1932

Abstract

The folding of proteins into their native structure is crucial for the functioning of all biological processes. Molecular chaperones are guardians of the proteome that assist in protein folding and prevent the accumulation of aberrant protein conformations that can lead to proteotoxicity. ATP-independent chaperones do not require ATP to regulate their functional cycle. Although these chaperones have been traditionally regarded as passive holdases that merely prevent aggregation, recent work has shown that they can directly affect the folding energy landscape by tuning their affinity to various folding states of the client. This review focuses on emerging paradigms in the mechanism of action of ATP-independent chaperones and on the various modes of regulating client binding and release.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-090121-082906
2022-05-09
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/biophys/51/1/annurev-biophys-090121-082906.html?itemId=/content/journals/10.1146/annurev-biophys-090121-082906&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Agashe VR, Guha S, Chang HC, Genevaux P, Hayer-Hartl M et al. 2004. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117:199–209
    [Google Scholar]
  2. 2.
    Ahlstrom LS, Law SM, Dickson A, Brooks CL3rd. 2015. Multiscale modeling of a conditionally disordered pH-sensing chaperone. J. Mol. Biol. 427:1670–80
    [Google Scholar]
  3. 3.
    Ames GF. 1986. Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu. Rev. Biochem. 55:397–425
    [Google Scholar]
  4. 4.
    Anfinsen CB. 1973. Principles that govern the folding of protein chains. Science 181:223–30
    [Google Scholar]
  5. 5.
    Aquilina JA, Benesch JL, Ding LL, Yaron O, Horwitz J, Robinson CV. 2005. Subunit exchange of polydisperse proteins: Mass spectrometry reveals consequences of alphaA-crystallin truncation. J. Biol. Chem. 280:14485–91
    [Google Scholar]
  6. 6.
    Argast M, Boos W. 1979. Purification and properties of the sn-glycerol 3-phosphate-binding protein of Escherichia coli. J. Biol. Chem. 254:10931–35
    [Google Scholar]
  7. 7.
    Baldwin AJ, Walsh P, Hansen DF, Hilton GR, Benesch JL et al. 2012. Probing dynamic conformations of the high-molecular-weight alphaB-crystallin heat shock protein ensemble by NMR spectroscopy. J. Am. Chem. Soc. 134:15343–50
    [Google Scholar]
  8. 8.
    Baram D, Pyetan E, Sittner A, Auerbach-Nevo T, Bashan A, Yonath A 2005. Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. PNAS 102:12017–22
    [Google Scholar]
  9. 9.
    Bardwell JCA, Craig EA. 1987. Eukaryotic Mr 83,000 heat shock protein has a homologue in Escherichia coli. PNAS 84:5177–81
    [Google Scholar]
  10. 10.
    Bitto E, McKay DB. 2002. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure 10:1489–98
    [Google Scholar]
  11. 11.
    Bornemann T, Holtkamp W, Wintermeyer W. 2014. Interplay between trigger factor and other protein biogenesis factors on the ribosome. Nat. Commun. 5:4180
    [Google Scholar]
  12. 12.
    Brehme M, Voisine C, Rolland T, Wachi S, Soper JH et al. 2014. A chaperome subnetwork safeguards proteostasis in aging and neurodegenerative disease. Cell Rep 9:1135–50
    [Google Scholar]
  13. 13.
    Buchner J. 2019. Molecular chaperones and protein quality control: an introduction to the JBC Reviews thematic series. J. Biol. Chem. 294:2074–75
    [Google Scholar]
  14. 14.
    Bukach OV, Seit-Nebi AS, Marston SB, Gusev NB 2004. Some properties of human small heat shock protein Hsp20 (HspB6). Eur. J. Biochem. 271:291–302
    [Google Scholar]
  15. 15.
    Calabrese AN, Schiffrin B, Watson M, Karamanos TK, Walko M et al. 2020. Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. Nat. Commun. 11:2155
    [Google Scholar]
  16. 16.
