1932

Abstract

Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-072123-124954
2024-07-16
2025-02-09
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-072123-124954.html?itemId=/content/journals/10.1146/annurev-biophys-072123-124954&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alberti S, Gladfelter A, Mittag T. 2019.. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. . Cell 176:(3):41934
    [Crossref] [Google Scholar]
  2. 2.
    Alford SC, Ding Y, Simmen T, Campbell RE. 2012.. Dimerization-dependent green and yellow fluorescent proteins. . ACS Synth. Biol. 1:(12):56975
    [Crossref] [Google Scholar]
  3. 3.
    Alimohamadi H, Bell MK, Halpain S, Rangamani P. 2021.. Mechanical principles governing the shapes of dendritic spines. . Front. Physiol. 12::657074
    [Crossref] [Google Scholar]
  4. 4.
    Allen JA, Halverson-Tamboli RA, Rasenick MM. 2007.. Lipid raft microdomains and neurotransmitter signalling. . Nat. Rev. Neurosci. 8:(2):12840
    [Crossref] [Google Scholar]
  5. 5.
    Allen PB, Ouimet CC, Greengard P. 1997.. Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. . PNAS 94:(18):995661
    [Crossref] [Google Scholar]
  6. 6.
    Area-Gomez E, del Carmen Lara Castillo M, Tambini MD, Guardia-Laguarta C, de Groof AJC, et al. 2012.. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. . EMBO J. 31:(21):410623
    [Crossref] [Google Scholar]
  7. 7.
    Ashby MC, Maier SR, Nishimune A, Henley JM. 2006.. Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. . J. Neurosci. 26:(26):704655
    [Crossref] [Google Scholar]
  8. 8.
    Ashrafi G, de Juan-Sanz J, Farrell RJ, Ryan TA. 2020.. Molecular tuning of the axonal mitochondrial Ca2+ uniporter ensures metabolic flexibility of neurotransmission. . Neuron 105:(4):67887.e5
    [Crossref] [Google Scholar]
  9. 9.
    Bär J, Kobler O, Van Bommel B, Mikhaylova M. 2016.. Periodic F-actin structures shape the neck of dendritic spines. . Sci. Rep. 6::37136
    [Crossref] [Google Scholar]
  10. 10.
    Bartol TM Jr., Bromer C, Kinney J, Chirillo MA, Bourne JN, et al. 2015a.. Nanoconnectomic upper bound on the variability of synaptic plasticity. . eLife 4::e10778
    [Crossref] [Google Scholar]
  11. 11.
    Bartol TM, Keller DX, Kinney JP, Bajaj CL, Harris KM, et al. 2015b.. Computational reconstitution of spine calcium transients from individual proteins. . Front. Synaptic Neurosci. 7::17
    [Crossref] [Google Scholar]
  12. 12.
    Basnayake K, Mazaud D, Bemelmans A, Rouach N, Korkotian E, Holcman D. 2019.. Fast calcium transients in dendritic spines driven by extreme statistics. . PLOS Biol. 17:(6):e2006202
    [Crossref] [Google Scholar]
  13. 13.
    Bats C, Groc L, Choquet D. 2007.. The interaction between stargazin and PSD-95 regulates AMPA receptor surface trafficking. . Neuron 53:(5):71934
    [Crossref] [Google Scholar]
  14. 14.
    Batty NJ, Fenrich KK, Fouad K. 2017.. The role of cAMP and its downstream targets in neurite growth in the adult nervous system. . Neurosci. Lett. 652::5663
    [Crossref] [Google Scholar]
  15. 15.
    Behera A, Kumar G, Sain A. 2020.. Confined filaments in soft vesicles—the case of sickle red blood cells. . Soft Matter 16:(2):42127
    [Crossref] [Google Scholar]
  16. 16.
    Bell M, Bartol T, Sejnowski T, Rangamani P. 2019.. Dendritic spine geometry and spine apparatus organization govern the spatiotemporal dynamics of calcium. . J. Gen. Physiol. 151:(8):101734
    [Crossref] [Google Scholar]
  17. 17.
    Bell MK, Holst MV, Lee CT, Rangamani P. 2022.. Dendritic spine morphology regulates calcium-dependent synaptic weight change. . J. Gen. Physiol. 154:(8):e202112980
    [Crossref] [Google Scholar]
  18. 18.
    Bell MK, Lee CT, Rangamani P. 2023.. Spatiotemporal modelling reveals geometric dependence of AMPAR dynamics on dendritic spine morphology. . J. Physiol. 601:(15):332950
    [Crossref] [Google Scholar]
  19. 19.
    Bell MK, Rangamani P. 2023.. Crosstalk between biochemical signalling network architecture and trafficking governs AMPAR dynamics in synaptic plasticity. . J. Physiol. 601:(15):3377402
    [Crossref] [Google Scholar]
  20. 20.
    Berry KP, Nedivi E. 2017.. Spine dynamics: Are they all the same?. Neuron 96:(1):4355
    [Crossref] [Google Scholar]
  21. 21.
    Bertling E, Hotulainen P. 2017.. New waves in dendritic spine actin cytoskeleton: from branches and bundles to rings, from actin binding proteins to post-translational modifications. . Mol. Cell. Neurosci. 84::7784
    [Crossref] [Google Scholar]
  22. 22.
    Bhalla US. 2002.. Use of Kinetikit and GENESIS for modeling signaling pathways. . Methods Enzymol. 345::323
    [Crossref] [Google Scholar]
  23. 23.
    Bhalla US. 2004.. Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. . Biophys. J. 87:(2):73344
    [Crossref] [Google Scholar]
  24. 24.
    Bhalla US, Iyengar R. 1999.. Emergent properties of networks of biological signaling pathways. . Science 283:(5400):38187
    [Crossref] [Google Scholar]
  25. 25.
    Biederer T, Kaeser PS, Blanpied TA. 2017.. Transcellular nanoalignment of synaptic function. . Neuron 96:(3):68096
    [Crossref] [Google Scholar]
  26. 26.
    Bloodgood BL, Sabatini BL. 2005.. Neuronal activity regulates diffusion across the neck of dendritic spines. . Science 310:(5749):86669
    [Crossref] [Google Scholar]
  27. 27.
    Bonilla-Quintana M, Rangamani P. 2024.. Biophysical modeling of actin-mediated structural plasticity reveals mechanical adaptation in dendritic spines. . eNeuro 11(3): ENEURO.0497-23.2024
    [Google Scholar]
  28. 28.
    Bonilla-Quintana M, Rangamani P. 2022.. Can biophysical models of dendritic spines be used to explore synaptic changes associated with addiction?. Phys. Biol. 19:(4):041001
    [Crossref] [Google Scholar]
  29. 29.
    Bonilla-Quintana M, Wörgötter F, Tetzlaff C, Fauth M. 2019.. Modeling the shape of synaptic spines by their actin dynamics. . Front. Synaptic Neurosci. 12::9
    [Crossref] [Google Scholar]
  30. 30.
    Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y. 2014.. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. . Neuron 82:(2):44459
    [Crossref] [Google Scholar]
  31. 31.
    Bourne J, Harris KM. 2007.. Do thin spines learn to be mushroom spines that remember?. Curr. Opin. Neurobiol. 17:(3):38186
    [Crossref] [Google Scholar]
  32. 32.
    Bourne JN, Harris KM. 2008.. Balancing structure and function at hippocampal dendritic spines. . Annu. Rev. Neurosci. 31::4767
    [Crossref] [Google Scholar]
  33. 33.
    Bradshaw JM, Kubota Y, Meyer T, Schulman H. 2003.. An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. . PNAS 100:(18):1051217
    [Crossref] [Google Scholar]
  34. 34.
    Bravo R, Vicencio JM, Parra V, Troncoso R, Munoz JP, et al. 2011.. Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. . J. Cell Sci. 124:(13):214352
    [Crossref] [Google Scholar]
  35. 35.
    Breit M, Kessler M, Stepniewski M, Vlachos A, Queisser G. 2018.. Spine-to-dendrite calcium modeling discloses relevance for precise positioning of ryanodine receptor-containing spine endoplasmic reticulum. . Sci. Rep. 8::15624
    [Crossref] [Google Scholar]
  36. 36.
    Bressloff P, Earnshaw B. 2007.. Diffusion-trapping model of receptor trafficking in dendrites. . Phys. Rev. E 75:(4):041915
    [Crossref] [Google Scholar]
  37. 37.
