1932

Abstract

Biophysics experiments performed at single-molecule resolution provide exceptional insight into the structural details and dynamic behavior of biological systems. However, extracting this information from the corresponding experimental data unequivocally requires applying a biophysical model. In this review, we discuss how to use probability theory to apply these models to single-molecule data. Many current single-molecule data analysis methods apply parts of probability theory, sometimes unknowingly, and thus miss out on the full set of benefits provided by this self-consistent framework. The full application of probability theory involves a process called Bayesian inference that fully accounts for the uncertainties inherent to single-molecule experiments. Additionally, using Bayesian inference provides a scientifically rigorous method of incorporating information from multiple experiments into a single analysis and finding the best biophysical model for an experiment without the risk of overfitting the data. These benefits make the Bayesian approach ideal for analyzing any type of single-molecule experiment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-082120-103921
2021-05-06
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-082120-103921.html?itemId=/content/journals/10.1146/annurev-biophys-082120-103921&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Bishop C. 2006. Pattern Recognition and Machine Learning Berlin: Springer
    [Google Scholar]
  2. 2. 
    Bronson JE, Fei J, Hofman JM, Gonzalez RL, Wiggins CH. 2009. Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys. J. 97:123196–205
    [Google Scholar]
  3. 3. 
    Chaloner K, Verdinelli I. 1995. Bayesian experimental design: a review. Stat. Sci. 10:3273–304
    [Google Scholar]
  4. 4. 
    Cossio P, Hummer G. 2013. Bayesian analysis of individual electron microscopy images: towards structures of dynamic and heterogeneous biomolecular assemblies. J. Struct. Biol. 184:3427–37
    [Google Scholar]
  5. 5. 
    Cox RT. 1946. Probability, frequency and reasonable expectation. Am. J. Phys. 14:11–13
    [Google Scholar]
  6. 6. 
    Du C, Kou SC. 2020. Statistical methodology in single-molecule experiments. Stat. Sci. 35:175–91
    [Google Scholar]
  7. 7. 
    Ensign DL, Pande VS. 2010. Bayesian detection of intensity changes in single molecule and molecular dynamics trajectories. J. Phys. Chem. B 114:1280–92
    [Google Scholar]
  8. 8. 
    Foreman-Mackey D, Hogg DW, Lang D, Goodman J 2013. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125:925306–12
    [Google Scholar]
  9. 9. 
    Goodman J, Weare J. 2010. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5:165–80
    [Google Scholar]
  10. 10. 
    Habeck M. 2011. Statistical mechanics analysis of sparse data. J. Struct. Biol. 173:3541–48
    [Google Scholar]
  11. 11. 
    Habeck M. 2017. Bayesian modeling of biomolecular assemblies with cryo-EM maps. Front. Mol. Biosci. 4:15
    [Google Scholar]
  12. 12. 
    Hastings WK. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:197–109
    [Google Scholar]
  13. 13. 
    Hon J, Gonzalez RL. 2019. Bayesian-estimated hierarchical HMMs enable robust analysis of single-molecule kinetic heterogeneity. Biophys. J. 116:101790–802
    [Google Scholar]
  14. 14. 
    Jaynes ET. 2003. Probability Theory: The Logic of Science. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  15. 15. 
    Johnson S, van de Meent J-W, Phillips R, Wiggins CH, Lindén M. 2014. Multiple LacI-mediated loops revealed by Bayesian statistics and tethered particle motion. Nucleic Acids Res 42:1610265–77
    [Google Scholar]
  16. 16. 
    Karslake JD, Donarski ED, Shelby SA, Demey LM, DiRita VJ et al. 2020. SMAUG: analyzing single-molecule tracks with nonparametric Bayesian statistics. Methods In press
    [Google Scholar]
  17. 17. 
    Kimanius D, Zickert G, Nakane T, Adler J, Lunz S et al. 2020. Exploiting prior knowledge about biological macromolecules in cryo-EM structure determination. bioRxiv 007914. https://doi.org/10.1101/2020.03.25.007914
    [Crossref]
  18. 18. 
    Kinz-Thompson CD, Gonzalez RL. 2018. Increasing the time resolution of single-molecule experiments with Bayesian inference. Biophys. J. 114:2289–300
    [Google Scholar]
  19. 19. 
    Kou SC, Xie XS, Liu JS. 2005. Bayesian analysis of single-molecule experimental data. J. R. Stat. Soc. C 54:3469–506
    [Google Scholar]
  20. 20. 
    Kovalevskiy O, Nicholls RA, Long F, Carlon A, Murshudov GN. 2018. Overview of refinement procedures within REFMAC 5: utilizing data from different sources. Acta Crystallogr. Sect. Struct. Biol. 74:3215–27
    [Google Scholar]
  21. 21. 
