1932

Abstract

Rhodopsin is the photoreceptor in human rod cells responsible for dim-light vision. The visual receptors are part of the large superfamily of G protein–coupled receptors (GPCRs) that mediate signal transduction in response to diverse diffusible ligands. The high level of sequence conservation within the transmembrane helices of the visual receptors and the family A GPCRs has long been considered evidence for a common pathway for signal transduction. I review recent studies that reveal a comprehensive mechanism for how light absorption by the retinylidene chromophore drives rhodopsin activation and highlight those features of the mechanism that are conserved across the ligand-activated GPCRs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-083122-094909
2023-05-09
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/biophys/52/1/annurev-biophys-083122-094909.html?itemId=/content/journals/10.1146/annurev-biophys-083122-094909&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ahuja S, Crocker E, Eilers M, Hornak V, Hirshfeld A et al. 2009. Location of the retinal chromophore in the activated state of rhodopsin. J. Biol. Chem. 284:10190–201
    [Google Scholar]
  2. 2.
    Ahuja S, Hornak V, Yan ECY, Syrett N, Goncalves JA et al. 2009. Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation. Nat. Struct. Mol. Biol. 16:168–75
    [Google Scholar]
  3. 3.
    Bartl FJ, Fritze O, Ritter E, Herrmann R, Kuksa V et al. 2005. Partial agonism in a G protein-coupled receptor: role of the retinal ring structure in rhodopsin activation. J. Biol. Chem. 280:34259–67
    [Google Scholar]
  4. 4.
    Baylor DA. 1987. Photoreceptor signals and vision. Investig. Ophthalmol. Vis. Sci. 28:34–49
    [Google Scholar]
  5. 5.
    Baylor DA, Lamb TD, Yau KW. 1979. The membrane current of single rod outer segments. J. Physiol. 288:589–611
    [Google Scholar]
  6. 6.
    Birge RR, Barlow RB. 1995. On the molecular origins of thermal noise in vertebrate and invertebrate photoreceptors. Biophys. Chem. 55:115–26
    [Google Scholar]
  7. 7.
    Chabre M, Breton J. 1979. Orientation of aromatic residues in rhodopsin. Rotation of one tryptophan upon the Meta I to Meta II transition after illumination. Photochem. Photobiol. 30:295–99
    [Google Scholar]
  8. 8.
    Chelikani P, Hornak V, Eilers M, Reeves PJ, Smith SO et al. 2007. Role of group-conserved residues in the helical core of β2-adrenergic receptor. PNAS 104:7027–32
    [Google Scholar]
  9. 9.
    Chen QY, Plasencia M, Li Z, Mukherjee S, Patra D et al. 2021. Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1. Nature 595:600–5
    [Google Scholar]
  10. 10.
    Corson DW, Cornwall MC, MacNichol EF, Tsang S, Derguini F et al. 1994. Relief of opsin desensitization and prolonged excitation of rod photoreceptors by 9-desmethylretinal. PNAS 91:6958–62
    [Google Scholar]
  11. 11.
    Crouch RK, Veronee CD, Lacy ME. 1982. Inhibition of rhodopsin regeneration by cyclohexyl derivatives. Vis. Res. 22:1451–56
    [Google Scholar]
  12. 12.
    Daemen FJM. 1978. Chromophore binding space of opsin. Nature 276:847–48
    [Google Scholar]
  13. 13.
    Dartnall HJA. 1968. The photosensitivities of visual pigments in the presence of hydroxylamine. Vis. Res. 8:339–58
    [Google Scholar]
  14. 14.
    Davidson FF, Loewen PC, Khorana HG. 1994. Structure and function in rhodopsin: Replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state. PNAS 91:4029–33
    [Google Scholar]
  15. 15.
    Deupi X, Kobilka BK. 2010. Energy landscapes as a tool to integrate GPCR structure, dynamics, and function. Physiology 25:293–303
    [Google Scholar]
  16. 16.