    Brockie PJ, Jensen M, Mellem JE, Jensen E, Yamasaki T, et al. 2013.. Cornichons control ER export of AMPA receptors to regulate synaptic excitability. . Neuron 80:(1):12942
    [Crossref] [Google Scholar]
  38. 38.
    Calì C, Agus M, Kare K, Boges DJ, Lehväslaiho H, et al. 2019.. 3D cellular reconstruction of cortical glia and parenchymal morphometric analysis from Serial Block-Face Electron Microscopy of juvenile rat. . Prog. Neurobiol. 183::101696
    [Crossref] [Google Scholar]
  39. 39.
    Calì C, Wawrzyniak M, Becker C, Maco B, Cantoni M, et al. 2018.. The effects of aging on neuropil structure in mouse somatosensory cortex—a 3D electron microscopy analysis of layer 1. . PLOS ONE 13:(7):e0198131
    [Crossref] [Google Scholar]
  40. 40.
    Canham PB. 1970.. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. . J. Theor. Biol. 26:(1):6181
    [Crossref] [Google Scholar]
  41. 41.
    Cardinale A, Fusco FR. 2018.. Inhibition of phosphodiesterases as a strategy to achieve neuroprotection in Huntington's disease. . CNS Neurosci. Ther. 24:(4):31928
    [Crossref] [Google Scholar]
  42. 42.
    Cartailler J, Kwon T, Yuste R, Holcman D. 2018.. Deconvolution of voltage sensor time series and electro-diffusion modeling reveal the role of spine geometry in controlling synaptic strength. . Neuron 97:(5):112636.e10
    [Crossref] [Google Scholar]
  43. 43.
    Case LB, De Pasquale M, Henry L, Rosen MK. 2022.. Synergistic phase separation of two pathways promotes integrin clustering and nascent adhesion formation. . eLife 11::e72588
    [Crossref] [Google Scholar]
  44. 44.
    Case LB, Ditlev JA, Rosen MK. 2019.. Regulation of transmembrane signaling by phase separation. . Annu. Rev. Biophys. 48::46594
    [Crossref] [Google Scholar]
  45. 45.
    Chandrasekaran A, Graham K, Stachowiak JC, Rangamani P. 2023.. Kinetic trapping organizes actin filaments within liquid-like protein droplets. . bioRxiv 2023.05.26.542517. https://doi.org/10.1101/2023.05.26.542517
  46. 46.
    Chang JY, Parra-Bueno P, Laviv T, Szatmari EM, Lee SJR, Yasuda R. 2017.. CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance. . Neuron 94:(4):8008
    [Crossref] [Google Scholar]
  47. 47.
    Chay A, Zamparo I, Koschinski A, Zaccolo M, Blackwell KT. 2016.. Control of βAR- and N-methyl-d-aspartate (NMDA) receptor-dependent cAMP dynamics in hippocampal neurons. . PLOS Comput. Biol. 12:(2):e1004735
    [Crossref] [Google Scholar]
  48. 48.
    Chen X, Jia B, Zhu S, Zhang M. 2023.. Phase separation-mediated actin bundling by the postsynaptic density condensates. . eLife 12::e84446
    [Crossref] [Google Scholar]
  49. 49.
    Chen X, Levy JM, Hou A, Winters C, Azzam R, et al. 2015.. PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. . PNAS 112:(50):E698392
    [Crossref] [Google Scholar]
  50. 50.
    Chen X, Wu X, Wu H, Zhang M. 2020.. Phase separation at the synapse. . Nat. Neurosci. 23::30110
    [Crossref] [Google Scholar]
  51. 51.
    Chen Y, Saintillan D, Rangamani P. 2023.. Interplay between mechanosensitive adhesions and membrane tension regulates cell motility. . PRX Life 1::023007
    [Crossref] [Google Scholar]
  52. 52.
    Cheng X, Ullo MF, Case LB. 2022.. Reconstitution of phase-separated signaling clusters and actin polymerization on supported lipid bilayers. . Front. Cell Dev. Biol. 10::932493
    [Google Scholar]
  53. 53.
    Chicurel ME, Harris KM. 1992.. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. . J. Comp. Neurol. 325:(2):16982
    [Crossref] [Google Scholar]
  54. 54.
    Choquet D. 2018.. Linking nanoscale dynamics of AMPA receptor organization to plasticity of excitatory synapses and learning. . J. Neurosci. 38:(44):931829
    [Crossref] [Google Scholar]
  55. 55.
    Choquet D, Hosy E. 2020.. AMPA receptor nanoscale dynamic organization and synaptic plasticities. . Curr. Opin. Neurobiol. 63::13745
    [Crossref] [Google Scholar]
  56. 56.
    Choquet D, Triller A. 2003.. The role of receptor diffusion in the organization of the postsynaptic membrane. . Nat. Rev. Neurosci. 4:(4):25165
    [Crossref] [Google Scholar]
  57. 57.
    Cingolani LA, Goda Y. 2008.. Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. . Nat. Rev. Neurosci. 9:(5):34456
    [Crossref] [Google Scholar]
  58. 58.
    Colbran RJ. 2004.. Protein phosphatases and calcium/calmodulin-dependent protein kinase II-dependent synaptic plasticity. . J. Neurosci. 24:(39):84049
    [Crossref] [Google Scholar]
  59. 59.
    Colgan LA, Yasuda R. 2014.. Plasticity of dendritic spines: subcompartmentalization of signaling. . Annu. Rev. Physiol. 76::36585
    [Crossref] [Google Scholar]
  60. 60.
    Cooney JR, Hurlburt JL, Selig DK, Harris KM, Fiala JC. 2002.. Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane. . J. Neurosci. 22:(6):221524
    [Crossref] [Google Scholar]
  61. 61.
    Cornejo VH, Ofer N, Yuste R. 2022.. Voltage compartmentalization in dendritic spines in vivo. . Science 375:(6576):8286
    [Crossref] [Google Scholar]
  62. 62.
    Correia SS, Bassani S, Brown TC, Lisé MF, Backos DS, et al. 2008.. Motor protein–dependent transport of AMPA receptors into spines during long-term potentiation. . Nat. Neurosci. 11:(4):45766
    [Crossref] [Google Scholar]
  63. 63.
    Csordás G, Weaver D, Hajnóczky G. 2018.. Endoplasmic reticulum–mitochondrial contactology: structure and signaling functions. . Trends Cell Biol. 28:(7):52340
    [Crossref] [Google Scholar]
  64. 64.
    Cugno A, Bartol TM, Sejnowski TJ, Iyengar R, Rangamani P. 2019.. Geometric principles of second messenger dynamics in dendritic spines. . Sci. Rep. 9::11676
    [Crossref] [Google Scholar]
  65. 65.
    Czöndör K, Mondin M, Garcia M, Heine M, Frischknecht R, et al. 2012.. Unified quantitative model of AMPA receptor trafficking at synapses. . PNAS 109:(9):352227
    [Crossref] [Google Scholar]
  66. 66.
    da Silva ME, Adrian M, Schätzle P, Lipka J, Watanabe T, et al. 2015.. Positioning of AMPA receptor-containing endosomes regulates synapse architecture. . Cell Rep. 13:(5):93343
    [Crossref] [Google Scholar]
  67. 67.
    Dailey ME, Smith SJ. 1996.. The dynamics of dendritic structure in developing hippocampal slices. . J. Neurosci. 16:(9):298394
    [Crossref] [Google Scholar]
  68. 68.
    De Schutter E. 2008.. Why are computational neuroscience and systems biology so separate?. PLOS Comput. Biol. 4:(5):e1000078
    [Crossref] [Google Scholar]
  69. 69.
    de Vivo L, Bellesi M, Marshall W, Bushong EA, Ellisman MH, et al. 2017.. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. . Science 355:(6324):50710
    [Crossref] [Google Scholar]
  70. 70.
    Delint-Ramírez I, Salcedo-Tello P, Bermudez-Rattoni F. 2008.. Spatial memory formation induces recruitment of NMDA receptor and PSD-95 to synaptic lipid rafts. . J. Neurochem. 106:(4):165868
    [Crossref] [Google Scholar]
  71. 71.
    Derkach VA, Oh MC, Guire ES, Soderling TR. 2007.. Regulatory mechanisms of AMPA receptors in synaptic plasticity. . Nat. Rev. Neurosci. 8:(2):10113
    [Crossref] [Google Scholar]
  72. 72.
    Ding JD, Kennedy MB, Weinberg RJ. 2013.. Subcellular organization of CaMKII in rat hippocampal pyramidal neurons. . J. Comp. Neurol. 521:(15):357083
    [Crossref] [Google Scholar]
  73. 73.