    Capaldi AP, Kleanthous C, Radford SE. 2002. Im7 folding mechanism: misfolding on a path to the native state. Nat. Struct. Biol. 9:209–16
    [Google Scholar]
  17. 17.
    Choi D, Ryu KS, Park C. 2013. Structural alteration of Escherichia coli Hsp31 by thermal unfolding increases chaperone activity. Biochim. Biophys. Acta 1834:621–28
    [Google Scholar]
  18. 18.
    Cremers CM, Reichmann D, Hausmann J, Ilbert M, Jakob U. 2010. Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone. J. Biol. Chem. 285:11243–51
    [Google Scholar]
  19. 19.
    Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B 1999. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–96
    [Google Scholar]
  20. 20.
    Dunschede B, Bals T, Funke S, Schunemann D 2011. Interaction studies between the chloroplast signal recognition particle subunit cpSRP43 and the full-length translocase Alb3 reveal a membrane-embedded binding region in Alb3 protein. J. Biol. Chem. 286:35187–95
    [Google Scholar]
  21. 21.
    Fekkes P, van den Does C, Driessen AJ. 1997. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J 16:6105–13
    [Google Scholar]
  22. 22.
    Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling E, Ban N 2004. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431:590–96
    [Google Scholar]
  23. 23.
    Fleckenstein T, Kastenmuller A, Stein ML, Peters C, Daake M et al. 2015. The chaperone activity of the developmental small heat shock protein Sip1 is regulated by pH-dependent conformational changes. Mol. Cell 58:1067–78
    [Google Scholar]
  24. 24.
    Fleming KG. 2014. Energetics of membrane protein folding. Annu. Rev. Biophys. 43:233–55
    [Google Scholar]
  25. 25.
    Fleming KG. 2015. A combined kinetic push and thermodynamic pull as driving forces for outer membrane protein sorting and folding in bacteria. Philos. Trans. R. Soc. Lond. B 370:20150026
    [Google Scholar]
  26. 26.
    Foit L, George JS, Zhang BW, Brooks CL3rd, Bardwell JC. 2013. Chaperone activation by unfolding. PNAS 110:E1254–62
    [Google Scholar]
  27. 27.
    Fu X, Shi X, Yin L, Liu J, Joo K et al. 2013. Small heat shock protein IbpB acts as a robust chaperone in living cells by hierarchically activating its multi-type substrate-binding residues. J. Biol. Chem. 288:11897–906
    [Google Scholar]
  28. 28.
    Gajiwala KS, Burley SK. 1999. HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. J. Mol. Biol. 295:605–12
    [Google Scholar]
  29. 29.
    Groves MR, Mant A, Kuhn A, Koch J, Dubel S et al. 2001. Functional characterization of recombinant chloroplast signal recognition particle. J. Biol. Chem. 276:27778–86
    [Google Scholar]
  30. 30.
    Haran G. 2012. How, when and why proteins collapse: the relation to folding. Curr. Opin. Struct. Biol. 22:14–20
    [Google Scholar]
  31. 31.
    Hartl FU, Lecker S, Schiebel E, Hendrick JP, Wickner W. 1990. The binding cascade of SecB to SecA to SeHlE mediates preprotein targeting to the E. coli plasma membrane. Cell 63:269–79
    [Google Scholar]
  32. 32.
    Haslbeck M, Franzmann T, Weinfurtner D, Buchner J 2005. Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12:842–46
    [Google Scholar]
  33. 33.
    Haslbeck M, Ignatiou A, Saibil H, Helmich S, Frenzl E et al. 2004. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. J. Mol. Biol. 343:445–55
    [Google Scholar]
  34. 34.
    Haslbeck M, Walke S, Stromer T, Ehrenberg M, White HE et al. 1999. Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–51
    [Google Scholar]
  35. 35.
    Haslbeck M, Weinkauf S, Buchner J. 2019. Small heat shock proteins: Simplicity meets complexity. J. Biol. Chem. 294:2121–32
    [Google Scholar]
  36. 36.
