A macromolecular structure, as measured data or as a list of coordinates or even on-screen as a full atomic model, is an extremely complex and confusing object. The underlying rules of how it folds, moves, and interacts as a biological entity are even less evident or intuitive to the human mind. To do science on such molecules, or to relate them usefully to higher levels of biology, we need to start with a natural history that names their features in meaningful ways and with multiple representations (visual or algebraic) that show some aspect of their organizing principles. The two of us have jointly enjoyed a highly varied and engrossing career in biophysical research over nearly 50 years. Our frequent changes of emphasis are tied together by two threads: first, by finding the right names, visualizations, and methods to help both ourselves and others to better understand the 3D structures of protein and RNA molecules, and second, by redefining the boundary between signal and noise for complex data, in both directions—sometimes identifying and promoting real signal up out of what seemed just noise, and sometimes demoting apparent signal into noise or systematic error. Here we relate parts of our scientific and personal lives, including ups and downs, influences, anecdotes, and guiding principles such as the title theme.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW. 1.  et al. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66:213–21 [Google Scholar]
  2. Adams P, Baker D, Brunger AT, Das R, DiMaio F. 2.  et al. 2013. Advances, interactions, and future developments in the CNS, Phenix, and Rosetta structural biology software systems. Annu. Rev. Biophys. 42:265–87 [Google Scholar]
  3. Arendall WB III, Tempel W, Richardson JS, Zhou W, Wang S. 3.  et al. 2005. A test of enhancing model accuracy in high-throughput crystallography. J. Struct. Funct. Genomics 6:1–11 [Google Scholar]
  4. Arnone AA, Bier CJ, Cotton FA, Day VW, Hazen EE Jr. 4.  et al. 1971. A high resolution structure of an inhibitor complex of the extracellular nuclease of Staphylococcus aureus. I. Experimental procedures and chain tracing. J. Biol. Chem 246:2303–16 [Google Scholar]
  5. Arnone AA, Bier CJ, Cotton FA, Hazen EE Jr, Richardson DC, Richardson JS. 5.  1969. The extracellular nuclease of Staphylococcus aureus: structures of the native enzyme and an inhibitor complex at 4 Å resolution. Proc. Natl. Acad. Sci. USA 64:420–27 [Google Scholar]
  6. Beem KM, Richardson DC, Rajagopalan KV. 6.  1977. Metal sites of Cu,Zn superoxide dismutase. Biochemistry 16:1930–36 [Google Scholar]
  7. Block JN, Zielinski DJ, Chen VB, Davis IW, Vinson EC. 7.  et al. 2009. KinImmerse: macromolecular VR for NMR ensembles. Source Code Biol. Med. 4:3 [Google Scholar]
  8. Brooks FP Jr. 8.  1977. The computer scientist as toolsmith: studies in interactive computer graphics. Information Processing 77, Proceedings of IFIP Congress 77 B Gilchrist 625–34 Toronto: North Holland [Google Scholar]
  9. Chen C-Y, Georgiev I, Anderson AC, Donald BR. 9.  2009. Computational structure-based redesign of enzyme activity. Proc. Natl. Acad. Sci. USA 106:3764–69 [Google Scholar]
  10. Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM. 10.  et al. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66:12–21 [Google Scholar]
  11. Chen VB, Davis IW, Richardson DC. 11.  2009. KiNG (Kinemage, Next Generation): a versatile interactive molecular and scientific visualization program. Protein Sci. 18:2403–9 [Google Scholar]
  12. Chou F-C, Sripakdeevong P, Dibrov SM, Hermann T, Das R. 12.  2013. Correcting pervasive errors in RNA crystallography through enumerative structure prediction. Nat. Methods 10:74–76 [Google Scholar]
  13. Cotton FA, Hazen EE Jr, Richardson DC. 13.  1966. Crystalline extracellular nuclease of Staphylococcus aureus. J. Biol. Chem. 241:4389–90 [Google Scholar]
  14. Dahiyat BI, Sarisky CA, Mayo SL. 14.  1997. De novo protein design: towards fully automated sequence selection. J. Mol. Biol. 273:789–96 [Google Scholar]
  15. Davis IW, Arendall WB III, Richardson JS, Richardson DC. 15.  2006. The backrub motion: How protein backbone shrugs when a sidechain dances. Structure 14:265–74 [Google Scholar]