    Dotti CG, Esteban JA, Ledesma MD. 2014.. Lipid dynamics at dendritic spines. . Front. Neuroanat. 8::76
    [Crossref] [Google Scholar]
  74. 74.
    Dunn TA, Wang CT, Colicos MA, Zaccolo M, DiPilato LM, et al. 2006.. Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. . J. Neurosci. 26:(49):1280715
    [Crossref] [Google Scholar]
  75. 75.
    Earnshaw BA, Bressloff PC. 2006.. Biophysical model of AMPA receptor trafficking and its regulation during long-term potentiation/long-term depression. . J. Neurosci. 26:(47):1236273
    [Crossref] [Google Scholar]
  76. 76.
    Eberhardt F, Bushong EA, Phan S, Peltier S, Monteagudo P, et al. 2022.. A uniform and isotropic cytoskeletal tiling fills dendritic spines. . eNeuro 9:(5):ENEURO.0342-22.2022
    [Crossref] [Google Scholar]
  77. 77.
    Engl E, Jolivet R, Hall CN, Attwell D. 2017.. Non-signalling energy use in the developing rat brain. . J. Cereb. Blood Flow Metab. 37:(3):95166
    [Crossref] [Google Scholar]
  78. 78.
    Fiala JC, Feinberg M, Popov V, Harris KM. 1998.. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. . J. Neurosci. 18:(21):890011
    [Crossref] [Google Scholar]
  79. 79.
    Fischer M, Kaech S, Knutti D, Matus A. 1998.. Rapid actin-based plasticity in dendritic spines. . Neuron 20:(5):84754
    [Crossref] [Google Scholar]
  80. 80.
    Fortin DA, Srivastava T, Soderling TR. 2012.. Structural modulation of dendritic spines during synaptic plasticity. . Neuroscientist 18:(4):32641
    [Crossref] [Google Scholar]
  81. 81.
    Frank AC, Huang S, Zhou M, Gdalyahu A, Kastellakis G, et al. 2018.. Hotspots of dendritic spine turnover facilitate clustered spine addition and learning and memory. . Nat. Commun. 9::422
    [Crossref] [Google Scholar]
  82. 82.
    Freche D, Pannasch U, Rouach N, Holcman D. 2011.. Synapse geometry and receptor dynamics modulate synaptic strength. . PLOS ONE 6:(10):e25122
    [Crossref] [Google Scholar]
  83. 83.
    Friedhoff VN, Antunes G, Falcke M, de Souza FMS. 2021.. Stochastic reaction-diffusion modeling of calcium dynamics in 3D dendritic spines of Purkinje cells. . Biophys. J. 120:(11):211223
    [Crossref] [Google Scholar]
  84. 84.
    Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK. 2011.. ER tubules mark sites of mitochondrial division. . Science 334:(6054):35862
    [Crossref] [Google Scholar]
  85. 85.
    Fu ZX, Tan X, Fang H, Lau PM, Wang X, et al. 2017.. Dendritic mitoflash as a putative signal for stabilizing long-term synaptic plasticity. . Nat. Commun. 8::31
    [Crossref] [Google Scholar]
  86. 86.
    Gallimore AR, Aricescu AR, Yuzaki M, Calinescu R. 2016.. A computational model for the AMPA receptor phosphorylation master switch regulating cerebellar long-term depression. . PLOS Comput. Biol. 12::e1004664
    [Crossref] [Google Scholar]
  87. 87.
    Gallimore AR, Kim T, Tanaka-Yamamoto K, De Schutter E. 2018.. Switching on depression and potentiation in the cerebellum. . Cell Rep. 22:(3):72233
    [Crossref] [Google Scholar]
  88. 88.
    Ganeshina O, Berry R, Petralia R, Nicholson D, Geinisman Y. 2004.. Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions. . Neuroscience 125:(3):61523
    [Crossref] [Google Scholar]
  89. 89.
    Gao Z, Yu Z, Holst M. 2013.. Feature-preserving surface mesh smoothing via suboptimal Delaunay triangulation. . Graph. Models 75:(1):2338
    [Crossref] [Google Scholar]
  90. 90.
    Genoux D, Haditsch U, Knobloch M, Michalon A, Storm D, Mansuy IM. 2002.. Protein phosphatase 1 is a molecular constraint on learning and memory. . Nature 418:(6901):97075
    [Crossref] [Google Scholar]
  91. 91.
    Goncalves J, Bartol TM, Camus C, Levet F, Menegolla AP, et al. 2020.. Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses. . PNAS 117:(25):1450311
    [Crossref] [Google Scholar]
  92. 92.
    Graham K, Chandrasekaran A, Wang L, Ladak A, Lafer EM, et al. 2023.. Liquid-like VASP condensates drive actin polymerization and dynamic bundling. . Nat. Phys. 19:(4):57485
    [Crossref] [Google Scholar]
  93. 93.
    Graupner M, Brunel N. 2012.. Calcium-based plasticity model explains sensitivity of synaptic changes to spike pattern, rate, and dendritic location. . PNAS 109:(10):399196
    [Crossref] [Google Scholar]
  94. 94.
    Gray E. 1959.. Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. . Nature 183:(4675):159293
    [Crossref] [Google Scholar]
  95. 95.
    Grutzendler J, Kasthuri N, Gan WB. 2002.. Long-term dendritic spine stability in the adult cortex. . Nature 420:(6917):81216
    [Crossref] [Google Scholar]
  96. 96.
    Guo C, Alfaro-Aco R, Zhang C, Russell RW, Petry S, Polenova T. 2023.. Structural basis of protein condensation on microtubules underlying branching microtubule nucleation. . Nat. Commun. 14::3682
    [Crossref] [Google Scholar]
  97. 97.
    Halls ML, Cooper DMF. 2011.. Regulation by Ca2+-signaling pathways of adenylyl cyclases. . Cold Spring Harb. Perspect. Biol. 3:(1):a004143
    [Crossref] [Google Scholar]
  98. 98.
    Han K, Gericke A, Pastor RW. 2020.. Characterization of specific ion effects on PI(4,5)P2 clustering: molecular dynamics simulations and graph-theoretic analysis. . J. Phys. Chem. B 124:(7):118396
    [Crossref] [Google Scholar]
  99. 99.
    Hanley JG. 2018.. The regulation of AMPA receptor endocytosis by dynamic protein-protein interactions. . Front. Cell. Neurosci. 12::362
    [Crossref] [Google Scholar]
  100. 100.
    Harris KM. 1999.. Structure, development, and plasticity of dendritic spines. . Curr. Opin. Neurobiol. 9:(3):34348
    [Crossref] [Google Scholar]
  101. 101.
    Harris KM, Kater SB. 1994.. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. . Annu. Rev. Neurosci. 17::34171
    [Crossref] [Google Scholar]
  102. 102.
    Harris KM, Stevens JK. 1989.. Dendritic spines of CA1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. . J. Neurosci. 9:(8):298297
    [Crossref] [Google Scholar]
  103. 103.
    Haselwandter CA, Calamai M, Kardar M, Triller A, Azeredo da Silveira R. 2011.. Formation and stability of synaptic receptor domains. . Phys. Rev. Lett. 106:(23):238104
    [Crossref] [Google Scholar]
  104. 104.
    Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R. 2000.. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. . Science 287:(5461):226267
    [Crossref] [Google Scholar]
  105. 105.
    Hedrick N, Yasuda R. 2014.. Imaging signaling transduction in single dendritic spines. . In Nanoscale Imaging of Synapses: New Concepts and Opportunities, ed. UV Nägerl, A Triller , pp. 14559. Berlin:: Springer
    [Google Scholar]
  106. 106.
    Helfrich W. 1973.. Elastic properties of lipid bilayers: theory and possible experiments. . Z. Naturforsch. C 28:(11):693703
    [Crossref] [Google Scholar]
  107. 107.
    Hell JW. 2016.. How Ca2+-permeable AMPA receptors, the kinase PKA, and the phosphatase PP2B are intertwined in synaptic LTP and LTD. . Sci. Signal. 9:(425):pe2
    [Crossref] [Google Scholar]
  108. 108.
    Henley JM, Barker EA, Glebov OO. 2011.. Routes, destinations and delays: recent advances in AMPA receptor trafficking. . Trends Neurosci. 34:(5):25868
    [Crossref] [Google Scholar]
  109. 109.
    Herant M, Dembo M. 2010.. Cytopede: a three-dimensional tool for modeling cell motility on a flat surface. . J. Comput. Biol. 17:(12):163977
    [Crossref] [Google Scholar]
  110. 110.