    He L, Sharpe T, Mazur A, Hiller S 2016. A molecular mechanism of chaperone-client recognition. Sci. Adv. 2:e1601625
    [Google Scholar]
  37. 37.
    Hoffmann A, Becker AH, Zachmann-Brand B, Deuerling E, Bukau B, Kramer G 2012. Concerted action of the ribosome and the associated chaperone trigger factor confines nascent polypeptide folding. Mol. Cell 48:63–74
    [Google Scholar]
  38. 38.
    Horowitz S, Salmon L, Koldewey P, Ahlstrom LS, Martin R et al. 2016. Visualizing chaperone-assisted protein folding. Nat. Struct. Mol. Biol. 23:691–97
    [Google Scholar]
  39. 39.
    Horwitz J. 1992. Alpha-crystallin can function as a molecular chaperone. PNAS 89:10449–53
    [Google Scholar]
  40. 40.
    Huang C, Rossi P, Saio T, Kalodimos CG. 2016. Structural basis for the antifolding activity of a molecular chaperone. Nature 537:202–6
    [Google Scholar]
  41. 41.
    Humes JR, Schiffrin B, Calabrese AN, Higgins AJ, Westhead DR et al. 2019. The role of SurA PPIase domains in preventing aggregation of the outer-membrane proteins tOmpA and OmpT. J. Mol. Biol. 431:1267–83
    [Google Scholar]
  42. 42.
    Ito H, Akiyama H, Iguchi H, Iyama K, Miyamoto M et al. 2001. Molecular cloning and biological activity of a novel lysyl oxidase-related gene expressed in cartilage. J. Biol. Chem. 276:24023–29
    [Google Scholar]
  43. 43.
    Ito H, Okamoto K, Nakayama H, Isobe T, Kato K. 1997. Phosphorylation of alphaB-crystallin in response to various types of stress. J. Biol. Chem. 272:29934–41
    [Google Scholar]
  44. 44.
    Jahn TR, Radford SE. 2008. Folding versus aggregation: polypeptide conformations on competing pathways. Arch. Biochem. Biophys. 469:100–17
    [Google Scholar]
  45. 45.
    Jakob U, Gaestel M, Engel K, Buchner J. 1993. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268:1517–20
    [Google Scholar]
  46. 46.
    Jaru-Ampornpan P, Shen K, Lam VQ, Ali M, Doniach S et al. 2010. ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP subunit. Nat. Struct. Mol. Biol. 17:696–702
    [Google Scholar]
  47. 47.
    Jaya N, Garcia V, Vierling E 2009. Substrate binding site flexibility of the small heat shock protein molecular chaperones. PNAS 106:15604–9
    [Google Scholar]
  48. 48.
    Jiang Y, Rossi P, Kalodimos CG. 2019. Structural basis for client recognition and activity of Hsp40 chaperones. Science 365:1313–19
    [Google Scholar]
  49. 49.
    Kaiser CM, Chang HC, Agashe VR, Lakshmipathy SK, Etchells SA et al. 2006. Real-time observation of trigger factor function on translating ribosomes. Nature 444:455–60
    [Google Scholar]
  50. 50.
    Kato K, Ito H, Kamei K, Inaguma Y, Iwamoto I, Saga S 1998. Phosphorylation of alphaB-crystallin in mitotic cells and identification of enzymatic activities responsible for phosphorylation. J. Biol. Chem. 273:28346–54
    [Google Scholar]
  51. 51.
    Kim J, Choi D, Cha SY, Oh YM, Hwang E et al. 2018. Zinc-mediated reversible multimerization of Hsp31 enhances the activity of holding chaperone. J. Mol. Biol. 430:1760–72
    [Google Scholar]
  52. 52.
    Kim KK, Kim R, Kim SH 1998. Crystal structure of a small heat-shock protein. Nature 394:595–99
    [Google Scholar]
  53. 53.
    Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. 2013. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 82:323–55
    [Google Scholar]
  54. 54.