    Lartillot N, Philippe H. 2006. Computing Bayes factors using thermodynamic integration. Syst. Biol. 55:2195–207
    [Google Scholar]
  22. 22. 
    Laurent F, Floderer C, Favard C, Muriaux D, Masson J-B, Vestergaard CL. 2019. Mapping spatio-temporal dynamics of single biomolecules in living cells. Phys. Biol. 17:1015003
    [Google Scholar]
  23. 23. 
    Lindén M, Elf J. 2018. Variational algorithms for analyzing noisy multistate diffusion trajectories. Biophys. J. 115:2276–82
    [Google Scholar]
  24. 24. 
    Malakoff D. 1999. Bayes offers a “new” way to make sense of numbers. Science 286:54441460–64
    [Google Scholar]
  25. 25. 
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21:61087–92
    [Google Scholar]
  26. 26. 
    Minka TP. 2008. Automatic choice of dimensionality for PCA Rep. 514, Percept. Comput. Sect., Media Lab., Mass. Inst. Technol. Cambridge, MA:
    [Google Scholar]
  27. 27. 
    Monnier N, Barry Z, Park HY, Su K-C, Katz Z et al. 2015. Inferring transient particle transport dynamics in live cells. Nat. Methods 12:9838–40
    [Google Scholar]
  28. 28. 
    Monnier N, Guo S-M, Mori M, He J, Lénárt P, Bathe M. 2012. Bayesian approach to MSD-based analysis of particle motion in live cells. Biophys. J. 103:3616–26
    [Google Scholar]
  29. 29. 
    Okamoto K, Sako Y. 2012. Variational Bayes analysis of a photon-based hidden Markov model for single-molecule FRET trajectories. Biophys. J. 103:61315–24
    [Google Scholar]
  30. 30. 
    Persson F, Lindén M, Unoson C, Elf J. 2013. Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10:3265–69
    [Google Scholar]
  31. 31. 
    Robson A, Burrage K, Leake MC. 2013. Inferring diffusion in single live cells at the single-molecule level. Philos. Trans. R. Soc. B 368: 1611.20120029
    [Google Scholar]
  32. 32. 
    Rolfe DJ, McLachlan CI, Hirsch M, Needham SR, Tynan CJ et al. 2011. Automated multidimensional single molecule fluorescence microscopy feature detection and tracking. Eur. Biophys. J. 40:101167–86
    [Google Scholar]
  33. 33. 
    Scheres SHW. 2012. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180:3519–30
    [Google Scholar]
  34. 34. 
    Sgouralis I, Madaan S, Djutanta F, Kha R, Hariadi RF, Pressé S. 2019. A Bayesian nonparametric approach to single molecule Förster resonance energy transfer. J. Phys. Chem. B 123:3675–88
    [Google Scholar]
  35. 35. 
    Slator PJ, Cairo CW, Burroughs NJ. 2015. Detection of diffusion heterogeneity in single particle tracking trajectories using a hidden Markov model with measurement noise propagation. PLOS ONE 10:10e0140759
    [Google Scholar]
  36. 36. 
    Smith CS, Jouravleva K, Huisman M, Jolly SM, Zamore PD, Grunwald D. 2019. An automated Bayesian pipeline for rapid analysis of single-molecule binding data. Nat. Commun. 10:1272
    [Google Scholar]
  37. 37. 
    Thapa S, Lomholt MA, Krog J, Cherstvy AG, Metzler R. 2018. Bayesian analysis of single-particle tracking data using the nested-sampling algorithm: maximum-likelihood model selection applied to stochastic-diffusivity data. Phys. Chem. Chem. Phys. 20:4629018–37
    [Google Scholar]
  38. 38. 
    Tinoco I, Gonzalez RL. 2011. Biological mechanisms, one molecule at a time. Genes Dev 25:121205–31
    [Google Scholar]
  39. 39. 
    van de Meent J-W, Bronson JE, Wiggins CH, Gonzalez RL. 2014. Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments. Biophys. J. 106:61327–37
    [Google Scholar]
  40. 40. 
    von Neumann J. 1963. Method in the physical sciences. Collected WorksVolume VI: Theory of Games, Astrophysics, Hydrodynamics and Meteorology AH Traub 491–98 Oxford, UK: Pergamon
    [Google Scholar]
  41. 41. 
    Zivanov J, Nakane T, Scheres SHW. 2019. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6:15–17
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-082120-103921
Loading
/content/journals/10.1146/annurev-biophys-082120-103921
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error