    Hering H, Lin CC, Sheng M. 2003.. Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. . J. Neurosci. 23:(8):326271
    [Crossref] [Google Scholar]
  111. 111.
    Higley MJ, Sabatini BL. 2012.. Calcium signaling in dendritic spines. . Cold Spring Harb. Perspect. Biol. 4:(4):a005686
    [Crossref] [Google Scholar]
  112. 112.
    Hille B. 2001.. Ion Channels of Excitable Membranes. Sunderland, MA:: Sinauer. , 3rd ed..
    [Google Scholar]
  113. 113.
    Holmes WR, Levy WB. 1990.. Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. . J. Neurophysiol. 63:(5):114868
    [Crossref] [Google Scholar]
  114. 114.
    Holthoff K, Tsay D, Yuste R. 2002.. Calcium dynamics of spines depend on their dendritic location. . Neuron 33:(3):42537
    [Crossref] [Google Scholar]
  115. 115.
    Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, et al. 2005.. Transient and persistent dendritic spines in the neocortex in vivo. . Neuron 45:(2):27991
    [Crossref] [Google Scholar]
  116. 116.
    Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GCR, Kasai H. 2008.. The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. . Neuron 57:(5):71929
    [Crossref] [Google Scholar]
  117. 117.
    Hoogland TM, Saggau P. 2004.. Facilitation of L-type Ca2+ channels in dendritic spines by activation of β2 adrenergic receptors. . J. Neurosci. 24:(39):841627
    [Crossref] [Google Scholar]
  118. 118.
    Horne EA, Dell'Acqua ML. 2007.. Phospholipase C is required for changes in postsynaptic structure and function associated with NMDA receptor-dependent long-term depression. . J. Neurosci. 27:(13):352334
    [Crossref] [Google Scholar]
  119. 119.
    Hotulainen P, Hoogenraad CC. 2010.. Actin in dendritic spines: connecting dynamics to function. . J. Cell Biol. 189:(4):61929
    [Crossref] [Google Scholar]
  120. 120.
    Hu E, Mergenthal A, Bingham CS, Song D, Bouteiller JM, Berger TW. 2018.. A glutamatergic spine model to enable multi-scale modeling of nonlinear calcium dynamics. . Front. Comput. Neurosci. 12::58
    [Crossref] [Google Scholar]
  121. 121.
    Ingólfsson HI, Carpenter TS, Bhatia H, Bremer PT, Marrink SJ, Lightstone FC. 2017.. Computational lipidomics of the neuronal plasma membrane. . Biophys. J. 113:(10):227180
    [Crossref] [Google Scholar]
  122. 122.
    Jackson AC, Nicoll RA. 2011.. Stargazin (TARP γ-2) is required for compartment-specific AMPA receptor trafficking and synaptic plasticity in cerebellar stellate cells. . J. Neurosci. 31:(11):393952
    [Crossref] [Google Scholar]
  123. 123.
    Jadiya P, Kolmetzky DW, Tomar D, Di Meco A, Lombardi AA, et al. 2019.. Impaired mitochondrial calcium efflux contributes to disease progression in models of Alzheimer's disease. . Nat. Commun. 10::3885
    [Crossref] [Google Scholar]
  124. 124.
    Jahr CE, Stevens CF. 1993.. Calcium permeability of the N-methyl-d-aspartate receptor channel in hippocampal neurons in culture. . PNAS 90:(24):1157377
    [Crossref] [Google Scholar]
  125. 125.
    Jedlicka P, Vlachos A, Schwarzacher SW, Deller T. 2008.. A role for the spine apparatus in LTP and spatial learning. . Behav. Brain Res. 192:(1):1219
    [Crossref] [Google Scholar]
  126. 126.
    Jędrzejewska-Szmek J, Blackwell KT. 2019.. From membrane receptors to protein synthesis and actin cytoskeleton: mechanisms underlying long lasting forms of synaptic plasticity. . Semin. Cell Dev. Biol. 95::12029
    [Crossref] [Google Scholar]
  127. 127.
    Jędrzejewska-Szmek J, Damodaran S, Dorman DB, Blackwell KT. 2017.. Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons. . Eur. J. Neurosci. 45:(8):104456
    [Crossref] [Google Scholar]
  128. 128.
    Johnson ME, Chen A, Faeder JR, Henning P, Moraru II, et al. 2021.. Quantifying the roles of space and stochasticity in computer simulations for cell biology and cellular biochemistry. . Mol. Biol. Cell 32:(2):186210
    [Crossref] [Google Scholar]
  129. 129.
    Kandel ER. 2012.. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. . Mol. Brain 5::14
    [Crossref] [Google Scholar]
  130. 130.
    Kanjhan R, Noakes PG, Bellingham MC. 2016.. Emerging roles of filopodia and dendritic spines in motoneuron plasticity during development and disease. . Neural Plast. 2016::3423267
    [Crossref] [Google Scholar]
  131. 131.
    Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H. 2003.. Structure–stability–function relationships of dendritic spines. . Trends Neurosci. 26:(7):36068
    [Crossref] [Google Scholar]
  132. 132.
    Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, et al. 2015.. Saturated reconstruction of a volume of neocortex. . Cell 162:(3):64861
    [Crossref] [Google Scholar]
  133. 133.
    Kennedy MB. 2010.. Calcium/calmodulin-dependent protein kinase II. . In Handbook of Cell Signaling, ed. RA Bradshaw, EA Dennis , pp. 56568. San Diego:: Academic. , 2nd ed..
    [Google Scholar]
  134. 134.
    Kennedy MB. 2017.. Biochemistry and neuroscience: The twain need to meet. . Curr. Opin. Neurobiol. 43::7986
    [Crossref] [Google Scholar]
  135. 135.
    Kharazia VN, Weinberg RJ. 1997.. Tangential synaptic distribution of NMDA and AMPA receptors in rat neocortex. . Neurosci. Lett. 238:(1–2):4144
    [Crossref] [Google Scholar]
  136. 136.
    Kim IH, Racz B, Wang H, Burianek L, Weinberg R, et al. 2013.. Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities. . J. Neurosci. 33:(14):608192
    [Crossref] [Google Scholar]
  137. 137.
    Koleske AJ. 2013.. Molecular mechanisms of dendrite stability. . Nat. Rev. Neurosci. 14:(8):53650
    [Crossref] [Google Scholar]
  138. 138.
    Korkotian E, Segal M. 2011.. Synaptopodin regulates release of calcium from stores in dendritic spines of cultured hippocampal neurons. . J. Physiol. 589:(24):598795
    [Crossref] [Google Scholar]
  139. 139.
    Korobova F, Svitkina T. 2009.. Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. . Mol. Biol. Cell 21:(1):16576
    [Crossref] [Google Scholar]
  140. 140.
    Kotaleski JH, Blackwell KT. 2010.. Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. . Nat. Rev. Neurosci. 11:(4):23951
    [Crossref] [Google Scholar]
  141. 141.
    Kubota Y, Sohn J, Kawaguchi Y. 2018.. Large volume electron microscopy and neural microcircuit analysis. . Front. Neural Circ. 12::98
    [Crossref] [Google Scholar]
  142. 142.
    Landis D, Reese TS. 1983.. Cytoplasmic organization in cerebellar dendritic spines. . J. Cell Biol. 97:(4):116978
    [Crossref] [Google Scholar]
  143. 143.
    Larson J, Munkácsy E. 2015.. Theta-burst LTP. . Brain Res. 1621::3850
    [Crossref] [Google Scholar]
  144. 144.
    Law E, Li Y, Kahraman O, Haselwandter CA. 2021.. Stochastic self-assembly of reaction-diffusion patterns in synaptic membranes. . Phys. Rev. E 104:(1):014403
    [Crossref] [Google Scholar]
  145. 145.
    Lee CT, Laughlin JG, de La Beaumelle NA, Amaro RE, McCammon JA, et al. 2020.. 3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries. . PLOS Comput. Biol. 16:(4):e1007756
    [Crossref] [Google Scholar]
  146. 146.
    Lee CT, Laughlin JG, Moody JB, Amaro RE, McCammon JA, et al. 2020.. An open-source mesh generation platform for biophysical modeling using realistic cellular geometries. . Biophys. J. 118:(5):10038
    [Crossref] [Google Scholar]
  147. 147.
    Lee S, Min KT. 2018.. The interface between ER and mitochondria: molecular compositions and functions. . Mol. Cells 41:(12):10007
    [Google Scholar]
  148. 148.