  16. Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ. 16.  et al. 2007. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35:W375–83 [Google Scholar]
  17. Davis IW, Murray LW, Richardson JS, Richardson DC. 17.  2004. MolProbity: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res. 32:W615–19 [Google Scholar]
  18. DiMaio F, Tyka M, Baker M, Chiu W, Baker D. 18.  2009. Refinement of protein structures into low-resolution density maps using Rosetta. J. Mol. Biol. 392:181–90 [Google Scholar]
  19. Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB. 19.  et al. 2011. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332:981–84 [Google Scholar]
  20. Eisenberg D, Wilcox W, Eshita SM, Pryciak PM, Ho SP, DeGrado WF. 20.  1986. The design, synthesis and crystallization of an alpha helical peptide. Proteins: Struct. Funct. Genet. 1:16–22 [Google Scholar]
  21. Emsley P, Lohkamp B, Scott WG, Cowtan K. 21.  2010. Features and development of Coot. Acta Crystallogr. D 66:486–501 [Google Scholar]
  22. Erickson BW, Daniels SB, Reddy PA, Unson CG, Richardson JS, Richardson DC. 22.  1986. Betabellin: an engineered protein. Computer Graphics and Molecular Modeling R Fletterick, M Zoller 53–57 New York: Cold Spring Harb. Lab. [Google Scholar]
  23. Fridovich I. 23.  2001. Reflections of a fortunate biochemist. J. Biol. Chem. 276:28629–36 [Google Scholar]
  24. Gainza P, Roberts KE, Georgiev I, Lilien RH, Keedy DA. 24.  et al. 2013. OSPREY: protein design with ensembles, flexibility, and provable algorithms. Methods Enzymol. 523:87–107 [Google Scholar]
  25. Gernert KM, Surles MC, LaBean TH, Richardson JS, Richardson DC. 25.  1995. The Alacoil: a very tight antiparallel coiled-coil of α-helices. Protein Sci. 4:2252–60 [Google Scholar]
  26. Getzoff ED, Tainer JA, Weiner PK, Kollman PA, Richardson JS, Richardson DC. 26.  1983. Electrostatic recognition between superoxide and Cu,Zn superoxide dismutase. Nature 306:287–90 [Google Scholar]
  27. Hecht HM, Ogden RM, Richardson JS, Richardson DC. 27.  1990. De novo design, expression, and characterization of Felix: a 4-helix bundle protein of native-like sequence. Science 249:884–91 [Google Scholar]
  28. Hemmingsen JM, Gernert KM, Richardson JS, Richardson DC. 28.  1994. The tyrosine corner: a feature of most Greek key β-barrel proteins. Protein Sci. 3:1927–37 [Google Scholar]
  29. Higman VA, Boyd J, Smith LJ, Redfield C. 29.  2004. Asparagine and glutamine side-chain conformation in solution and crystal: a comparison for hen egg-white lysozyme using residual dipolar couplings. J. Biomol. NMR 30:327–46 [Google Scholar]
  30. Kapp GT, Richardson JS, Oas TG. 30.  2004. Kinetic role of helix caps in protein folding is context-dependent. Biochemistry 43:3814–23 [Google Scholar]
  31. Keating KS, Pyle AM. 31.  2012. RCrane: semi-automated RNA model building. Acta Crystallogr. D 68:985–95 [Google Scholar]
  32. Keedy DA, Georgiev I, Triplett EB, Donald BR, Richardson DC, Richardson JS. 32.  2012. The role of local backrub motions in evolved and designed mutations. PLoS Comput. Biol. 8:e1002629 [Google Scholar]
  33. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D. 33.  2003. Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–68 [Google Scholar]
  34. Lange PT, Ng H-L, Fraser JS, Corn JE, Echols N. 34.  et al. 2010. Automated electron-density sampling reveals widespread conformational polymorphism in proteins. Protein Sci. 19:1420–31 [Google Scholar]
  35. Leaver-Fay A, O'Meara MJ, Tyka M, Jacak R, Song Y. 35.  et al. 2013. Scientific benchmarks for updating the Rosetta energy function. Methods Enzymol. 523:109–43 [Google Scholar]
  36. Lovell SC, Davis IW, Arendall WB III, de Bakker PIW, Word JM. 36.  et al. 2003. Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins: Struct. Funct. Genet. 50:437–50 [Google Scholar]
  37. Lovell SC, Word JM, Richardson JS, Richardson DC. 37.  2000. The penultimate rotamer library. Proteins: Struct. Funct. Genet. 40:389–408 [Google Scholar]
  38. McCord JM, Fridovich I. 38.  1969. Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049–55 [Google Scholar]
