1932

Abstract

The mechanism and the evolution of DNA replication and transcription, the key elements of the central dogma of biology, are fundamentally well explained by the physicochemical complementarity between strands of nucleic acids. However, the determinants that have shaped the third part of the dogma—the process of biological translation and the universal genetic code—remain unclear. We review and seek parallels between different proposals that view the evolution of translation through the prism of weak, noncovalent interactions between biological macromolecules. In particular, we focus on a recent proposal that there exists a hitherto unrecognized complementarity at the heart of biology, that between messenger RNA coding regions and the proteins that they encode, especially if the two are unstructured. Reflecting the idea that the genetic code evolved from intrinsic binding propensities between nucleotides and amino acids, this proposal promises to forge a link between the distant past and the present of biological systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-090622-102329
2023-05-09
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/biophys/52/1/annurev-biophys-090622-102329.html?itemId=/content/journals/10.1146/annurev-biophys-090622-102329&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adlhart M, Poetsch F, Hlevnjak M, Hoogmoed M, Polyansky AA, Zagrovic B. 2022. Compositional complementarity between genomic RNA and coat proteins in positive-sense single-stranded RNA viruses. Nucleic Acids Res. 50:4054–67
    [Google Scholar]
  2. 2.
    Akinrimisi EO, Tso PO. 1964. Interactions of purine with proteins and amino acids. Biochemistry 3:619–26
    [Google Scholar]
  3. 3.
    Alberts B. 2015. Molecular Biology of the Cell New York: Garland Sci., 6th ed..
  4. 4.
    Altstein AD. 1987. On origin of the genetic system: the progene hypothesis. Mol. Biol. 21:309–22
    [Google Scholar]
  5. 5.
    Altstein AD. 2015. The progene hypothesis: the nucleoprotein world and how life began. Biol. Direct 10:67
    [Google Scholar]
  6. 6.
    Alva V, Soding J, Lupas AN. 2015. A vocabulary of ancient peptides at the origin of folded proteins. eLife 4:e09410
    [Google Scholar]
  7. 7.
    Andrews CT, Campbell BA, Elcock AH. 2017. Direct comparison of amino acid and salt interactions with double-stranded and single-stranded DNA from explicit-solvent molecular dynamics simulations. J. Chem. Theory Comput. 13:1794–811
    [Google Scholar]
  8. 8.
    Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:285–98
    [Google Scholar]
  9. 9.
    Bartonek L, Zagrovic B. 2017. mRNA/protein sequence complementarity and its determinants: the impact of affinity scales. PLOS Comput. Biol. 13:e1005648
    [Google Scholar]
  10. 10.
    Bartonek L, Zagrovic B. 2019. VOLPES: an interactive web-based tool for visualizing and comparing physicochemical properties of biological sequences. Nucleic Acids Res. 47:W632–35
    [Google Scholar]
  11. 11.
    Battaglia RA, Grigg JC, Ke A. 2019. Structural basis for tRNA decoding and aminoacylation sensing by T-box riboregulators. Nat. Struct. Mol. Biol. 26:1106–13
    [Google Scholar]
  12. 12.
    Beier A, Zagrovic B, Polyansky AA. 2014. On the contribution of protein spatial organization to the physicochemical interconnection between proteins and their cognate mRNAs. Life 4:788–99
    [Google Scholar]
  13. 13.
    Biro JC. 2007. The Proteomic Code: a molecular recognition code for proteins. Theor. Biol. Med. Model 4:45
    [Google Scholar]
  14. 14.
    Boots JL, von Pelchrzim F, Weiss A, Zimmermann B, Friesacher T et al. 2020. RNA polymerase II-binding aptamers in human ACRO1 satellites disrupt transcription in cis. Transcription 11:217–29
    [Google Scholar]
  15. 15.
    Borodavka A, Tuma R, Stockley PG. 2012. Evidence that viral RNAs have evolved for efficient, two-stage packaging. PNAS 109:15769–74
    [Google Scholar]
  16. 16.
    Bost KL, Smith EM, Blalock JE. 1985. Similarity between the corticotropin (ACTH) receptor and a peptide encoded by an RNA that is complementary to ACTH mRNA. PNAS 82:1372–75
    [Google Scholar]
  17. 17.