    Lee SJR, Escobedo-Lozoya Y, Szatmari EM, Yasuda R. 2009.. Activation of CaMKII in single dendritic spines during long-term potentiation. . Nature 458:(7236):299304
    [Crossref] [Google Scholar]
  149. 149.
    Leung A, Ohadi D, Pekkurnaz G, Rangamani P. 2021.. Systems modeling predicts that mitochondria ER contact sites regulate the postsynaptic energy landscape. . NPJ Syst. Biol. Appl. 7:(1):26
    [Crossref] [Google Scholar]
  150. 150.
    Leung A, Rangamani P. 2023.. Computational modeling of AMPK and mTOR crosstalk in glutamatergic synapse calcium signaling. . NPJ Syst. Biol. Appl. 9:(1):34
    [Crossref] [Google Scholar]
  151. 151.
    Li L, Stefan MI, Novère NL. 2012.. Calcium input frequency, duration and amplitude differentially modulate the relative activation of calcineurin and CaMKII. . PLOS ONE 7:(9):e43810
    [Crossref] [Google Scholar]
  152. 152.
    Li S, Raychaudhuri S, Lee SA, Brockmann MM, Wang J, et al. 2021.. Asynchronous release sites align with NMDA receptors in mouse hippocampal synapses. . Nat. Commun. 12::677
    [Crossref] [Google Scholar]
  153. 153.
    Linden NJ, Kramer B, Rangamani P. 2022.. Bayesian parameter estimation for dynamical models in systems biology. . PLOS Comput. Biol. 18:(10):e1010651
    [Crossref] [Google Scholar]
  154. 154.
    Lisman J. 2017.. Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling. . Philos. Trans. R. Soc. B 372:(1715):20160260
    [Crossref] [Google Scholar]
  155. 155.
    Lisman J, Schulman H, Cline H. 2002.. The molecular basis of CaMKII function in synaptic and behavioural memory. . Nat. Rev. Neurosci. 3:(3):17590
    [Crossref] [Google Scholar]
  156. 156.
    Lisman J, Yasuda R, Raghavachari S. 2012.. Mechanisms of CaMKII action in long-term potentiation. . Nat. Rev. Neurosci. 13:(3):16982
    [Crossref] [Google Scholar]
  157. 157.
    Lisman JE, Goldring MA. 1988.. Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density. . PNAS 85:(14):532024
    [Crossref] [Google Scholar]
  158. 158.
    Lisman JE, McIntyre CC. 2001.. Synaptic plasticity: a molecular memory switch. . Curr. Biol. 11:(19):R78891
    [Crossref] [Google Scholar]
  159. 159.
    Lisman JE, Zhabotinsky AM. 2001.. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. . Neuron 31:(2):191201
    [Crossref] [Google Scholar]
  160. 160.
    Litschel T, Kelley CF, Cheng X, Babl L, Mizuno N, et al. 2023.. Membrane-induced 2D phase separation of focal adhesion proteins. . bioRxiv 2023.03.31.535113. https://doi.org/10.1101/2023.03.31.535113
  161. 161.
    Luo L. 2000.. Rho GTPases in neuronal morphogenesis. . Nat. Rev. Neurosci. 1:(3):17380
    [Crossref] [Google Scholar]
  162. 162.
    Mäki-Marttunen T, Iannella N, Edwards AG, Einevoll GT, Blackwell KT. 2020.. A unified computational model for cortical post-synaptic plasticity. . eLife 9::e55714
    [Crossref] [Google Scholar]
  163. 163.
    Makino H, Malinow R. 2009.. AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. . Neuron 64:(3):38190
    [Crossref] [Google Scholar]
  164. 164.
    Malenka RC. 1991.. The role of postsynaptic calcium in the induction of long-term potentiation. . Mol. Neurobiol. 5::28995
    [Crossref] [Google Scholar]
  165. 165.
    Marinangeli C, Didier S, Ahmed T, Caillerez R, Domise M, et al. 2018.. AMP-activated protein kinase is essential for the maintenance of energy levels during synaptic activation. . iScience 9::113
    [Crossref] [Google Scholar]
  166. 166.
    Martin MG, Ahmed T, Korovaichuk A, Venero C, Menchón SA, et al. 2014.. Constitutive hippocampal cholesterol loss underlies poor cognition in old rodents. . EMBO Mol. Med. 6:(7):90217
    [Crossref] [Google Scholar]
  167. 167.
    Martino Adami PV, Nichtová Z, Weaver DB, Bartok A, Wisniewski T, et al. 2019.. Perturbed mitochondria-ER contacts in live neurons that model the amyloid pathology of Alzheimer's disease. . J. Cell Sci. 132:(20):jcs229906
    [Crossref] [Google Scholar]
  168. 168.
    Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H. 2001.. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. . Nat. Neurosci. 4:(11):108692
    [Crossref] [Google Scholar]
  169. 169.
    Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H. 2004.. Structural basis of long-term potentiation in single dendritic spines. . Nature 429:(6993):76166
    [Crossref] [Google Scholar]
  170. 170.
    Matus A. 2000.. Actin-based plasticity in dendritic spines. . Science 290:(5492):75458
    [Crossref] [Google Scholar]
  171. 171.
    Matus A, Ackermann M, Pehling G, Byers HR, Fujiwara K. 1982.. High actin concentrations in brain dendritic spines and postsynaptic densities. . PNAS 79:(23):759094
    [Crossref] [Google Scholar]
  172. 172.
    Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC, et al. 2001.. CNS synaptogenesis promoted by glia-derived cholesterol. . Science 294:(5545):135457
    [Crossref] [Google Scholar]
  173. 173.
    Miermans CA, Kusters RPT, Hoogenraad CC, Storm C. 2017.. Biophysical model of the role of actin remodeling on dendritic spine morphology. . PLOS ONE 12:(2):e0170113
    [Crossref] [Google Scholar]
  174. 174.
    Miguez-Cabello F, Sánchez-Fernández N, Yefimenko N, Gasull X, Gratacòs-Batlle E, Soto D. 2020.. AMPAR/TARP stoichiometry differentially modulates channel properties. . eLife 9::e53946
    [Crossref] [Google Scholar]
  175. 175.
    Miller M, Peters A. 1981.. Maturation of rat visual cortex. II. A combined Golgi-electron microscope study of pyramidal neurons. . J. Comp. Neurol. 203:(4):55573
    [Crossref] [Google Scholar]
  176. 176.
    Mogilner A, Oster G. 1996.. Cell motility driven by actin polymerization. . Biophys. J. 71:(6):303045
    [Crossref] [Google Scholar]
  177. 177.
    Mogilner A, Oster G. 2003.. Force generation by actin polymerization II: the elastic ratchet and tethered filaments. . Biophys. J. 84:(3):1591605
    [Crossref] [Google Scholar]
  178. 178.
    Morishita W, Connor JH, Xia H, Quinlan EM, Shenolikar S, Malenka RC. 2001.. Regulation of synaptic strength by protein phosphatase 1. . Neuron 32:(6):113348
    [Crossref] [Google Scholar]
  179. 179.
    Motley SE, Grossman YS, Janssen WGM, Baxter MG, Rapp PR, et al. 2018.. Selective loss of thin spines in area 7a of the primate intraparietal sulcus predicts age-related working memory impairment. . J. Neurosci. 38:(49):1046778
    [Crossref] [Google Scholar]
  180. 180.
    Motta A, Berning M, Boergens KM, Staffler B, Beining M, et al. 2019.. Dense connectomic reconstruction in layer 4 of the somatosensory cortex. . Science 366:(6469):eaay3134
    [Crossref] [Google Scholar]
  181. 181.
    Murakoshi H, Wang H, Yasuda R. 2011.. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. . Nature 472:(7341):1004
    [Crossref] [Google Scholar]
  182. 182.
    Murakoshi H, Yasuda R. 2012.. Postsynaptic signaling during plasticity of dendritic spines. . Trends Neurosci. 35:(2):13543
    [Crossref] [Google Scholar]
  183. 183.
    Nagai T, Yoshimoto J, Kannon T, Kuroda K, Kaibuchi K. 2016.. Phosphorylation signals in striatal medium spiny neurons. . Trends Pharmacol. Sci. 37:(10):85871
    [Crossref] [Google Scholar]
  184. 184.
    Nair D, Hosy E, Petersen JD, Constals A, Giannone G, et al. 2013.. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. . J. Neurosci. 33:(32):1320424
    [Crossref] [Google Scholar]
  185. 185.