    Knowles TP, Vendruscolo M, Dobson CM. 2014. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15:384–96
    [Google Scholar]
  55. 55.
    Kokke BP, Leroux MR, Candido EP, Boelens WC, De Jong WW. 1998. Caenorhabditis elegans small heat-shock proteins Hspl2.2 and Hspl2.3 form tetramers and have no chaperone-like activity. FEBS Lett 433:228–32
    [Google Scholar]
  56. 56.
    Koldewey P, Horowitz S, Bardwell JCA. 2017. Chaperone-client interactions: Non-specificity engenders multifunctionality. J. Biol. Chem. 292:12010–17
    [Google Scholar]
  57. 57.
    Koldewey P, Stull F, Horowitz S, Martin R, Bardwell JCA. 2016. Forces driving chaperone action. Cell 166:369–79
    [Google Scholar]
  58. 58.
    Kramer G, Patzelt H, Rauch T, Kurz TA, Vorderwulbecke S et al. 2004. Trigger factor peptidyl-prolyl cis/trans isomerase activity is not essential for the folding of cytosolic proteins in Escherichia coli. J. Biol. Chem. 279:14165–70
    [Google Scholar]
  59. 59.
    Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J. 2010. Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J 24:3633–42
    [Google Scholar]
  60. 60.
    Lee C, Betschinger P, Wu K, Zyla DS, Glockshuber R, Bardwell JC 2020. A metabolite binding protein moonlights as a bile-responsive chaperone. EMBO J 39:e104231
    [Google Scholar]
  61. 61.
    Lee GJ, Roseman AM, Saibil HR, Vierling E. 1997. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J 16:659–71
    [Google Scholar]
  62. 62.
    Lentze N, Aquilina JA, Lindbauer M, Robinson CV, Narberhaus F 2004. Temperature and concentration-controlled dynamics of rhizobial small heat shock proteins. Eur. J. Biochem. 271:2494–503
    [Google Scholar]
  63. 63.
    Leroux MR, Melki R, Gordon B, Batelier G, Candido EP 1997. Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J. Biol. Chem. 272:24646–56
    [Google Scholar]
  64. 64.
    Liang FC, Kroon G, McAvoy CZ, Chi C, Wright PE, Shan SO 2016. Conformational dynamics of a membrane protein chaperone enables spatially regulated substrate capture and release. PNAS 113:E1615–24
    [Google Scholar]
  65. 65.
    Liu CP, Zhou QM, Fan DJ, Zhou JM 2010. PPIase domain of trigger factor acts as auxiliary chaperone site to assist the folding of protein substrates bound to the crevice of trigger factor. Int. J. Biochem. Cell Biol. 42:890–901
    [Google Scholar]
  66. 66.
    Maier R, Scholz C, Schmid FX. 2001. Dynamic association of trigger factor with protein substrates. J. Mol. Biol. 314:1181–90
    [Google Scholar]
  67. 67.
    Martinez-Hackert E, Hendrickson WA 2009. Promiscuous substrate recognition in folding and assembly activities of the trigger factor chaperone. Cell 138:923–34
    [Google Scholar]
  68. 68.
    Marx DC, Plummer AM, Faustino AM, Devlin T, Roskopf MA et al. 2020. SurA is a cryptically grooved chaperone that expands unfolded outer membrane proteins. PNAS 117:28026–35
    [Google Scholar]
  69. 69.
    Mas G, Burmann BM, Sharpe T, Claudi B, Bumann D, Hiller S. 2020. Regulation of chaperone function by coupled folding and oligomerization. Sci. Adv. 6:eabc5822
    [Google Scholar]
  70. 70.
    Mashaghi A, Kramer G, Bechtluft P, Zachmann-Brand B, Driessen AJ et al. 2013. Reshaping of the conformational search of a protein by the chaperone trigger factor. Nature 500:98–101
    [Google Scholar]
  71. 71.
    Merz F, Boehringer D, Schaffitzel C, Preissler S, Hoffmann A et al. 2008. Molecular mechanism and structure of Trigger Factor bound to the translating ribosome. EMBO J 27:1622–32
    [Google Scholar]
  72. 72.