    Dror RO, Mildorf TJ, Hilger D, Manglik A, Borhani DW et al. 2015. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348:1361–65
    [Google Scholar]
  17. 17.
    Ebrey T, Tsuda M, Sassenrath G, West JL, Waddell WH. 1980. Light activation of bovine rod phosphodiesterase by non-physiological visual pigments. FEBS Lett. 116:217–19
    [Google Scholar]
  18. 18.
    Eilers M, Patel AB, Liu W, Smith SO. 2002. Comparison of helix interactions in membrane and soluble α-bundle proteins. Biophys. J. 82:2720–36
    [Google Scholar]
  19. 19.
    Eilers M, Shekar SC, Shieh T, Smith SO, Fleming PJ. 2000. Internal packing of helical membrane proteins. PNAS 97:5796–801
    [Google Scholar]
  20. 20.
    Fahmy K, Jäger F, Beck M, Zvyaga TA, Sakmar TP, Siebert F. 1993. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. PNAS 90:10206–10
    [Google Scholar]
  21. 21.
    Fan GB, Siebert F, Sheves M, Vogel R. 2002. Rhodopsin with 11-cis-locked chromophore is capable of forming an active state photoproduct. J. Biol. Chem. 277:40229–34
    [Google Scholar]
  22. 22.
    Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG. 1996. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–70
    [Google Scholar]
  23. 23.
    Fritze O, Filipek S, Kuksa V, Palczewski K, Hofmann KP, Ernst OP. 2003. Role of the conserved NPxxY(x)(5,6)F motif in the rhodopsin ground state and during activation. PNAS 100:2290–95
    [Google Scholar]
  24. 24.
    Ganter UM, Gartner W, Siebert F. 1990. The influence of the 13-methyl group of the retinal on the photoreaction of rhodopsin revealed by FTIR difference spectroscopy. Eur. Biophys. J. 18:295–99
    [Google Scholar]
  25. 25.
    Ganter UM, Schmid ED, Perez-Sala D, Rando RR, Siebert F. 1989. Removal of the 9-methyl group of retinal inhibits signal transduction in the visual process. A Fourier transform infrared and biochemical investigation. Biochemistry 28:5954–62
    [Google Scholar]
  26. 26.
    Goncalves JA, South K, Ahuja S, Zaitseva E, Opefi CA et al. 2010. Highly conserved tyrosine stabilizes the active state of rhodopsin. PNAS 107:19861–66
    [Google Scholar]
  27. 27.
    Gurevich EV, Tesmer JJG, Mushegian A, Gurevich VV. 2012. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol. Ther. 133:40–69
    [Google Scholar]
  28. 28.
    Hagmann CE, Potter MC. 2016. Ultrafast scene detection and recognition with limited visual information. Vis. Cogn. 24:2–14
    [Google Scholar]
  29. 29.
    Han M, Groesbeek M, Sakmar TP, Smith SO. 1997. The C9 methyl group of retinal interacts with glycine-121 in rhodopsin. PNAS 94:13442–47
    [Google Scholar]
  30. 30.
    Han M, Smith SO, Sakmar TP. 1998. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. Biochemistry 37:8253–61
    [Google Scholar]
  31. 31.
    Hartong DT, Berson EL, Dryja TP. 2006. Retinitis pigmentosa. Lancet 368:1795–809
    [Google Scholar]
  32. 32.
    Hecht S, Shlaer S, Pirenne MH. 1942. Energy, quanta, and vision. J. Gen. Physiol. 25:819–40
    [Google Scholar]
  33. 33.
    Hilger D, Kumar KK, Hu H, Pedersen MF, O'Brien ES et al. 2020. Structural insights into differences in G protein activation by family A and family B GPCRs. Science 369:523–66
    [Google Scholar]
  34. 34.
    Imai H, Kojima D, Oura T, Tachibanaki S, Terakita A, Shichida Y. 1997. Single amino acid residue as a functional determinant of rod and cone visual pigments. PNAS 94:2322–26
    [Google Scholar]
  35. 35.