    Bowler FR, Chan CK, Duffy CD, Gerland B, Islam S et al. 2013. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nat. Chem. 5:383–89
    [Google Scholar]
  18. 18.
    Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. 2020. Root of the tree: the significance, evolution, and origins of the ribosome. Chem. Rev. 120:4848–78
    [Google Scholar]
  19. 19.
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C et al. 2009. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–32
    [Google Scholar]
  20. 20.
    Brangwynne CP, Tompa P, Pappu RV. 2015. Polymer physics of intracellular phase transitions. Nat. Phys. 11:899–904
    [Google Scholar]
  21. 21.
    Brunel C, Romby P, Moine H, Caillet J, Grunberg-Manago M et al. 1993. Translational regulation of the Escherichia coli threonyl-tRNA synthetase gene: structural and functional importance of the thrS operator domains. Biochimie 75:1167–79
    [Google Scholar]
  22. 22.
    Cannon JG, Sherman RM, Wang VM, Newman GA. 2015. Cross-species conservation of complementary amino acid-ribonucleobase interactions and their potential for ribosome-free encoding. Sci. Rep. 5:18054
    [Google Scholar]
  23. 23.
    Caporaso JG, Yarus M, Knight R. 2005. Error minimization and coding triplet/binding site associations are independent features of the canonical genetic code. J. Mol. Evol. 61:597–607
    [Google Scholar]
  24. 24.
    Carter CW Jr. 2017. Coding of class I and II aminoacyl-tRNA synthetases. Adv. Exp. Med. Biol. 966:103–48
    [Google Scholar]
  25. 25.
    Carter CW Jr., Wills PR. 2018. Hierarchical groove discrimination by Class I and II aminoacyl-tRNA synthetases reveals a palimpsest of the operational RNA code in the tRNA acceptor-stem bases. Nucleic Acids Res. 46:9667–83
    [Google Scholar]
  26. 26.
    Carter CW Jr., Wills PR. 2018. Interdependence, reflexivity, fidelity, impedance matching, and the evolution of genetic coding. Mol. Biol. Evol. 35:269–86
    [Google Scholar]
  27. 27.
    Carter CW Jr., Wills PR. 2019. Class I and II aminoacyl-tRNA synthetase tRNA groove discrimination created the first synthetase-tRNA cognate pairs and was therefore essential to the origin of genetic coding. IUBMB Life 71:1088–98
    [Google Scholar]
  28. 28.
    Carter CW Jr., Wills PR. 2021. Reciprocally-coupled gating: strange loops in bioenergetics, genetics, and catalysis. Biomolecules 11:265
    [Google Scholar]
  29. 29.
    Carter CW Jr., Wills PR. 2021. The roots of genetic coding in aminoacyl-tRNA synthetase duality. Annu. Rev. Biochem. 90:349–73
    [Google Scholar]
  30. 30.
    Carter CW Jr., Wolfenden R. 2015. tRNA acceptor stem and anticodon bases form independent codes related to protein folding. PNAS 112:7489–94
    [Google Scholar]
  31. 31.
    Carter CW Jr., Wolfenden R. 2016. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry. RNA Biol. 13:145–51
    [Google Scholar]
  32. 32.
    Chaliotis A, Vlastaridis P, Mossialos D, Ibba M, Becker HD et al. 2017. The complex evolutionary history of aminoacyl-tRNA synthetases. Nucleic Acids Res. 45:1059–68
    [Google Scholar]
  33. 33.
    Chandler-Bostock R, Mata CP, Bingham RJ, Dykeman EC, Meng B et al. 2020. Assembly of infectious enteroviruses depends on multiple, conserved genomic RNA-coat protein contacts. PLOS Pathog. 16:e1009146
    [Google Scholar]
  34. 34.
    Chandrasekaran SN, Yardimci GG, Erdogan O, Roach J, Carter CW Jr. 2013. Statistical evaluation of the Rodin-Ohno hypothesis: sense/antisense coding of ancestral class I and II aminoacyl-tRNA synthetases. Mol. Biol. Evol. 30:1588–604
    [Google Scholar]
  35. 35.
    Crick F. 1970. Central dogma of molecular biology. Nature 227:561–63
    [Google Scholar]
  36. 36.