    Nakahata Y, Yasuda R. 2018.. Plasticity of spine structure: local signaling, translation and cytoskeletal reorganization. . Front. Synaptic Neurosci. 10::29
    [Crossref] [Google Scholar]
  186. 186.
    Nanguneri S, Pramod RT, Efimova N, Das D, Jose M, et al. 2019.. Characterization of nanoscale organization of F-actin in morphologically distinct dendritic spines in vitro using supervised learning. . eNeuro 6:(4):ENEURO.0425-18.2019
    [Crossref] [Google Scholar]
  187. 187.
    Nedelec F, Foethke D. 2007.. Collective Langevin dynamics of flexible cytoskeletal fibers. . New J. Phys. 9:(11):427
    [Crossref] [Google Scholar]
  188. 188.
    Newpher TM, Ehlers MD. 2008.. Glutamate receptor dynamics in dendritic microdomains. . Neuron 58:(4):47297
    [Crossref] [Google Scholar]
  189. 189.
    Ni H, Papoian GA. 2021.. Membrane-MEDYAN: simulating deformable vesicles containing complex cytoskeletal networks. . J. Phys. Chem. B 125:(38):1071019
    [Crossref] [Google Scholar]
  190. 190.
    Nimchinsky EA, Sabatini BL, Svoboda K. 2002.. Structure and function of dendritic spines. . Annu. Rev. Physiol. 64::31353
    [Crossref] [Google Scholar]
  191. 191.
    O'Donnell C, Nolan MF, van Rossum MC. 2011.. Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. . J. Neurosci. 31:(45):1614256
    [Crossref] [Google Scholar]
  192. 192.
    Ofer N, Benavides-Piccione R, DeFelipe J, Yuste R. 2022.. Structural analysis of human and mouse dendritic spines reveals a morphological continuum and differences across ages and species. . eNeuro 9:(3):ENEURO.0039-22.2022
    [Crossref] [Google Scholar]
  193. 193.
    Ofer N, Berger DR, Kasthuri N, Lichtman JW, Yuste R. 2021.. Ultrastructural analysis of dendritic spine necks reveals a continuum of spine morphologies. . Dev. Neurobiol. 81:(5):74657
    [Crossref] [Google Scholar]
  194. 194.
    Ohadi D, Rangamani P. 2019.. Geometric control of frequency modulation of cAMP oscillations due to calcium in dendritic spines. . Biophys. J. 117:(10):198194
    [Crossref] [Google Scholar]
  195. 195.
    Ohadi D, Schmitt DL, Calabrese B, Halpain S, Zhang J, Rangamani P. 2019.. Computational modeling reveals frequency modulation of calcium-cAMP/PKA pathway in dendritic spines. . Biophys. J. 117:(10):196380
    [Crossref] [Google Scholar]
  196. 196.
    Okabe S. 2020.. Regulation of actin dynamics in dendritic spines: nanostructure, molecular mobility, and signaling mechanisms. . Mol. Cell. Neurosci. 109::103564
    [Crossref] [Google Scholar]
  197. 197.
    Okamoto KI, Nagai T, Miyawaki A, Hayashi Y. 2004.. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. . Nat. Neurosci. 7:(10):110412
    [Crossref] [Google Scholar]
  198. 198.
    Oliveira RF, Kim M, Blackwell KT. 2012.. Subcellular location of PKA controls striatal plasticity: stochastic simulations in spiny dendrites. . PLOS Comput. Biol. 8:(2):e1002383
    [Crossref] [Google Scholar]
  199. 199.
    Ordyan M, Bartol T, Kennedy M, Rangamani P, Sejnowski T. 2020.. Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. . PLOS Comput. Biol. 16:(7):e1008015
    [Crossref] [Google Scholar]
  200. 200.
    Otmakhov N, Regmi S, Lisman JE. 2015.. Fast decay of CaMKII FRET sensor signal in spines after LTP induction is not due to its dephosphorylation. . PLOS ONE 10:(6):e0130457
    [Crossref] [Google Scholar]
  201. 201.
    Paillusson S, Stoica R, Gomez-Suaga P, Lau DHW, Mueller S, et al. 2016.. There's something wrong with my MAM; the ER-mitochondria axis and neurodegenerative diseases. . Trends Neurosci. 39:(3):14657
    [Crossref] [Google Scholar]
  202. 202.
    Park M, Penick EC, Edwards JG, Kauer JA, Ehlers MD. 2004.. Recycling endosomes supply AMPA receptors for LTP. . Science 305:(5692):197275
    [Crossref] [Google Scholar]
  203. 203.
    Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, et al. 2006.. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. . Neuron 52:(5):81730
    [Crossref] [Google Scholar]
  204. 204.
    Patterson MA, Szatmari EM, Yasuda R. 2010.. AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK–dependent manner during long-term potentiation. . PNAS 107:(36):1595156
    [Crossref] [Google Scholar]
  205. 205.
    Pchitskaya E, Bezprozvanny I. 2020.. Dendritic spines shape analysis—classification or clusterization? Perspective. . Front. Synaptic Neurosci. 12::31
    [Crossref] [Google Scholar]
  206. 206.
    Penn A, Zhang C, Georges F, Royer L, Breillat C, et al. 2017.. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors. . Nature 549:(7672):38488
    [Crossref] [Google Scholar]
  207. 207.
    Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM. 2011.. Dendritic spine pathology in neuropsychiatric disorders. . Nat. Neurosci. 14:(3):28593
    [Crossref] [Google Scholar]
  208. 208.
    Perez-Alvarez A, Yin S, Schulze C, Hammer JA, Wagner W, Oertner TG. 2020.. Endoplasmic reticulum visits highly active spines and prevents runaway potentiation of synapses. . Nat. Commun. 11::5083
    [Crossref] [Google Scholar]
  209. 209.
    Peskin CS, Odell GM, Oster GF. 1993.. Cellular motions and thermal fluctuations: the Brownian ratchet. . Biophys. J. 65:(1):31624
    [Crossref] [Google Scholar]
  210. 210.
    Peters A, Kaiserman-Abramof IR. 1970.. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. . Am. J. Anat. 127:(4):32155
    [Crossref] [Google Scholar]
  211. 211.
    Pharris MC, Patel NM, VanDyk TG, Bartol TM, Sejnowski TJ, et al. 2019.. A multi-state model of the CaMKII dodecamer suggests a role for calmodulin in maintenance of autophosphorylation. . PLOS Comput. Biol. 15:(12):e1006941
    [Crossref] [Google Scholar]
  212. 212.
    Pi HJ, Lisman JE. 2008.. Coupled phosphatase and kinase switches produce the tristability required for long-term potentiation and long-term depression. . J. Neurosci. 28:(49):1313238
    [Crossref] [Google Scholar]
  213. 213.
    Pi HJ, Otmakhov N, El Gaamouch F, Lemelin D, De Koninck P, Lisman J. 2010.. CaMKII control of spine size and synaptic strength: role of phosphorylation states and nonenzymatic action. . PNAS 107:(32):1443742
    [Crossref] [Google Scholar]
  214. 214.
    Pike LJ. 2006.. Rafts defined: a report on the keystone symposium on lipid rafts and cell function. . J. Lipid Res. 47:(7):159798
    [Crossref] [Google Scholar]
  215. 215.
    Pollard TD, Blanchoin L, Mullins RD. 2000.. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. . Annu. Rev. Biophys. Biomol. Struct. 29::54576
    [Crossref] [Google Scholar]
  216. 216.
    Pollard TD, Borisy GG. 2003.. Cellular motility driven by assembly and disassembly of actin filaments. . Cell 112:(4):45365
    [Crossref] [Google Scholar]
  217. 217.
    Popov K, Komianos J, Papoian GA. 2016.. MEDYAN: mechanochemical simulations of contraction and polarity alignment in actomyosin networks. . PLOS Comput. Biol. 12:(4):e1004877
    [Crossref] [Google Scholar]
  218. 218.
    Potter WB, O'Riordan KJ, Barnett D, Osting SMK, Wagoner M, et al. 2010.. Metabolic regulation of neuronal plasticity by the energy sensor AMPK. . PLOS ONE 5:(2):e8996
    [Crossref] [Google Scholar]
  219. 219.
    Rácz B, Weinberg RJ. 2013.. Microdomains in forebrain spines: an ultrastructural perspective. . Mol. Neurobiol. 47:(1):7789
    [Crossref] [Google Scholar]
  220. 220.
    Rangamani P, Levy MG, Khan S, Oster G. 2016.. Paradoxical signaling regulates structural plasticity in dendritic spines. . PNAS 113:(36):E5298307
    [Crossref] [Google Scholar]
  221. 221.
