1932

Abstract

Lipid–protein interactions in cells are involved in various biological processes, including metabolism, trafficking, signaling, host–pathogen interactions, and transmembrane transport. At the plasma membrane, lipid–protein interactions play major roles in membrane organization and function. Several membrane proteins have motifs for specific lipid binding, which modulate protein conformation and consequent function. In addition to such specific lipid–protein interactions, protein function can be regulated by the dynamic, collective behavior of lipids in membranes. Emerging analytical, biochemical, and computational technologies allow us to study the influence of specific lipid–protein interactions, as well as the collective behavior of membranes on protein function. In this article, we review the recent literature on lipid–protein interactions with a specific focus on the current state-of-the-art technologies that enable novel insights into these interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-090721-072718
2022-05-09
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/biophys/51/1/annurev-biophys-090721-072718.html?itemId=/content/journals/10.1146/annurev-biophys-090721-072718&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abankwa D, Gorfe AA, Inder K, Hancock JF. 2010. Ras membrane orientation and nanodomain localization generate isoform diversity. PNAS 107:31130–35
    [Google Scholar]
  2. 2.
    Anderluh A, Hofmaier T, Klotzsch E, Kudlacek O, Stockner T et al. 2017. Direct PIP 2 binding mediates stable oligomer formation of the serotonin transporter. Nat. Commun. 8:14089
    [Google Scholar]
  3. 3.
    Andrade DM, Clausen MP, Keller J, Mueller V, Wu C et al. 2015. Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane—a minimally invasive investigation by STED-FCS. Sci. Rep. 5:11454
    [Google Scholar]
  4. 4.
    Azbazdar Y, Ozalp O, Sezgin E, Veerapathiran S, Duncan AL et al. 2019. More favorable palmitic acid over palmitoleic acid modification of Wnt3 ensures its localization and activity in plasma membrane domains. Front. Cell Dev. Biol. 7:281
    [Google Scholar]
  5. 5.
    Bacia K, Schuette CG, Kahya N, Jahn R, Schwille P. 2004. SNAREs prefer liquid-disordered over “raft” (liquid-ordered) domains when reconstituted into giant unilamellar vesicles. J. Biol. Chem. 279:3637951–55
    [Google Scholar]
  6. 6.
    Bai X, McMullan G, Scheres SHW. 2015. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40:149–57
    [Google Scholar]
  7. 7.
    Bayburt TH, Grinkova YV, Sligar SG. 2002. Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2:8853–56
    [Google Scholar]
  8. 8.
    Ben-Tal N, Honig B, Miller C, McLaughlin S. 1997. Electrostatic binding of proteins to membranes: theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Biophys. J. 73:41717–27
    [Google Scholar]
  9. 9.
    Björkholm P, Ernst AM, Hacke M, Wieland F, Brügger B, von Heijne G 2014. Identification of novel sphingolipid-binding motifs in mammalian membrane proteins. Biochim. Biophys. Acta Biomembr. 1838:82066–70
    [Google Scholar]
  10. 10.
    Blouin CM, Hamon Y, Gonnord P, Boularan C, Kagan J et al. 2016. Glycosylation-dependent IFN-γR partitioning in lipid and actin nanodomains is critical for JAK activation. Cell 166:4920–34
    [Google Scholar]
  11. 11.
    Bokori-Brown M, Martin TG, Naylor CE, Basak AK, Titball RW, Savva CG. 2016. Cryo-EM structure of lysenin pore elucidates membrane insertion by an aerolysin family protein. Nat. Commun. 7:11293
    [Google Scholar]
  12. 12.
    Bolla JR, Agasid MT, Mehmood S, Robinson CV. 2019. Membrane protein-lipid interactions probed using mass spectrometry. Annu. Rev. Biochem. 88:85–111
    [Google Scholar]
  13. 13.
    Bolla JR, Corey RA, Sahin C, Gault J, Hummer A et al. 2020. A mass-spectrometry-based approach to distinguish annular and specific lipid binding to membrane proteins. Angew. Chem. Int. Ed. 59:93523–28
    [Google Scholar]
  14. 14.
    Broecker J, Eger BT, Ernst OP. 2017. Crystallogenesis of membrane proteins mediated by polymer-bounded lipid nanodiscs. Structure 25:2384–92
    [Google Scholar]
  15. 15.