  39. Merritt EA, Bacon DJ. 39.  1997. Raster3D photorealistic molecular graphics. Methods Enzymol. 277:505–24 [Google Scholar]
  40. Murray LW, Arendall WB III, Richardson DC, Richardson JS. 40.  2003. RNA backbone is rotameric. Proc. Natl. Acad. Sci. USA 100:13904–9 [Google Scholar]
  41. Murzin AG. 41.  1993. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J. 12:861–67 [Google Scholar]
  42. Murzin AG. 42.  Fold: OB-fold category, in the SCOP (Structural Classification Of Proteins) database. http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.c.hb.html
  43. Presta LG, Rose GD. 43.  1988. Helix signals in proteins. Science 240:1632–41 [Google Scholar]
  44. Read RJ, Adams PD, Arendall WB III, Brunger AT, Emsley P. 44.  et al. 2011. A new generation of crystallographic validation tools for the Protein Data Bank. Structure 19:1395–412 [Google Scholar]
  45. Regan L, DeGrado WF. 45.  1988. Characterization of a helical protein designed from first principles. Science 241:976–78 [Google Scholar]
  46. Richards FM. 46.  1968. The matching of physical models to three-dimensional electron-density maps: a simple optical device. J. Mol. Biol. 37:225–30 [Google Scholar]
  47. Richards FM. 47.  1988. Public access to X-ray diffraction data. J. Comput. Aided Mol. Des. 2:3–4 [Google Scholar]
  48. Richards FM. 48.  1997. Whatever happened to the fun? An autobiographical investigation. Annu. Rev. Biophys. Biomol. Struct. 26:1–25 [Google Scholar]
  49. Richardson DC, Richardson JS. 49.  1992. The kinemage: a tool for scientific illustration. Protein Sci. 1:3–9 [Google Scholar]
  50. Richardson DC, Richardson JS. 50.  2002. Teaching molecular 3-D literacy. Biochem. Mol. Biol. Educ. 30:21–26 [Google Scholar]
  51. Richardson JS. 51.  1976. Handedness of crossover connections in beta sheets. Proc. Natl. Acad. Sci. USA 73:2619–23 [Google Scholar]
  52. Richardson JS. 52.  1977. Beta sheet topology and the relatedness of proteins. Nature 268:495–500 [Google Scholar]
  53. Richardson JS. 53.  1981. The anatomy and taxonomy of protein structures. Adv. Protein Chem. 34:167–339 [Google Scholar]
  54. Richardson JS. 54.  1985. Schematic drawings of protein structures. Methods Enzymol. 115:341–58 [Google Scholar]
  55. Richardson JS. 55.  2000. Early ribbon drawings of proteins. Nat. Struct. Biol. 7:624–25 [Google Scholar]
  56. Richardson JS, Getzoff ED, Richardson DC. 56.  1978. The beta bulge: a common small unit of non-repetitive protein structure. Proc. Natl. Acad. Sci. USA 75:2574–78 [Google Scholar]
  57. Richardson JS, Richardson DC. 57.  1987. Some design principles: Betabellin. Protein Engineering D Oxender, CF Fox 149–63 New York: Liss [Google Scholar]
  58. Richardson JS, Richardson DC. 58.  1988. Amino acid preferences for specific locations at the ends of alpha helices. Science 240:1648–52 [Google Scholar]
  59. Richardson JS, Richardson DC. 59.  1988. Helix lap-joints as ion-binding sites: DNA-binding motifs and Ca-binding E-F hands are related by charge and sequence reversal. Proteins: Struct. Funct. Genet. 4:229–39 [Google Scholar]
  60. Richardson JS, Richardson DC. 60.  1989. Protein origami. Protein Folding: Deciphering the Second Half of the Genetic Code L Geirasch, J King 5–17304–9 Washington, DC: Amer. Assoc. Adv. Sci. [Google Scholar]
  61. Richardson JS, Richardson DC. 61.  2002. Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl. Acad. Sci. USA 99:2754–59 [Google Scholar]
  62. Richardson JS, Richardson DC. 62.  2013. Studying and polishing the PDB's macromolecules. Biopolymers 99:170–82 [Google Scholar]
  63. Richardson JS, Richardson DC. 63.  2013. The Plot thickens: more data, more dimensions, more uses. Biomolecular Forms and Functions: A Celebration of 50 Years of the Ramachandran Map M Bansal, N Srinivasan, pp. 46–61 Singapore: World Scientific [Google Scholar]
  64. Richardson JS, Richardson DC, Thomas KA, Silverton EW, Davies DR. 64.  1976. Similarity of three-dimensional structure between the immunoglobulin domain and the Cu,Zn superoxide dismutase subunit. J. Mol. Biol. 102:221–35 [Google Scholar]
  65. Richardson JS, Richardson DC, Tweedy NB, Gernert KM, Quinn TP. 65.  et al. 1992. Looking at proteins: representations, folding, packing, and design. Biophysical Society National Lecture, 1992. Biophys. J. 63:1186–209 [Google Scholar]