    Mitra R, Gadkari VV, Meinen BA, van Mierlo CPM, Ruotolo BT, Bardwell JCA 2021. Mechanism of the small ATP-independent chaperone Spy is substrate specific. Nat. Commun. 12:851
    [Google Scholar]
  73. 73.
    Mogk A, Bukau B, Kampinga HH. 2018. Cellular handling of protein aggregates by disaggregation machines. Mol. Cell 69:214–26
    [Google Scholar]
  74. 74.
    Mogk A, Deuerling E, Vorderwulbecke S, Vierling E, Bukau B 2003. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 50:585–95
    [Google Scholar]
  75. 75.
    Mogk A, Ruger-Herreros C, Bukau B. 2019. Cellular functions and mechanisms of action of small heat shock proteins. Annu. Rev. Microbiol. 73:89–110
    [Google Scholar]
  76. 76.
    Moon CP, Zaccai NR, Fleming PJ, Gessmann D, Fleming KG 2013. Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm. PNAS 110:4285–90
    [Google Scholar]
  77. 77.
    Morgado L, Burmann BM, Sharpe T, Mazur A, Hiller S 2017. The dynamic dimer structure of the chaperone Trigger Factor. Nat. Commun. 8:1992
    [Google Scholar]
  78. 78.
    Morimoto RI. 2008. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22:1427–38
    [Google Scholar]
  79. 79.
    Oh E, Becker AH, Sandikci A, Huber D, Chaba R et al. 2011. Selective ribosome profiling reveals the cotranslational chaperone action of trigger factor in vivo. Cell 147:1295–308
    [Google Scholar]
  80. 80.
    Pace CN. 1990. Conformational stability of globular proteins. Trends Biochem. Sci. 15:14–17
    [Google Scholar]
  81. 81.
    Painter AJ, Jaya N, Basha E, Vierling E, Robinson CV, Benesch JL 2008. Real-time monitoring of protein complexes reveals their quaternary organization and dynamics. Chem. Biol. 15:246–53
    [Google Scholar]
  82. 82.
    Panse VG, Swaminathan CP, Aloor JJ, Surolia A, Varadarajam R. 2000. Unfolding thermodynamics of the tetrameric chaperone, SecB. Biochemistry 39:2362–69
    [Google Scholar]
  83. 83.
    Pashley CL, Morgan GJ, Kalverda AP, Thompson GS, Kleanthous C, Radford SE. 2012. Conformational properties of the unfolded state of Im7 in nondenaturing conditions. J. Mol. Biol. 416:300–18
    [Google Scholar]
  84. 84.
    Patzelt H, Kramer G, Rauch T, Schonfeld HJ, Bukau B, Deuerling E. 2002. Three-state equilibrium of Escherichia coli trigger factor. Biol. Chem. 383:1611–19
    [Google Scholar]
  85. 85.
    Patzelt H, Rudiger S, Brehmer D, Kramer G, Vorderwulbecke S et al. 2001. Binding specificity of Escherichia coli trigger factor. PNAS 98:14244–49
    [Google Scholar]
  86. 86.
    Peschek J, Braun N, Rohrberg J, Back KC, Kriehuber T et al. 2013. Regulated structural transitions unleash the chaperone activity of alphaB-crystallin. PNAS 110:E3780–89
    [Google Scholar]
  87. 87.
    Qu J, Mayer C, Behrens S, Holst O, Kleinschmidt JH. 2007. The trimeric periplasmic chaperone Skp of Escherichia coli forms 1:1 complexes with outer membrane proteins via hydrophobic and electrostatic interactions. J. Mol. Biol. 374:91–105
    [Google Scholar]
  88. 88.
    Quan S, Koldewey P, Tapley T, Kirsch N, Ruane KM et al. 2011. Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nat. Struct. Mol. Biol. 18:262–69
    [Google Scholar]
  89. 89.