    Rangamani P, Lipshtat A, Azeloglu E, Calizo R, Hu M, et al. 2013.. Decoding information in cell shape. . Cell 154:(6):135669
    [Crossref] [Google Scholar]
  222. 222.
    Rangaraju V, Lauterbach M, Schuman EM. 2019.. Spatially stable mitochondrial compartments fuel local translation during plasticity. . Cell 176:(1–2):7384
    [Crossref] [Google Scholar]
  223. 223.
    Robinson MB, Coyle JT. 1987.. Glutamate and related acidic excitatory neurotransmitters: from basic science to clinical application. . FASEB J. 1:(6):44655
    [Crossref] [Google Scholar]
  224. 224.
    Rosado J, Bui VD, Haas CA, Beck J, Queisser G, Vlachos A. 2022.. Calcium modeling of spine apparatus-containing human dendritic spines demonstrates an ``all-or-nothing'' communication switch between the spine head and dendrite. . PLOS Comput. Biol. 18:(4):e1010069
    [Crossref] [Google Scholar]
  225. 225.
    Rubin JE, Gerkin RC, Bi GQ, Chow CC. 2005.. Calcium time course as a signal for spike-timing–dependent plasticity. . J. Neurophysiol. 93:(5):260013
    [Crossref] [Google Scholar]
  226. 226.
    Rust MB, Gurniak CB, Renner M, Vara H, Morando L, et al. 2010.. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. . EMBO J. 29:(11):1889902
    [Crossref] [Google Scholar]
  227. 227.
    Sabatini BL, Oertner TG, Svoboda K. 2002.. The life cycle of Ca2+ ions in dendritic spines. . Neuron 33:(3):43952
    [Crossref] [Google Scholar]
  228. 228.
    Sadria M, Seo D, Layton AT. 2022.. The mixed blessing of AMPK signaling in cancer treatments. . BMC Cancer 22::105
    [Crossref] [Google Scholar]
  229. 229.
    Salfer M, Collado JF, Baumeister W, Fernández-Busnadiego R, Martínez-Sánchez A. 2020.. Reliable estimation of membrane curvature for cryo-electron tomography. . PLOS Comput. Biol. 16:(8):e1007962
    [Crossref] [Google Scholar]
  230. 230.
    Sanhueza M, Lisman J. 2013.. The CaMKII/NMDAR complex as a molecular memory. . Mol. Brain 6::10
    [Crossref] [Google Scholar]
  231. 231.
    Santamaria F, Gonzalez J, Augustine GJ, Raghavachari S. 2010.. Quantifying the effects of elastic collisions and non-covalent binding on glutamate receptor trafficking in the post-synaptic density. . PLOS Comput. Biol. 6:(5):e1000780
    [Crossref] [Google Scholar]
  232. 232.
    Savtchenko LP, Rusakov DA. 2014.. Moderate AMPA receptor clustering on the nanoscale can efficiently potentiate synaptic current. . Philos. Trans. R. Soc. B 369:(1633):20130167
    [Crossref] [Google Scholar]
  233. 233.
    Scheefhals N, MacGillavry HD. 2018.. Functional organization of postsynaptic glutamate receptors. . Mol. Cell. Neurosci. 91::8294
    [Crossref] [Google Scholar]
  234. 234.
    Schnell E, Sizemore M, Karimzadegan S, Chen L, Bredt DS, Nicoll RA. 2002.. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. . PNAS 99:(21):139027
    [Crossref] [Google Scholar]
  235. 235.
    Segal M, Korkotian E. 2014.. Endoplasmic reticulum calcium stores in dendritic spines. . Front. Neuroanat. 8::64
    [Crossref] [Google Scholar]
  236. 236.
    Setru SU, Gouveia B, Alfaro-Aco R, Shaevitz JW, Stone HA, Petry S. 2021.. A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches. . Nat. Phys. 17:(4):49398
    [Crossref] [Google Scholar]
  237. 237.
    Sette C, Conti M. 1996.. Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. . J. Biol. Chem. 271:(28):1652634
    [Crossref] [Google Scholar]
  238. 238.
    Sheng M, Kim MJ. 2002.. Postsynaptic signaling and plasticity mechanisms. . Science 298:(5594):77680
    [Crossref] [Google Scholar]
  239. 239.
    Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, et al. 1999.. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. . Science 284:(5421):181116
    [Crossref] [Google Scholar]
  240. 240.
    Shibata M, Uchihashi T, Ando T, Yasuda R. 2015.. Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells. . Sci. Rep. 5::8724
    [Crossref] [Google Scholar]
  241. 241.
    Shouval HZ, Bear MF, Cooper LN. 2002.. A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. . PNAS 99:(16):1083136
    [Crossref] [Google Scholar]
  242. 242.
    Simon CM, Hepburn I, Chen W, De Schutter E. 2014.. The role of dendritic spine morphology in the compartmentalization and delivery of surface receptors. . J. Comput. Neurosci. 36:(3):48397
    [Crossref] [Google Scholar]
  243. 243.
    Singh D, Bhalla US. 2018.. Subunit exchange enhances information retention by CaMKII in dendritic spines. . eLife 7::e41412
    [Crossref] [Google Scholar]
  244. 244.
    Steffens H, Mott AC, Li S, Wegner W, Švehla P, et al. 2021.. Stable but not rigid: chronic in vivo STED nanoscopy reveals extensive remodeling of spines, indicating multiple drivers of plasticity. . Sci. Adv. 7:(24):eabf2806
    [Crossref] [Google Scholar]
  245. 245.
    Su Q, Mehta S, Zhang J. 2021.. Liquid-liquid phase separation: orchestrating cell signaling through time and space. . Mol. Cell 81:(20):413746
    [Crossref] [Google Scholar]
  246. 246.
    Sumioka A, Yan D, Tomita S. 2010.. TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers. . Neuron 66:(5):75567
    [Crossref] [Google Scholar]
  247. 247.
    Suzuki T. 2002.. Lipid rafts at postsynaptic sites: distribution, function and linkage to postsynaptic density. . Neurosci. Res. 44:(1):19
    [Crossref] [Google Scholar]
  248. 248.
    Suzuki T, Zhang J, Miyazawa S, Liu Q, Farzan MR, Yao WD. 2011.. Association of membrane rafts and postsynaptic density: proteomics, biochemical, and ultrastructural analyses. . J. Neurochem. 119:(1):6477
    [Crossref] [Google Scholar]
  249. 249.
    Svitkina TM. 2017.. Platinum replica electron microscopy: imaging the cytoskeleton globally and locally. . Int. J. Biochem. Cell Biol. 86::3741
    [Crossref] [Google Scholar]
  250. 250.
    Svoboda K, Tank DW, Denk W. 1996.. Direct measurement of coupling between dendritic spines and shafts. . Science 272:(5262):71619
    [Crossref] [Google Scholar]
  251. 251.
    Taglieri DM, Delfín DA, Monasky MM. 2013.. Cholesterol regulation of PIP2: why cell type is so important. . Front. Physiol. 3::492
    [Crossref] [Google Scholar]
  252. 252.
    Tang AH, Chen H, Li TP, Metzbower SR, MacGillavry HD, Blanpied TA. 2016.. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. . Nature 536:(7615):21014
    [Crossref] [Google Scholar]
  253. 253.
    Tang S, Yasuda R. 2017.. Imaging ERK and PKA activation in single dendritic spines during structural plasticity. . Neuron 93:(6):131524.e3
    [Crossref] [Google Scholar]
  254. 254.
    Tao W, Lee J, Chen X, Díaz-Alonso J, Zhou J, et al. 2021.. Synaptic memory requires CaMKII. . eLife 10::e60360
    [Crossref] [Google Scholar]
  255. 255.
    Thomas CI, Ryan MA, Kamasawa N, Scholl B. 2023.. Postsynaptic mitochondria are positioned to support functional diversity of dendritic spines. . bioRxiv 2023.07.14.549063. https://doi.org/10.1101/2023.07.14.549063
  256. 256.
    Tillo SE, Xiong WH, Takahashi M, Miao S, Andrade AL, et al. 2017.. Liberated PKA catalytic subunits associate with the membrane via myristoylation to preferentially phosphorylate membrane substrates. . Cell Rep. 19:(3):61729
    [Crossref] [Google Scholar]
  257. 257.
    Tomita S, Stein V, Stocker TJ, Nicoll RA, Bredt DS. 2005.. Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like tarps. . Neuron 45:(2):26977
    [Crossref] [Google Scholar]
  258. 258.
