Protein structure determination methods using magic-angle spinning solid-state nuclear magnetic resonance (MAS SSNMR) have experienced a remarkable development in the past decade. Significant advances in instrumentation, sample preparation, spectroscopic techniques, and computational methods have made possible the determination of the first high-resolution structures of a peptide and a protein in 2002. Subsequent developments allowed the investigation of larger proteins, the initial application of automated analysis routines, and substantial improvements in structural resolution. The application of these methods has enabled the investigation of amyloid fibril structures, conformational dynamics, and their assembly pathways at an atomic level for the first time, as these are systems not accessible by other common techniques. Recent advances and future trends for protein structure determination using MAS SSNMR, as well as its application to the study of amyloid fibrils, are reviewed.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error