  66. Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM. 66.  et al. 2008. RNA backbone: consensus all-angle conformers and modular string nomenclature. RNA 14:465–81 [Google Scholar]
  67. Richardson JS, Thomas KA, Richardson DC. 67.  1975. Alpha-carbon coordinates for bovine Cu,Zn superoxide dismutase. Biochem. Biophys. Res. Commun. 63:986–92 [Google Scholar]
  68. Richardson JS, Thomas KA, Rubin BH, Richardson DC. 68.  1975. Crystal structure of bovine Cu,Zn superoxide dismutase at 3 Å resolution: chain tracing and metal ligands. Proc. Natl. Acad. Sci. USA 72:1349–53 [Google Scholar]
  69. Richter B, Gsponer J, Varnai P, Salvatella X, Vendruscolo M. 69.  2007. The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native state ensembles of proteins. J. Biomol. NMR 37:117–35 [Google Scholar]
  70. Rubin BH, Richardson JS. 70.  1972. The simple construction of protein alpha-carbon models. Biopolymers 11:2381–85 [Google Scholar]
  71. Scavetta RD, Herron SR, Hotchkiss AT, Kita N, Keen NT. 71.  et al. 1999. Structure of a plant cell wall fragment complexed to pectate lyase C. Plant Cell 11:1081–92 [Google Scholar]
  72. Schellman C. 72.  1980. The alpha-L conformation at the ends of helices. Protein Folding R Jaenicke 53–61 New York: Elsevier/North Holland [Google Scholar]
  73. Shortle D. 73.  1992. Mutational studies of protein structures and their stabilities. Q. Rev. Biophys. 25:205–50 [Google Scholar]
  74. Sibanda BL, Thornton JM. 74.  1985. β-hairpin families in globular proteins. Nature 316:170–74 [Google Scholar]
  75. Steinman HM, Naik VR, Abernethy JL, Hill RL. 75.  1974. Bovine erythrocyte superoxide dismutase. Complete amino acid sequence. J. Biol. Chem. 249:7326–38 [Google Scholar]
  76. Sternberg MJE, Thornton JM. 76.  1977. On the conformation of proteins: the handedness of the connection between parallel beta-strands. J. Mol. Biol. 110:269–83 [Google Scholar]
  77. Surles MC, Richardson JS, Richardson DC, Brooks FP Jr. 77.  1994. Sculpting proteins interactively: continual energy minimization embedded in a graphical modeling system. Protein Sci. 3:198–210 [Google Scholar]
  78. Tainer JA, Getzoff ED, Beem KM, Richardson JS, Richardson DC. 78.  1982. The determination and analysis of the 2 Å structure of copper, zinc superoxide dismutase. J. Mol. Biol. 160:181–217 [Google Scholar]
  79. Thomas KA, Rubin BH, Bier CJ, Richardson JS, Richardson DC. 79.  1974. The crystal structure of bovine Cu2+,Zn2+ superoxide dismutase at 5.5-Å resolution. J. Biol. Chem. 249:5677–83 [Google Scholar]
  80. Tyka MD, Keedy DA, Andre I, DiMaio F, Song Y. 80.  et al. 2011. Alternate states of proteins revealed by detailed energy landscape mapping. J. Mol. Biol. 405:607–18 [Google Scholar]
  81. Uversky VN, Dunker AK. 81.  2012. Multiparametric analysis of disordered proteins: looking at intrinsic disorder through compound eyes. Anal. Chem. 84:2096–104 [Google Scholar]
  82. Videau LL, Arendall BW III, Richardson JS. 82.  2004. The cis Pro touch-turn: a rare motif preferred at functional sites. Proteins: Struct. Funct. Genet. 56:298–309 [Google Scholar]
  83. Wang X, Kapral G, Murray L, Richardson D, Richardson J, Snoeyink J. 83.  2008. RNABC: forward kinematics to reduce all-atom clashes in RNA backbone. J. Math. Biol. 56:253–78 [Google Scholar]
  84. Word JM, Lovell SC, LaBean TH, Zalis ME, Presley BK. 84.  et al. 1999. Visualizing and quantitating molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. J. Mol. Biol. 285:1711–33 [Google Scholar]
  85. Word JM, Lovell SC, Richardson JS, Richardson DC. 85.  1999. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol. 285:1735–47 [Google Scholar]
  86. Wright PE, Dyson HJ. 86.  1999. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293:321–31 [Google Scholar]
  87. Wuthrich K. 87.  1986. NMR of Proteins and Nucleic Acids New York: Wiley
  88. Wyckoff HW, Hardman KD, Allewell NM, Inagami T, Johnson LN, Richards FM. 88.  1967. The structure of ribonuclease-S at 3.5 Å resolution. J. Biol. Chem. 242:3984–88 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error