. Honeycutt JD, Thirumalai D. 24.  1992. The nature of folded states of globular proteins. Biopolymers 32:6695–709 [Google Scholar]
  25. Hu S, Wang M, Cai G, He M. 25.  2013. Genetic code-guided protein synthesis and folding in Escherichia coli. J. Biol. Chem. 288:4330855–61 [Google Scholar]
  26. Huard FPE, Deane CM, Wood GR. 26.  2006. Modelling sequential protein folding under kinetic control. Bioinformatics 22:14e203–10 [Google Scholar]
  27. Hyeon C, Thirumalai D. 27.  2011. Capturing the essence of folding and functions of biomolecules using coarse-grained models. Nat. Commun. 2:487 [Google Scholar]
  28. Israelachvili JN.28.  1991. Intermolecular and Surface Forces London: Academic [Google Scholar]
  29. Jefferys BR, Kelley LA, Sternberg MJE. 29.  2010. Protein folding requires crowd control in a simulated cell. J. Mol. Biol. 397:51329–38 [Google Scholar]
  30. Jewett AI, Baumketner A, Shea J-E. 30.  2004. Accelerated folding in the weak hydrophobic environment of a chaperonin cavity: creation of an alternate fast folding pathway. PNAS 101:3613192–97 [Google Scholar]
  31. Junne T, Kocik L, Spiess M. 31.  2010. The hydrophobic core of the Sec61 translocon defines the hydrophobicity threshold for membrane integration. Mol. Biol. Cell 21:101662–70 [Google Scholar]
  32. Kaiser CM, Chang H-C, Agashe VR, Lakshmipathy SK, Etchells SA. 32.  et al. 2006. Real-time observation of trigger factor function on translating ribosomes. Nature 444:7118455–60 [Google Scholar]
  33. Kaiser CM, Goldman DH, Chodera JD, Tinoco I Jr., Bustamante C. 33a  2011. The ribosome modulates nascent protein folding. Science 334:60631723–27 [Google Scholar]
  34. Kar P, Feig M. 34.  2014. Recent advances in transferable coarse-grained modeling of proteins. Adv. Protein Chem. Struct. Biol. 96:143–80 [Google Scholar]
  35. Kirmizialtin S, Ganesan V, Makarov DE. 35.  2004. Translocation of a β-hairpin-forming peptide through a cylindrical tunnel. J. Chem. Phys. 121:2010268–77 [Google Scholar]
  36. Knight AM, Culviner PH, Kurt-Yilmaz N, Zou T, Ozkan SB, Cavagnero S. 36.  2013. Electrostatic effect of the ribosomal surface on nascent polypeptide dynamics. ACS Chem. Biol. 8:61195–204 [Google Scholar]
  37. Kolinski A, Skolnick J. 37.  2004. Reduced models of proteins and their applications. Polymer 45:2511–24 [Google Scholar]
  38. Komar AA.38.  2009. A pause for thought along the co-translational folding pathway. Trends Biochem. Sci. 34:116–24 [Google Scholar]
  39. Kosolapov A, Deutsch C. 39.  2009. Tertiary interactions within the ribosomal exit tunnel. Nat. Struct. Mol. Biol. 16:4405–11 [Google Scholar]
  40. Kramer G, Boehringer D, Ban N, Bukau B. 40.  2009. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat. Struct. Mol. Biol. 16:6589–97 [Google Scholar]
  41. Krobath H, Shakhnovich EI, Faísca PFN. 41.  2013. Structural and energetic determinants of co-translational folding. J. Chem. Phys. 138:21215101 [Google Scholar]
  42. Lazaridis T.42.  2005. Implicit solvent simulations of peptide interactions with anionic lipid membranes. Proteins 58:3518–27 [Google Scholar]
  43. Lemons DS, Gythiel A. 43.  1997. Paul Langevin's 1908 paper “On the theory of Brownian motion” [“Sur la théorie du mouvement Brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 1908]. Am. J. Phys. 65:111079–81 [Google Scholar]
  44. Leonarski F, Trovato F, Tozzini V, Leś A, Trylska J. 44.  2013. Evolutionary algorithm in the optimization of a coarse-grained force field. J. Chem. Theory Comput. 9:114874–89 [Google Scholar]
  45. Lu H-M, Liang J. 45.  2008. A model study of protein nascent chain and cotranslational folding using hydrophobic-polar residues. Proteins 70:2442–49 [Google Scholar]
  46. Morrissey MP, Ahmed Z, Shakhnovich EI. 46.  2004. The role of cotranslation in protein folding: a lattice model study. Polymer 45:557–71 [Google Scholar]
  47. Nissley DA, O'Brien EP. 47.  2014. Timing is everything: unifying codon translation rates and nascent proteome behavior. J. Am. Chem. Soc. 136:5217892–98 [Google Scholar]