    Crick FHC 1963. The recent excitement in the coding problem. Progress in Nucleic Acid Research and Molecular Biology, Vol. 1 JN Davidson, WE Cohn 163–217. New York: Academic
    [Google Scholar]
  37. 37.
    Crick FHC. 1968. The origin of the genetic code. J. Mol. Biol. 38:367–79
    [Google Scholar]
  38. 38.
    Cusack S, Berthet-Colominas C, Härtlein M, Nassar N, Leberman R. 1990. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature 347:249–55
    [Google Scholar]
  39. 39.
    Cusack S, Härtlein M, Leberman R. 1991. Sequence, structural and evolutionary relationships between class 2 aminoacyl-tRNA synthetases. Nucleic Acids Res. 19:3489–98
    [Google Scholar]
  40. 40.
    Dai X, Li Z, Lai M, Shu S, Du Y et al. 2017. In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus. Nature 541:112–16
    [Google Scholar]
  41. 41.
    Dassi E. 2017. Handshakes and fights: the regulatory interplay of RNA-binding proteins. Front. Mol. Biosci. 4:67
    [Google Scholar]
  42. 42.
    Dayhoff GW Jr., van Regenmortel MHV, Uversky VN. 2020. Intrinsic disorder in protein sense-antisense recognition. J. Mol. Recognit. 33:e2868
    [Google Scholar]
  43. 43.
    de Ruiter A, Polyansky AA, Zagrovic B. 2017. Dependence of binding free energies between RNA nucleobases and protein side chains on local dielectric properties. J. Chem. Theory Comput. 13:4504–13
    [Google Scholar]
  44. 44.
    de Ruiter A, Zagrovic B. 2015. Absolute binding-free energies between standard RNA/DNA nucleobases and amino-acid sidechain analogs in different environments. Nucleic Acids Res. 43:708–18
    [Google Scholar]
  45. 45.
    Delagoutte B, Moras D, Cavarelli J. 2000. tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding. EMBO J. 19:5599–610
    [Google Scholar]
  46. 46.
    Delarue M. 2007. An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. RNA 13:161–69
    [Google Scholar]
  47. 47.
    Di Giulio M. 2004. The origin of the tRNA molecule: implications for the origin of protein synthesis. J. Theor. Biol. 226:89–93
    [Google Scholar]
  48. 48.
    Di Giulio M. 2005. The origin of the genetic code: theories and their relationships, a review. Biosystems 80:175–84
    [Google Scholar]
  49. 49.
    Di Giulio M. 2008. An extension of the coevolution theory of the origin of the genetic code. Biol. Direct 3:37
    [Google Scholar]
  50. 50.
    Di Giulio M. 2009. A comparison among the models proposed to explain the origin of the tRNA molecule: a synthesis. J. Mol. Evol. 69:1–9
    [Google Scholar]
  51. 51.
    Di Giulio M. 2021. The origin of the genetic code and origin of ideas. J. Theor. Biol. 516:110615
    [Google Scholar]
  52. 52.
    Dill KA, Agozzino L. 2021. Driving forces in the origins of life. Open Biol. 11:200324
    [Google Scholar]
  53. 53.
    Dykeman EC, Stockley PG, Twarock R. 2013. Packaging signals in two single-stranded RNA viruses imply a conserved assembly mechanism and geometry of the packaged genome. J. Mol. Biol. 425:3235–49
    [Google Scholar]
  54. 54.
    Eriani G, Delarue M, Poch O, Gangloff J, Moras D. 1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203–6
    [Google Scholar]
  55. 55.
    Fahlman RP, Dale T, Uhlenbeck OC. 2004. Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. Mol. Cell. 16:799–805
    [Google Scholar]
  56. 56.
    Freeland SJ, Hurst LD. 1998. The genetic code is one in a million. J. Mol. Evol. 47:238–48
    [Google Scholar]
  57. 57.
    Fried SD, Fujishima K, Makarov M, Cherepashuk I, Hlouchova K. 2022. Peptides before and during the nucleotide world: an origins story emphasizing cooperation between proteins and nucleic acids. J. R. Soc. Interface 19:20210641
    [Google Scholar]
  58. 58.
    Frugier M, Giege R. 2003. Yeast aspartyl-tRNA synthetase binds specifically its own mRNA. J. Mol. Biol. 331:375–83
    [Google Scholar]
  59. 59.