    Karnam PC, Vishnivetskiy SA, Gurevich VV. 2021. Structural basis of arrestin selectivity for active phosphorylated G protein-coupled receptors. Int. J. Mol. Sci. 22:12481
    [Google Scholar]
  36. 36.
    Katritch V, Cherezov V, Stevens RC. 2012. Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol. Sci. 33:17–27
    [Google Scholar]
  37. 37.
    Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC. 2014. Allosteric sodium in class A GPCR signaling. Trends Biochem. Sci. 39:233–44
    [Google Scholar]
  38. 38.
    Kim K, Chung KY. 2020. Many faces of the GPCR-arrestin interaction. Arch. Pharmacal Res. 43:890–99
    [Google Scholar]
  39. 39.
    Kimata N, Pope A, Eilers M, Opefi CA, Ziliox M et al. 2016. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation. Nat. Commun. 7:12683
    [Google Scholar]
  40. 40.
    Kimata N, Pope A, Sanchez-Reyes OB, Eilers M, Opefi CA et al. 2016. Free backbone carbonyls mediate rhodopsin activation. Nat. Struct. Mol. Biol. 23:738–43
    [Google Scholar]
  41. 41.
    Kochendoerfer GG, Verdegem PJE, van der Hoef I, Lugtenburg J, Mathies RA. 1996. Retinal analog study of the role of steric interactions in the excited state isomerization dynamics of rhodopsin. Biochemistry 35:16230–40
    [Google Scholar]
  42. 42.
    Liang YL, Khoshouei M, Deganutti G, Glukhova A, Koole C et al. 2018. Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature 561:492–97
    [Google Scholar]
  43. 43.
    Liang YL, Khoshouei M, Glukhova A, Furness SGB, Zhao PS et al. 2018. Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex. Nature 555:121–25
    [Google Scholar]
  44. 44.
    Lin SW, Sakmar TP. 1996. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state. Biochemistry 35:11149–59
    [Google Scholar]
  45. 45.
    Liu W, Eilers M, Patel AB, Smith SO. 2004. Helix packing moments reveal diversity and conservation in membrane protein structure. J. Mol. Biol. 337:713–29
    [Google Scholar]
  46. 46.
    Longstaff C, Calhoon RD, Rando RR. 1986. Deprotonation of the Schiff base of rhodopsin is obligate in the activation of the G-protein. PNAS 83:4209–13
    [Google Scholar]
  47. 47.
    Lüdeke S, Beck R, Yan ECY, Sakmar TP, Siebert F, Vogel R. 2005. The role of Glu181 in the photoactivation of rhodopsin. J. Mol. Biol. 353:345–56
    [Google Scholar]
  48. 48.
    Madabushi S, Gross AK, Philippi A, Meng EC, Wensel TG, Lichtarge O. 2004. Evolutionary trace of G protein-coupled receptors reveals clusters of residues that determine global and class-specific functions. J. Biol. Chem. 279:8126–32
    [Google Scholar]
  49. 49.
    Marino J, Schertler GFX. 2021. A set of common movements within GPCR-G-protein complexes from variability analysis of cryo-EM datasets. J. Struct. Biol. 213:107699
    [Google Scholar]
  50. 50.
    Matsumoto H, Yoshizawa T. 1975. Existence of a β-ionone ring-binding site in rhodopsin molecule. Nature 258:523–26
    [Google Scholar]
  51. 51.
    Matthews RG, Hubbard R, Brown PK, Wald G 1963. Tautomeric forms of metarhodopsin. J. Gen. Physiol. 47:215–40
    [Google Scholar]
  52. 52.
    Meyer CK, Böhme M, Ockenfels A, Gärtner W, Hofmann KP, Ernst OP. 2000. Signaling states of rhodopsin: Retinal provides a scaffold for activating proton transfer switches. J. Biol. Chem. 275:19713–18
    [Google Scholar]
  53. 53.
    Nakanishi K, Crouch R. 1995. Application of artificial pigments to structure determination and study of photoinduced transformations of retinal proteins. Isr. J. Chem. 35:253–72
    [Google Scholar]
  54. 54.