  48. Noid WG.48.  2013. Perspective: coarse-grained models for biomolecular systems. J. Chem. Phys. 139:9):090901 [Google Scholar]
  49. Noid WG, Chu JW, Ayton GS, Krishna V, Izvekov S. 49.  et al. 2008. The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. J. Chem. Phys. 128:244114 [Google Scholar]
  50. O'Brien EP, Christodoulou J, Vendruscolo M, Dobson CM. 50.  2011. New scenarios of protein folding can occur on the ribosome. J. Am. Chem. Soc. 133:3513–26 [Google Scholar]
  51. O'Brien EP, Christodoulou J, Vendruscolo M, Dobson CM. 51.  2012. Trigger factor slows co-translational folding through kinetic trapping while sterically protecting the nascent chain from aberrant cytosolic interactions. J. Am. Chem. Soc. 134:2610920–32 [Google Scholar]
  52. O'Brien EP, Hsu S-TD, Christodoulou J, Vendruscolo M, Dobson CM. 52.  2010. Transient tertiary structure formation within the ribosome exit port. J. Am. Chem. Soc. 132:4716928–37 [Google Scholar]
  53. O'Brien EP, Stan G, Thirumalai D, Brooks BR. 53.  2008. Factors governing helix formation in peptides confined to carbon nanotubes. Nano Lett. 8:113702–8 [Google Scholar]
  54. O'Brien EP, Vendruscolo M, Dobson CM. 54.  2014. Kinetic modelling indicates that fast-translating codons can coordinate cotranslational protein folding by avoiding misfolded intermediates. Nat. Commun. 5:2988 [Google Scholar]
  55. O'Brien EP, Ziv G, Haran G, Brooks BR, Thirumalai D. 55.  2008. Effects of denaturants and osmolytes on proteins are accurately predicted by the molecular transfer model. PNAS 105:3613403–8 [Google Scholar]
  56. Öjemalm K, Higuchi T, Jiang Y, Langel Ü, Nilsson I. 56.  et al. 2011. Apolar surface area determines the efficiency of translocon-mediated membrane-protein integration into the endoplasmic reticulum. PNAS 108:31E359–64 [Google Scholar]
  57. Park E, Ménétret J-F, Gumbart JC, Ludtke SJ, Li W. 57.  et al. 2014. Structure of the SecY channel during initiation of protein translocation. Nature 506:7486102–6 [Google Scholar]
  58. Park E, Rapoport TA. 58.  2012. Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annu. Rev. Biophys. 41:21–40 [Google Scholar]
  59. Piana S, Klepeis JL, Shaw DE. 59.  2014. Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr. Opin. Struct. Biol. 24:98–105 [Google Scholar]
  60. Rudzinski JF, Noid WG. 60.  2015. Bottom-up coarse-graining of peptide ensembles and helix-coil transitions. J. Chem. Theory Comput. 11:31278–91 [Google Scholar]
  61. Ruiz-Canada C, Kelleher DJ, Gilmore R. 61.  2009. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136:2272–83 [Google Scholar]
  62. Rychkova A, Warshel A. 62.  2013. Exploring the nature of the translocon-assisted protein insertion. PNAS 110:2495–500 [Google Scholar]
  63. Sander IM, Chaney JL, Clark PL. 63.  2014. Expanding Anfinsen's principle: contributions of synonymous codon selection to rational protein design. J. Am. Chem. Soc. 136:3858–61 [Google Scholar]
  64. Sauna ZE, Kimchi-Sarfaty C. 64.  2011. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12:10683–91 [Google Scholar]
  65. Saunders R, Mann M, Deane CM. 65.  2011. Signatures of co-translational folding. Biotechnol. J. 6:6742–51 [Google Scholar]
  66. Senturk S, Baday S, Arkun Y, Erman B. 66.  2007. Optimum folding pathways for growing protein chains. Phys. Biol. 4:4305–16 [Google Scholar]
  67. Soler MA, Faísca PFN. 67.  2012. How difficult is it to fold a knotted protein? In silico insights from surface-tethered folding experiments. PLOS ONE 7:12e52343 [Google Scholar]
  68. Spampinato GLB, Maccari G, Tozzini V. 68.  2014. Minimalist model for the dynamics of helical polypeptides: a statistic-based parametrization. J. Chem. Theory Comput. 10:93885–95 [Google Scholar]
  69. Spencer PS, Siller E, Anderson JF, Barral JM. 69.  2012. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. J. Mol. Biol. 422:3328–35 [Google Scholar]
  70. Spiess M.70.  2014. Protein translocation: the Sec61/SecYEG translocon caught in the act. Curr. Biol. 24:8R317–19 [Google Scholar]