    Gamow G. 1954. Possible relation between deoxyribonucleic acid and protein structures. Nature 173:318
    [Google Scholar]
  60. 60.
    Garin S, Levi O, Forrest ME, Antonellis A, Arava YS. 2021. Comprehensive characterization of mRNAs associated with yeast cytosolic aminoacyl-tRNA synthetases. RNA Biol. 18:2605–16
    [Google Scholar]
  61. 61.
    Garzia A, Morozov P, Sajek M, Meyer C, Tuschl T. 2018. PAR-CLIP for discovering target sites of RNA-binding proteins. Methods Mol. Biol. 1720:55–75
    [Google Scholar]
  62. 62.
    Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M. 1996. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res. 24:1029–36
    [Google Scholar]
  63. 63.
    Goldberger RF. 1974. Autogenous regulation of gene expression. Science 183:810–16
    [Google Scholar]
  64. 64.
    Graffe M, Dondon J, Caillet J, Romby P, Ehresmann C et al. 1992. The specificity of translational control switched with transfer RNA identity rules. Science 255:904–6
    [Google Scholar]
  65. 65.
    Grosjean H, Westhof E. 2016. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res. 44:8020–40
    [Google Scholar]
  66. 66.
    Grosjean HJ, de Henau S, Crothers DM. 1978. On the physical basis for ambiguity in genetic coding interactions. PNAS 75:610–14
    [Google Scholar]
  67. 67.
    Gruebele M, Dave K, Sukenik S 2016. Globular protein folding in vitro and in vivo. Annu. Rev. Biophys. 45:233–51
    [Google Scholar]
  68. 68.
    Guseva E, Zuckermann RN, Dill KA. 2017. Foldamer hypothesis for the growth and sequence differentiation of prebiotic polymers. PNAS 114:E7460–68
    [Google Scholar]
  69. 69.
    Haig D, Hurst LD. 1991. A quantitative measure of error minimization in the genetic-code. J. Mol. Evol. 33:412–17
    [Google Scholar]
  70. 70.
    Hajnic M, Osorio JI, Zagrovic B. 2014. Computational analysis of amino acids and their sidechain analogs in crowded solutions of RNA nucleobases with implications for the mRNA-protein complementarity hypothesis. Nucleic Acids Res. 42:12984–94
    [Google Scholar]
  71. 71.
    Hajnic M, Osorio JI, Zagrovic B. 2015. Interaction preferences between nucleobase mimetics and amino acids in aqueous solutions. Phys. Chem. Chem. Phys. 17:21414–22
    [Google Scholar]
  72. 72.
    Hlevnjak M, Polyansky AA, Zagrovic B. 2012. Sequence signatures of direct complementarity between mRNAs and cognate proteins on multiple levels. Nucleic Acids Res. 40:8874–82
    [Google Scholar]
  73. 73.
    Hlevnjak M, Zagrovic B. 2015. Malleable nature of mRNA-protein compositional complementarity and its functional significance. Nucleic Acids Res. 43:3012–21
    [Google Scholar]
  74. 74.
    Hopfield JJ. 1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. PNAS 71:4135–39
    [Google Scholar]
  75. 75.
    Houssier C, Grosjean H. 1985. Temperature jump relaxation studies on the interactions between transfer RNAs with complementary anticodons. The effect of modified bases adjacent to the anticodon triplet. J. Biomol. Struct. Dyn. 3:387–408
    [Google Scholar]
  76. 76.
    Ibba M, Soll D. 2000. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69:617–50
    [Google Scholar]
  77. 77.
    Ille AM, Lamont H, Mathews MB. 2022. The Central Dogma revisited: insights from protein synthesis, CRISPR, and beyond. Wiley Interdiscip. Rev. RNA 13:5e1718
    [Google Scholar]
  78. 78.
    Jakubec D, Hostas J, Laskowski RA, Hobza P, Vondrasek J. 2015. Large-scale quantitative assessment of binding preferences in protein-nucleic acid complexes. J. Chem. Theory Comput. 11:1939–48
    [Google Scholar]
  79. 79.
    Johnson DB, Wang L. 2010. Imprints of the genetic code in the ribosome. PNAS 107:8298–303
    [Google Scholar]
  80. 80.