    Noorwez SM, Ostrov DA, McDowell JH, Krebs MP, Kaushal S. 2008. A high-throughput screening method for small-molecule pharmacologic chaperones of misfolded rhodopsin. Investig. Ophthalmol. Vis. Sci. 49:3224–30
    [Google Scholar]
  55. 55.
    Opefi CA, South K, Reynolds CA, Smith SO, Reeves PJ. 2013. Retinitis pigmentosa mutants provide insight into the role of the N-terminal cap in rhodopsin folding, structure, and function. J. Biol. Chem. 288:33912–26
    [Google Scholar]
  56. 56.
    Ottolenghi M, Sheves M. 1989. Synthetic retinals as probes for the binding site and photoreactions in rhodopsins. J. Membr. Biol. 112:193–212
    [Google Scholar]
  57. 57.
    Palczewski K. 2006. G protein-coupled receptor rhodopsin. Annu. Rev. Biochem. 75:743–67
    [Google Scholar]
  58. 58.
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H et al. 2000. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–45
    [Google Scholar]
  59. 59.
    Park PS-H. 2014. Constitutively active rhodopsin and retinal disease. Adv. Pharmacol. 70:1–36
    [Google Scholar]
  60. 60.
    Patel AB, Crocker E, Eilers M, Hirshfeld A, Sheves M, Smith SO. 2004. Coupling of retinal isomerization to the activation of rhodopsin. PNAS 101:10048–53
    [Google Scholar]
  61. 61.
    Patel AB, Crocker E, Reeves PJ, Getmanova EV, Eilers M et al. 2005. Changes in interhelical hydrogen bonding upon rhodopsin activation. J. Mol. Biol. 347:803–12
    [Google Scholar]
  62. 62.
    Piechnick R, Ritter E, Hildebrand PW, Ernst OP, Scheerer P et al. 2012. Effect of channel mutations on the uptake and release of the retinal ligand in opsin. PNAS 109:5247–52
    [Google Scholar]
  63. 63.
    Pope AL, Sanchez-Reyes OB, South K, Zaitseva E, Ziliox M et al. 2020. A conserved proline hinge mediates helix dynamics and activation of rhodopsin. Structure 28:1004–13
    [Google Scholar]
  64. 64.
    Potter MC, Wyble B, Hagmann CE, McCourt ES. 2014. Detecting meaning in RSVP at 13 ms per picture. Atten. Percept. Psychophys. 76:270–79
    [Google Scholar]
  65. 65.
    Pugh EN. 2018. The discovery of the ability of rod photoreceptors to signal single photons. J. Gen. Physiol. 150:383–88
    [Google Scholar]
  66. 66.
    Rasmussen SGF, Choi HJ, Fung JJ, Pardon E, Casarosa P et al. 2011. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469:175–80
    [Google Scholar]
  67. 67.
    Rieke F, Baylor DA. 1996. Molecular origin of continuous dark noise in rod photoreceptors. Biophys. J. 71:2553–72
    [Google Scholar]
  68. 68.
    Rieke F, Baylor DA. 1998. Single-photon detection by rod cells of the retina. Rev. Mod. Phys. 70:1027–36
    [Google Scholar]
  69. 69.
    Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GFX. 2004. Electron crystallography reveals the structure of metarhodopsin I. EMBO J. 23:3609–20
    [Google Scholar]
  70. 70.
    Sanchez-Reyes OB, Cooke ALG, Tranter DB, Rashid D, Eilers M et al. 2017. G protein-coupled receptors contain two conserved packing clusters. Biophys. J. 112:2315–26
    [Google Scholar]
  71. 71.
    Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N et al. 2008. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502
    [Google Scholar]
  72. 72.
    Schoenlein RW, Peteanu LA, Mathies RA, Shank CV. 1991. The first step in vision: femtosecond isomerization of rhodopsin. Science 254:412–15
    [Google Scholar]
  73. 73.