    Tønnesen J, Katona G, Rózsa B, Nägerl UV. 2014.. Spine neck plasticity regulates compartmentalization of synapses. . Nat. Neurosci. 17:(5):67885
    [Crossref] [Google Scholar]
  259. 259.
    Toresson H, Grant SGN. 2005.. Dynamic distribution of endoplasmic reticulum in hippocampal neuron dendritic spines. . Eur. J. Neurosci. 22:(7):179398
    [Crossref] [Google Scholar]
  260. 260.
    Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, et al. 2002.. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. . Nature 420:(6917):78894
    [Crossref] [Google Scholar]
  261. 261.
    Triller A, Choquet D. 2005.. Surface trafficking of receptors between synaptic and extrasynaptic membranes: And yet they do move!. Trends Neurosci. 28:(3):13339
    [Crossref] [Google Scholar]
  262. 262.
    Triller A, Choquet D. 2008.. New concepts in synaptic biology derived from single-molecule imaging. . Neuron 59:(3):35974
    [Crossref] [Google Scholar]
  263. 263.
    Tu X, Jain A, Parra Bueno P, Decker H, Liu X, Yasuda R. 2023.. Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors. . Sci. Adv. 9:(31):eadg0666
    [Crossref] [Google Scholar]
  264. 264.
    Tulodziecka K, Diaz-Rohrer BB, Farley MM, Chan RB, Di Paolo G, et al. 2016.. Remodeling of the postsynaptic plasma membrane during neural development. . Mol. Biol. Cell 27:(22):348089
    [Crossref] [Google Scholar]
  265. 265.
    Tulsian NK, Krishnamurthy S, Anand GS. 2017.. Channeling of cAMP in PDE-PKA complexes promotes signal adaptation. . Biophys. J. 112:(12):255266
    [Crossref] [Google Scholar]
  266. 266.
    van Spronsen M, Hoogenraad CC. 2010.. Synapse pathology in psychiatric and neurologic disease. . Curr. Neurol. Neurosci. Rep. 10:(3):20714
    [Crossref] [Google Scholar]
  267. 267.
    Vance JE. 2014.. MAM (mitochondria-associated membranes) in mammalian cells: lipids and beyond. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1841:(4):595609
    [Crossref] [Google Scholar]
  268. 268.
    Voorsluijs V, Dawson SP, De Decker Y, Dupont G. 2019.. Deterministic limit of intracellular calcium spikes. . Phys. Rev. Lett. 122:(8):088101
    [Crossref] [Google Scholar]
  269. 269.
    Westra M, Gutierrez Y, MacGillavry HD. 2021.. Contribution of membrane lipids to postsynaptic protein organization. . Front. Synaptic Neurosci. 13::790773
    [Crossref] [Google Scholar]
  270. 270.
    Wiens KM, Lin H, Liao D. 2005.. Rac1 induces the clustering of AMPA receptors during spinogenesis. . J. Neurosci. 25:(46):1062736
    [Crossref] [Google Scholar]
  271. 271.
    Willoughby D, Wong W, Schaack J, Scott JD, Cooper DMF. 2006.. An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. . EMBO J. 25:(10):205161
    [Crossref] [Google Scholar]
  272. 272.
    Wozny MR, Di Luca A, Morado DR, Picco A, Khaddaj R, et al. 2023.. In situ architecture of the ER–mitochondria encounter structure. . Nature 618:(7963):18892
    [Crossref] [Google Scholar]
  273. 273.
    Wu Y, Whiteus C, Xu CS, Hayworth KJ, Weinberg RJ, et al. 2017.. Contacts between the endoplasmic reticulum and other membranes in neurons. . PNAS 114:(24):E485967
    [Crossref] [Google Scholar]
  274. 274.
    Xia Z, Storm DR. 2005.. The role of calmodulin as a signal integrator for synaptic plasticity. . Nat. Rev. Neurosci. 6:(4):26776
    [Crossref] [Google Scholar]
  275. 275.
    Xu L, Wang X, Tong C. 2020.. Endoplasmic reticulum-mitochondria contact sites and neurodegeneration. . Front. Cell Dev. Biol. 8::428
    [Crossref] [Google Scholar]
  276. 276.
    Yamazaki M, Fukaya M, Abe M, Ikeno K, Kakizaki T, et al. 2001.. Differential palmitoylation of two mouse glutamate receptor interacting protein 1 forms with different N-terminal sequences. . Neurosci. Lett. 304:(1–2):8184
    [Crossref] [Google Scholar]
  277. 277.
    Yang G, Pan F, Gan WB. 2009.. Stably maintained dendritic spines are associated with lifelong memories. . Nature 462:(7275):92024
    [Crossref] [Google Scholar]
  278. 278.
    Yang Y, Liu JJ. 2022.. Structural LTP: signal transduction, actin cytoskeleton reorganization, and membrane remodeling of dendritic spines. . Curr. Opin. Neurobiol. 74::102534
    [Crossref] [Google Scholar]
  279. 279.
    Yasuda R. 2017.. Biophysics of biochemical signaling in dendritic spines: implications in synaptic plasticity. . Biophys. J. 113:(10):215259
    [Crossref] [Google Scholar]
  280. 280.
    Yasuda R, Nimchinsky EA, Scheuss V, Pologruto TA, Oertner TG, et al. 2004.. Imaging calcium concentration dynamics in small neuronal compartments. . Sci. STKE 2004:(219):pl5
    [Crossref] [Google Scholar]
  281. 281.
    Yin HL, Janmey PA. 2003.. Phosphoinositide regulation of the actin cytoskeleton. . Annu. Rev. Physiol. 65::76189
    [Crossref] [Google Scholar]
  282. 282.
    Yu Z, Holst MJ, Cheng Y, McCammon JA. 2008.. Feature-preserving adaptive mesh generation for molecular shape modeling and simulation. . J. Mol. Graph. Model. 26:(8):137080
    [Crossref] [Google Scholar]
  283. 283.
    Yu Z, Holst MJ, McCammon JA. 2008.. High-fidelity geometric modeling for biomedical applications. . Finite Elem. Anal. Des. 44:(11):71523
    [Crossref] [Google Scholar]
  284. 284.
    Yuan F, Alimohamadi H, Bakka B, Trementozzi AN, Day KJ, et al. 2021.. Membrane bending by protein phase separation. . PNAS 118:(11):e2017435118
    [Crossref] [Google Scholar]
  285. 285.
    Yuan F, Lee CT, Sangani A, Houser JR, Wang L, et al. 2023.. The ins and outs of membrane bending by intrinsically disordered proteins. . Sci. Adv. 9:(27):eadg3485
    [Crossref] [Google Scholar]
  286. 286.
    Yuste R. 2010.. Dendritic Spines. Cambridge, MA:: MIT Press
    [Google Scholar]
  287. 287.
    Zaccolo M, Pozzan T. 2003.. cAMP and Ca2+ interplay: a matter of oscillation patterns. . Trends Neurosci. 26:(2):5355
    [Crossref] [Google Scholar]
  288. 288.
    Zeng M, Bai G, Zhang M. 2019.. Anchoring high concentrations of SynGAP at postsynaptic densities via liquid-liquid phase separation. . Small GTPases 10:(4):296304
    [Google Scholar]
  289. 289.
    Zeng M, Chen X, Guan D, Xu J, Wu H, et al. 2018.. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. . Cell 174:(5):117287
    [Crossref] [Google Scholar]
  290. 290.
    Zeng M, Shang Y, Araki Y, Guo T, Huganir RL, Zhang M. 2016.. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. . Cell 166:(5):116375
    [Crossref] [Google Scholar]
  291. 291.
    Zheng Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M, et al. 2018.. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. . Cell 174:(3):73043.e22
    [Crossref] [Google Scholar]
  292. 292.
    Zhong H, Sia GM, Sato TR, Gray NW, Mao T, et al. 2009.. Subcellular dynamics of type II PKA in neurons. . Neuron 62:(3):36374
    [Crossref] [Google Scholar]
  293. 293.
    Ziv NE, Smith SJ. 1996.. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. . Neuron 17:(1):91102
    [Crossref] [Google Scholar]
  294. 294.
    Zuo Y, Lin A, Chang P, Gan WB. 2005.. Development of long-term dendritic spine stability in diverse regions of cerebral cortex. . Neuron 46:(2):18189
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-072123-124954
Loading
/content/journals/10.1146/annurev-biophys-072123-124954
Loading

Data & Media loading...

  • Article Type: Review Article