    Kapral TH, Farnhammer F, Zhao W, Lu ZJ, Zagrovic B. 2022. Widespread autogenous mRNA–protein interactions detected by CLIP-seq. Nucleic Acids Res. 50:9984–99
    [Google Scholar]
  81. 81.
    Klipcan L, Safro M. 2004. Amino acid biogenesis, evolution of the genetic code and aminoacyl-tRNA synthetases. J. Theor. Biol. 228:389–96
    [Google Scholar]
  82. 82.
    Koonin EV. 2015. Why the Central Dogma: on the nature of the great biological exclusion principle. Biol. Direct 10:52
    [Google Scholar]
  83. 83.
    Koonin EV. 2017. Frozen accident pushing 50: stereochemistry, expansion, and chance in the evolution of the genetic code. Life 7:22
    [Google Scholar]
  84. 84.
    Koonin EV, Novozhilov AS. 2009. Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61:99–111
    [Google Scholar]
  85. 85.
    Koonin EV, Novozhilov AS. 2017. Origin and evolution of the universal genetic code. Annu. Rev. Genet. 51:45–62
    [Google Scholar]
  86. 86.
    Kun A, Radvanyi A. 2018. The evolution of the genetic code: impasses and challenges. Biosystems 164:217–25
    [Google Scholar]
  87. 87.
    Lee FCY, Ule J. 2018. Advances in CLIP technologies for studies of protein-RNA interactions. Mol. Cell 69:354–69
    [Google Scholar]
  88. 88.
    Levi O, Arava Y. 2019. mRNA association by aminoacyl tRNA synthetase occurs at a putative anticodon mimic and autoregulates translation in response to tRNA levels. PLOS Biol. 17:e3000274
    [Google Scholar]
  89. 89.
    Li L, Francklyn C, Carter CW Jr. 2013. Aminoacylating urzymes challenge the RNA world hypothesis. J. Biol. Chem. 288:26856–63
    [Google Scholar]
  90. 90.
    Li L, Weinreb V, Francklyn C, Carter CW Jr. 2011. Histidyl-tRNA synthetase urzymes: class I and II aminoacyl-tRNA synthetase urzymes have comparable catalytic activities for cognate amino acid activation. J. Biol. Chem. 286:10387–95
    [Google Scholar]
  91. 91.
    Martinez-Rodriguez L, Erdogan O, Jimenez-Rodriguez M, Gonzalez-Rivera K, Williams T et al. 2015. Functional class I and II amino acid-activating enzymes can be coded by opposite strands of the same gene. J. Biol. Chem. 290:19710–25
    [Google Scholar]
  92. 92.
    Meyer MM. 2018. rRNA mimicry in RNA regulation of gene expression. Microbiol. Spectr. 6: https://doi.org/10.1128/microbiolspec.RWR-0006-2017
    [Google Scholar]
  93. 93.
    Muller-McNicoll M, Rossbach O, Hui J, Medenbach J. 2019. Auto-regulatory feedback by RNA-binding proteins. J. Mol. Cell Biol. 11:930–39
    [Google Scholar]
  94. 94.
    Nassar R, Dignon GL, Razban RM, Dill KA. 2021. The protein folding problem: the role of theory. J. Mol. Biol. 433:167126
    [Google Scholar]
  95. 95.
    Peacock JR, Walvoord RR, Chang AY, Kozlowski MC, Gamper H, Hou YM. 2014. Amino acid-dependent stability of the acyl linkage in aminoacyl-tRNA. RNA 20:758–64
    [Google Scholar]
  96. 96.
    Perez-Cano L, Solernou A, Pons C, Fernandez-Recio J. 2010. Structural prediction of protein-RNA interaction by computational docking with propensity-based statistical potentials. Pac. Symp. Biocomput. 2010:293–301
    [Google Scholar]
  97. 97.
    Pernod K, Schaeffer L, Chicher J, Hok E, Rick C et al. 2020. The nature of the purine at position 34 in tRNAs of 4-codon boxes is correlated with nucleotides at positions 32 and 38 to maintain decoding fidelity. Nucleic Acids Res. 48:6170–83
    [Google Scholar]
  98. 98.
    Perona JJ, Gruic-Sovulj I. 2014. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top. Curr. Chem. 344:1–41
    [Google Scholar]
  99. 99.