    Rutkowska A, Mayer MP, Hoffmann A, Merz F, Zachmann-Brand B et al. 2008. Dynamics of trigger factor interaction with translating ribosomes. J. Biol. Chem. 283:4124–32
    [Google Scholar]
  90. 90.
    Saio T, Guan X, Rossi P, Economou A, Kalodimos CG 2014. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344:1250494
    [Google Scholar]
  91. 91.
    Saio T, Kawagoe S, Ishimori K, Kalodimos CG. 2018. Oligomerization of a molecular chaperone modulates its activity. eLife 7:e35731
    [Google Scholar]
  92. 92.
    Salmon L, Stull F, Sayle S, Cato C, Akgul S et al. 2018. The mechanism of HdeA unfolding and chaperone activation. J. Mol. Biol. 430:33–40
    [Google Scholar]
  93. 93.
    Sandlin CW, Zaccai NR, Fleming KG. 2015. Skp trimer formation is insensitive to salts in the physiological range. Biochemistry 54:7059–62
    [Google Scholar]
  94. 94.
    Schafer U, Beck K, Muller M 1999. Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274:24567–74
    [Google Scholar]
  95. 95.
    Schiffrin B, Calabrese AN, Devine PWA, Harris SA, Ashcroft AE et al. 2016. Skp is a multivalent chaperone of outer-membrane proteins. Nat. Struct. Mol. Biol. 23:786–93
    [Google Scholar]
  96. 96.
    Schlunzen F, Wilson DN, Tian P, Harms JM, McInnes SJ et al. 2005. The binding mode of the trigger factor on the ribosome: implications for protein folding and SRP interaction. Structure 13:1685–94
    [Google Scholar]
  97. 97.
    Shashidharamurthy R, Koteiche HA, Dong J, McHaourab HS 2005. Mechanism of chaperone function in small heat shock proteins: Dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J. Biol. Chem. 280:5281–89
    [Google Scholar]
  98. 98.
    Shieh YW, Minguez P, Bork P, Auburger JJ, Guilbride DL et al. 2015. Operon structure and cotranslational subunit association direct protein assembly in bacteria. Science 350:678–80
    [Google Scholar]
  99. 99.
    Siegel A, McAvoy CZ, Lam V, Liang FC, Kroon G et al. 2020. A disorder-to-order transition activates an ATP-independent membrane protein chaperone. J. Mol. Biol. 432:166708
    [Google Scholar]
  100. 100.
    Sobott F, Benesch JL, Vierling E, Robinson CV 2002. Subunit exchange of multimeric protein complexes: real-time monitoring of subunit exchange between small heat shock proteins by using electrospray mass spectrometry. J. Biol. Chem. 277:38921–29
    [Google Scholar]
  101. 101.
    Soltes GR, Schwalm J, Ricci DP, Silhavy TJ. 2016. The activity of Escherichia coli chaperone SurA is regulated by conformational changes involving a parvulin domain. J. Bacteriol. 198:921–29
    [Google Scholar]
  102. 102.
    Spence GR, Capaldi AP, Radford SE. 2004. Trapping the on-pathway folding intermediate of Im7 at equilibrium. J. Mol. Biol. 341:215–26
    [Google Scholar]
  103. 103.
    Stengel F, Baldwin AJ, Bush MF, Hilton GR, Lioe H et al. 2012. Dissecting heterogeneous molecular chaperone complexes using a mass spectrum deconvolution approach. Chem. Biol. 19:599–607
    [Google Scholar]
  104. 104.
    Stengel F, Baldwin AJ, Painter AJ, Jaya N, Basha E et al. 2010. Quaternary dynamics and plasticity underlie small heat shock protein chaperone function. PNAS 107:2007–12
    [Google Scholar]
  105. 105.
    Stengel KF, Holdermann I, Cain P, Robinson C, Wild K, Sinning I 2008. Structural basis for specific substrate recognition by the chloroplast signal recognition particle protein cpSRP43. Science 321:253–56
    [Google Scholar]
  106. 106.