    Singhal A, Guo Y, Matkovic M, Schertler G, Deupi X et al. 2016. Structural role of the T94I rhodopsin mutation in congenital stationary night blindness. EMBO Rep. 17:1431–40
    [Google Scholar]
  74. 74.
    Singhal A, Ostermaier MK, Vishnivetskiy SA, Panneels V, Homan KT et al. 2013. Insights into congenital stationary night blindness based on the structure of G90D rhodopsin. EMBO Rep. 14:520–26
    [Google Scholar]
  75. 75.
    Smith SO. 2010. Structure and activation of the visual pigment rhodopsin. Annu. Rev. Biophys. 39:309–28
    [Google Scholar]
  76. 76.
    Sriram K, Insel PA. 2018. G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs?. Mol. Pharmacol. 93:251–58
    [Google Scholar]
  77. 77.
    Steinberg G, Ottolenghi M, Sheves M. 1993. pKa of the protonated Schiff base of bovine rhodopsin: a study with artificial pigments. Biophys. J. 64:1499–502
    [Google Scholar]
  78. 78.
    Stryer L. 1986. Cyclic GMP cascade of vision. Annu. Rev. Neurosci. 9:87–119
    [Google Scholar]
  79. 79.
    Tsai CJ, Marino J, Adaixo R, Pamulal F, Muehle J et al. 2019. Cryo-EM structure of the rhodopsin-Gαβγ complex reveals binding of the rhodopsin C-terminal tail to the Gβ subunit. eLife 8:e46041
    [Google Scholar]
  80. 80.
    Tsai CJ, Pamula F, Nehme R, Muhle J, Weinert T et al. 2018. Crystal structure of rhodopsin in complex with a mini-Go sheds light on the principles of G protein selectivity. Sci. Adv. 4:eaat7052
    [Google Scholar]
  81. 81.
    Van Eps N, Preininger AM, Alexander N, Kaya AI, Meier S et al. 2011. Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. PNAS 108:9420–24
    [Google Scholar]
  82. 82.
    Vogel R, Siebert F, Lüdeke S, Hirshfeld A, Sheves M. 2005. Agonists and partial agonists of rhodopsin: retinals with ring modifications. Biochemistry 44:11684–99
    [Google Scholar]
  83. 83.
    Wald G. 1951. The chemistry of rod vision. Science 113:287–91
    [Google Scholar]
  84. 84.
    Wald G. 1968. Molecular basis of visual excitation. Science 162:230–39
    [Google Scholar]
  85. 85.
    Wald G, Durell J, St. George RCC. 1950. The light reaction in the bleaching of rhodopsin. Science 111:179–81
    [Google Scholar]
  86. 86.
    Wang Q, Kochendoerfer GG, Schoenlein RW, Verdegem PJE, Lugtenburg J et al. 1996. Femtosecond spectroscopy of a 13-demethylrhodopsin visual pigment analogue: the role of nonbonded interactions in the isomerization process. J. Phys. Chem. 100:17388–94
    [Google Scholar]
  87. 87.
    Weis WI, Kobilka BK. 2018. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87:897–919
    [Google Scholar]
  88. 88.
    Wheatley M, Wootten D, Conner MT, Simms J, Kendrick R et al. 2012. Lifting the lid on GPCRs: the role of extracellular loops. Br. J. Pharmacol. 165:1688–703
    [Google Scholar]
  89. 89.
    Woolley MJ, Conner AC. 2017. Understanding the common themes and diverse roles of the second extracellular loop (ECL2) of the GPCR super-family. Mol. Cell. Endocrinol. 449:3–11
    [Google Scholar]
  90. 90.
    Yan ECY, Kazmi MA, Ganim Z, Hou JM, Pan DH et al. 2003. Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin. PNAS 100:9262–67
    [Google Scholar]
  91. 91.
    Yoshizawa T, Wald G 1963. Pre-lumirhodopsin and the bleaching of visual pigments. Nature 197:1279–86
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-083122-094909
Loading
/content/journals/10.1146/annurev-biophys-083122-094909
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error