    Pham Y, Li L, Kim A, Erdogan O, Weinreb V et al. 2007. A minimal TrpRS catalytic domain supports sense/antisense ancestry of class I and II aminoacyl-tRNA synthetases. Mol. Cell 25:851–62
    [Google Scholar]
  100. 100.
    Polyansky AA, Hlevnjak M, Zagrovic B. 2013. Proteome-wide analysis reveals clues of complementary interactions between mRNAs and their cognate proteins as the physicochemical foundation of the genetic code. RNA Biol. 10:1248–54
    [Google Scholar]
  101. 101.
    Polyansky AA, Kreuter M, Sutherland JD, Zagrovic B. 2019. Direct interplay between stereochemistry and conformational preferences in aminoacylated oligoribonucleotides. Nucleic Acids Res. 47:11077–89
    [Google Scholar]
  102. 102.
    Polyansky AA, Zagrovic B. 2013. Evidence of direct complementary interactions between messenger RNAs and their cognate proteins. Nucleic Acids Res. 41:8434–43
    [Google Scholar]
  103. 103.
    Posey AE, Holehouse AS, Pappu RV. 2018. Phase separation of intrinsically disordered proteins. Methods Enzymol. 611:1–30
    [Google Scholar]
  104. 104.
    Rodin S, Rodin A, Ohno S. 1996. The presence of codon-anticodon pairs in the acceptor stem of tRNAs. PNAS 93:4537–42
    [Google Scholar]
  105. 105.
    Rodin SN, Ohno S. 1995. Two types of aminoacyl-tRNA synthetases could be originally encoded by complementary strands of the same nucleic acid. Orig. Life Evol. Biosph. 25:565–89
    [Google Scholar]
  106. 106.
    Root-Bernstein RS, Holsworth DD 1998. Antisense peptides: a critical mini-review. J. Theor. Biol. 190:107–19
    [Google Scholar]
  107. 107.
    Rubio Gomez MA, Ibba M 2020. Aminoacyl-tRNA synthetases. RNA 26:910–36
    [Google Scholar]
  108. 108.
    Salazar JC, Ahel I, Orellana O, Tumbula-Hansen D, Krieger R et al. 2003. Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates. PNAS 100:13863–68
    [Google Scholar]
  109. 109.
    Schimmel P. 2008. Development of tRNA synthetases and connection to genetic code and disease. Protein Sci. 17:1643–52
    [Google Scholar]
  110. 110.
    Schimmel PR, Soll D. 1979. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu. Rev. Biochem. 48:601–48
    [Google Scholar]
  111. 111.
    Sengupta S, Higgs PG. 2015. Pathways of genetic code evolution in ancient and modern organisms. J. Mol. Evol. 80:229–43
    [Google Scholar]
  112. 112.
    Shackelton LA, Holmes EC. 2008. The role of alternative genetic codes in viral evolution and emergence. J. Theor. Biol. 254:128–34
    [Google Scholar]
  113. 113.
    Smets BF, Barkay T. 2005. Horizontal gene transfer: perspectives at a crossroads of scientific disciplines. Nat. Rev. Microbiol. 3:675–78
    [Google Scholar]
  114. 114.
    Smith TF, Hartman H. 2015. The evolution of Class II aminoacyl-tRNA synthetases and the first code. FEBS Lett. 589:3499–507
    [Google Scholar]
  115. 115.
    Sutherland JD, Blackburn JM. 1997. Killing two birds with one stone: a chemically plausible scheme for linked nucleic acid replication and coded peptide synthesis. Chem. Biol. 4:481–88
    [Google Scholar]
  116. 116.
    Tai N, Schmitz JC, Liu J, Lin X, Bailly M et al. 2004. Translational autoregulation of thymidylate synthase and dihydrofolate reductase. Front. Biosci. 9:2521–26
    [Google Scholar]
  117. 117.
    Tawfik DS, Gruic-Sovulj I. 2020. How evolution shapes enzyme selectivity—lessons from aminoacyl-tRNA synthetases and other amino acid utilizing enzymes. FEBS J. 287:1284–305
    [Google Scholar]
  118. 118.
    Thomas PD, Podder SK. 1978. Specificity in protein–nucleic acid interaction: solubility study on amino acid–nucleoside interaction. FEBS Lett. 96:90–94
    [Google Scholar]
  119. 119.