    Stromer T, Ehrnsperger M, Gaestel M, Buchner J. 2003. Analysis of the interaction of small heat shock proteins with unfolding proteins. J. Biol. Chem. 278:18015–21
    [Google Scholar]
  107. 107.
    Stull F, Betton JM, Bardwell JCA. 2018. Periplasmic chaperones and prolyl isomerases. EcoSal Plus 8: https://doi.org/10.1128/ecosalplus.ESP-0005-2018
    [Crossref] [Google Scholar]
  108. 108.
    Stull F, Koldewey P, Humes JR, Radford SE, Bardwell JCA. 2016. Substrate protein folds while it is bound to the ATP-independent chaperone Spy. Nat. Struct. Mol. Biol. 23:53–58
    [Google Scholar]
  109. 109.
    Suo Y, Hardy SJS, Randall LL. 2015. The basis of asymmetry in the SecA:SecB complex. J. Mol. Biol. 427:887–900
    [Google Scholar]
  110. 110.
    Taylor RC, Dillin A. 2011. Aging as an event of proteostasis collapse. Cold Spring Harb. Perspect. Biol. 3:a004440
    [Google Scholar]
  111. 111.
    Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D et al. 1999. Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755–65
    [Google Scholar]
  112. 112.
    Thoma J, Burmann BM, Hiller S, Muller DJ. 2015. Impact of holdase chaperones Skp and SurA on the folding of β-barrel outer-membrane proteins. Nat. Struct. Mol. Biol. 22:795–802
    [Google Scholar]
  113. 113.
    Ungelenk S, Moayed F, Ho CT, Grousl T, Scharf A et al. 2016. Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding. Nat. Commun. 7:13673
    [Google Scholar]
  114. 114.
    Voth W, Schick M, Gates S, Li S, Vilardi F et al. 2014. The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions. Mol. Cell 56:116–27
    [Google Scholar]
  115. 115.
    Waldron TT, Murphy KP. 2003. Stabilization of proteins by ligand binding: application to drug screening and determination of unfolding energetics. Biochemistry 42:5058–64
    [Google Scholar]
  116. 116.
    Wanner BL. 1996. Signal transduction in the control of phosphate-regulated genes of Escherichia coli. Kidney Int 49:964–67
    [Google Scholar]
  117. 117.
    Watanabe M, Blobel G. 1995. High-affinity binding of Escherichia coli SecB to the signal sequence region of a presecretory protein. PNAS 92:10133–36
    [Google Scholar]
  118. 118.
    Wu K, Stull F, Lee C, Bardwell JCA 2019. Protein folding while chaperone bound is dependent on weak interactions. Nat. Commun. 10:4833
    [Google Scholar]
  119. 119.
    Wuttge S, Bommer M, Jager F, Martins BM, Jacob S et al. 2012. Determinants of substrate specificity and biochemical properties of the sn-glycerol-3-phosphate ATP binding cassette transporter (UgpB-AEC2) of Escherichia coli. Mol. Microbiol. 86:908–20
    [Google Scholar]
  120. 120.
    Yu XC, Hu Y, Ding J, Li H, Jin C 2019. Structural basis and mechanism of the unfolding-induced activation of HdeA, a bacterial acid response chaperone. J. Biol. Chem. 294:3192–206
    [Google Scholar]
  121. 121.
    Zahn R, Perrett S, Fersht AR 1996. Conformational states bound by the molecular chaperones GroEL and SecB: a hidden unfolding (annealing) activity. J. Mol. Biol. 261:43–61
    [Google Scholar]
  122. 122.
    Zhang M, Lin S, Song X, Liu J, Fu Y et al. 2011. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. Nat. Chem. Biol. 7:671–77
    [Google Scholar]
  123. 123.
    Zwirowski S, Klosowska A, Obuchowski I, Nillegoda NB, Pirog A et al. 2017. Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding. EMBO J 36:783–96
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-090121-082906
Loading
/content/journals/10.1146/annurev-biophys-090121-082906
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error