  71. Takada S.71.  2012. Coarse-grained molecular simulations of large biomolecules. Curr. Opin. Struct. Biol. 22:2130–37 [Google Scholar]
  72. Theillet F-X, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M. 72.  et al. 2014. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem. Rev. 114:136661–714 [Google Scholar]
  73. Tian P, Andricioaei I. 73.  2006. Size, motion, and function of the SecY translocon revealed by molecular dynamics simulations with virtual probes. Biophys. J. 90:82718–30 [Google Scholar]
  74. Tozzini V.74.  2005. Coarse-grained models for proteins. Curr. Opin. Struct. Biol. 15:2144–50 [Google Scholar]
  75. Tozzini V.75.  2010. Multiscale modeling of proteins. Acc. Chem. Res. 43:2220–30 [Google Scholar]
  76. Trovato F, Nifosì R, Di Fenza A, Tozzini V. 76.  2013. A minimalist model of protein diffusion and interactions: the green fluorescent protein within the cytoplasm. Macromolecules 46:208311–22 [Google Scholar]
  77. Trovato F, Tozzini V. 76a.  2008. Supercoiling and local denaturation of plasmids with a minimalist DNA model. J. Phys. Chem. B 112:4213197–200 [Google Scholar]
  78. Trovato F, Tozzini V. 77.  2012. Minimalist models for biopolymers: open problems, latest advances and perspectives. AIP Conf. Ser. 1456:187–200 [Google Scholar]
  79. Trovato F, Tozzini V. 78.  2014. Diffusion within the cytoplasm: a mesoscale model of interacting macromolecules. Biophys. J. 107:112579–91 [Google Scholar]
  80. Trylska J.79.  2010. Coarse-grained models to study dynamics of nanoscale biomolecules and their applications to the ribosome. J. Phys. Condens. Matter 22:45453101 [Google Scholar]
  81. Vetter R, Wittel FK, Herrmann HJ. 80.  2014. Morphogenesis of filaments growing in flexible confinements. Nat. Commun. 5:4437 [Google Scholar]
  82. Vicatos S, Rychkova A, Mukherjee S, Warshel A. 81.  2014. An effective coarse-grained model for biological simulations: recent refinements and validations. Proteins 82:71168–85 [Google Scholar]
  83. Von Heijne G. 82.  2006. Membrane-protein topology. Nat. Rev. Mol. Cell Biol. 7:12909–18 [Google Scholar]
  84. Wang J, Tan C, Chanco E, Luo R. 83.  2010. Quantitative analysis of Poisson-Boltzmann implicit solvent in molecular dynamics. Phys. Chem. Chem. Phys. 12:51194–202 [Google Scholar]
  85. Wang P, Klimov DK. 84.  2008. Lattice simulations of cotranslational folding of single domain proteins. Proteins 70:3925–37 [Google Scholar]
  86. White SH, von Heijne G. 85.  2008. How translocons select transmembrane helices. Annu. Rev. Biophys. 37:23–42 [Google Scholar]
  87. Wood GR, Patton Y, Fisher DW. 86.  2011. Global energy minimisation and cotranslational protein folding of HP models. J. Glob. Optim. 52:3575–90 [Google Scholar]
  88. Xia T, Li N, Fang X. 87.  2013. Single-molecule fluorescence imaging in living cells. Annu. Rev. Phys. Chem. 64:459–80 [Google Scholar]
  89. Yap E-H, Fawzi NL, Head-Gordon T. 88.  2008. A coarse-grained α-carbon protein model with anisotropic hydrogen-bonding. Proteins 70:3626–38 [Google Scholar]
  90. Zhang B, Miller TF. 89.  2010. Hydrophobically stabilized open state for the lateral gate of the Sec translocon. PNAS 107:125399–404 [Google Scholar]
  91. Zhang B, Miller TF. 90.  2012. Long-timescale dynamics and regulation of Sec-facilitated protein translocation. Cell Rep. 2:4927–37 [Google Scholar]
  92. Zhang G, Ignatova Z. 91.  2011. Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Curr. Opin. Struct. Biol. 21:125–31 [Google Scholar]
  93. Zhou H-X.92.  2014. Theoretical frameworks for multiscale modeling and simulation. Curr. Opin. Struct. Biol. 25:67–76 [Google Scholar]
  94. Zhou H-X, Rivas G, Minton AP. 93.  2008. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37:375–97 [Google Scholar]
  95. Ziv G, Haran G, Thirumalai D. 94.  2005. Ribosome exit tunnel can entropically stabilize α-helices. PNAS 102:5218956–61 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error