    Trifonov EN. 2000. Consensus temporal order of amino acids and evolution of the triplet code. Gene 261:139–51
    [Google Scholar]
  120. 120.
    Twarock R, Stockley PG. 2019. RNA-mediated virus assembly: mechanisms and consequences for viral evolution and therapy. Annu. Rev. Biophys. 48:495–514
    [Google Scholar]
  121. 121.
    Van Lindt J, Lazar T, Pakravan D, Demulder M, Meszaros A et al. 2022. F/YGG-motif is an intrinsically disordered nucleic-acid binding motif. RNA Biol. 19:622–35
    [Google Scholar]
  122. 122.
    Vasilyev N, Polonskaia A, Darnell JC, Darnell RB, Patel DJ, Serganov A. 2015. Crystal structure reveals specific recognition of a G-quadruplex RNA by a beta-turn in the RGG motif of FMRP. PNAS 112:E5391–400
    [Google Scholar]
  123. 123.
    Vetsigian K, Woese C, Goldenfeld N. 2006. Collective evolution and the genetic code. PNAS 103:10696–701
    [Google Scholar]
  124. 124.
    Woese CR. 1965. On the evolution of the genetic code. PNAS 54:1546–52
    [Google Scholar]
  125. 125.
    Woese CR. 1965. Order in genetic code. PNAS 54:71–75
    [Google Scholar]
  126. 126.
    Woese CR. 1968. Fundamental nature of genetic code: prebiotic interactions between polynucleotides and polyamino acids or their derivatives. PNAS 59:110–17
    [Google Scholar]
  127. 127.
    Woese CR. 1973. Evolution of the genetic code. Naturwissenschaften 60:447–59
    [Google Scholar]
  128. 128.
    Woese CR. 2001. Translation: in retrospect and prospect. RNA 7:1055–67
    [Google Scholar]
  129. 129.
    Woese CR, Dugre DH, Saxinger WC, Dugre SA. 1966. The molecular basis for the genetic code. PNAS 55:966–74
    [Google Scholar]
  130. 130.
    Woese CR, Olsen GJ, Ibba M, Soll D. 2000. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. 64:202–36
    [Google Scholar]
  131. 131.
    Wong JT. 1975. A co-evolution theory of the genetic code. PNAS 72:1909–12
    [Google Scholar]
  132. 132.
    Wong JT. 2005. Coevolution theory of the genetic code at age thirty. Bioessays 27:416–25
    [Google Scholar]
  133. 133.
    Yang Y, Kochoyan M, Burgstaller P, Westhof E, Famulok M. 1996. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science 5266:1343–47
    [Google Scholar]
  134. 134.
    Yarus M. 1998. Amino acids as RNA ligands: a direct-RNA-template theory for the code's origin. J. Mol. Evol. 47:109–17
    [Google Scholar]
  135. 135.
    Yarus M. 2000. RNA-ligand chemistry: a testable source for the genetic code. RNA 6:475–84
    [Google Scholar]
  136. 136.
    Yarus M, Caporaso JG, Knight R. 2005. Origins of the genetic code: the escaped triplet theory. Annu. Rev. Biochem. 74:179–98
    [Google Scholar]
  137. 137.
    Yarus M, Widmann JJ, Knight R. 2009. RNA-amino acid binding: a stereochemical era for the genetic code. J. Mol. Evol. 69:406–29
    [Google Scholar]
  138. 138.
    Zagrovic B, Bartonek L, Polyansky AA. 2018. RNA-protein interactions in an unstructured context. FEBS Lett. 592:2901–16
    [Google Scholar]
  139. 139.
    Zhang YY, Yang ML, Duncan SS, Yang XF, Abdelhamid MAS et al. 2019. G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res. 47:11746–54
    [Google Scholar]
  140. 140.
    Zhao W, Zhang S, Zhu Y, Xi X, Bao P et al. 2022. POSTAR3: an updated platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Nucleic Acids Res. 50:D287–94
    [Google Scholar]
  141. 141.
    Zubay G, Doty P. 1958. Nucleic acid interactions with metal ions and amino acids. Biochim. Biophys. Acta 29:47–58
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-090622-102329
Loading
/content/journals/10.1146/annurev-biophys-090622-102329
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error