    Brown DA, Rose JK. 1992. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:3533–44
    [Google Scholar]
  16. 16.
    Cang X, Du Y, Mao Y, Wang Y, Yang H, Jiang H 2013. Mapping the functional binding sites of cholesterol in β2-adrenergic receptor by long-time molecular dynamics simulations. J. Phys. Chem. B 117:41085–94
    [Google Scholar]
  17. 17.
    Cannarozzo C, Fred SM, Girych M, Biojone C, Enkavi G et al. 2021. Cholesterol-recognition motifs in the transmembrane domain of the tyrosine kinase receptor family: the case of TRKB. Eur. J. Neurosci. 53:103311–22
    [Google Scholar]
  18. 18.
    Capolupo L, Khven I, Mazzeo L, Glousker G, Russo F et al. 2021. Sphingolipid control of fibroblast heterogeneity revealed by single-cell lipidomics. bioRxiv 2021.02.23.432420. https://doi.org/10.1101/2021.02.23.432420
    [Crossref]
  19. 19.
    Céspedes PF, Beckers D, Dustin ML, Sezgin E 2021. Model membrane systems to reconstitute immune cell signaling. FEBS J. 288:41070–90
    [Google Scholar]
  20. 20.
    Chavent M, Duncan AL, Sansom MS 2016. Molecular dynamics simulations of membrane proteins and their interactions: from nanoscale to mesoscale. Curr. Opin. Struct. Biol. 40:8–16
    [Google Scholar]
  21. 21.
    Chavent M, Karia D, Kalli AC, Domański J, Duncan AL et al. 2018. Interactions of the EphA2 kinase domain with PIPs in membranes: implications for receptor function. Structure 26:71025–34.e2
    [Google Scholar]
  22. 22.
    Cheng Y. 2018. Single-particle cryo-EM—how did it get here and where will it go. Science 361:6405876–80
    [Google Scholar]
  23. 23.
    Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS et al. 2007. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:58541258–65
    [Google Scholar]
  24. 24.
    Colom A, Derivery E, Soleimanpour S, Tomba C, Molin MD et al. 2018. A fluorescent membrane tension probe. Nat. Chem. 10:111118–25
    [Google Scholar]
  25. 25.
    Contreras F-X, Ernst AM, Haberkant P, Björkholm P, Lindahl E et al. 2012. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 481:7382525–29
    [Google Scholar]
  26. 26.
    Corey RA, Stansfeld PJ, Sansom MSP. 2019. The energetics of protein-lipid interactions as viewed by molecular simulations. Biochem. Soc. Trans. 48:125–37
    [Google Scholar]
  27. 27.
    Corey RA, Vickery ON, Sansom MSP, Stansfeld PJ. 2019. Insights into membrane protein-lipid interactions from free energy calculations. J. Chem. Theory Comput. 15:105727–36
    [Google Scholar]
  28. 28.
    Coskun Ü, Grzybek M, Drechsel D, Simons K 2011. Regulation of human EGF receptor by lipids. PNAS 108:229044–48
    [Google Scholar]
  29. 29.
    Das J, Rahman GM. 2014. C1 domains: structure and ligand-binding properties. Chem. Rev. 114:2412108–31
    [Google Scholar]
  30. 30.
    De Colibus L, Sonnen AF-P, Morris KJ, Siebert CA, Abrusci P et al. 2012. Structures of lysenin reveal a shared evolutionary origin for pore-forming proteins and its mode of sphingomyelin recognition. Structure 20:91498–507
    [Google Scholar]
  31. 31.
    Denisov IG, Sligar SG. 2016. Nanodiscs for structural and functional studies of membrane proteins. Nat. Struct. Mol. Biol. 23:6481–86
    [Google Scholar]
  32. 32.
    Diaz-Rohrer BB, Levental KR, Simons K, Levental I. 2014. Membrane raft association is a determinant of plasma membrane localization. PNAS 111:238500–5
    [Google Scholar]
  33. 33.
    Douglass AD, Vale RD. 2005. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121:6937–50
    [Google Scholar]
  34. 34.
    Duncan AL, Reddy T, Koldsø H, Hélie J, Fowler PW et al. 2017. Protein crowding and lipid complexity influence the nanoscale dynamic organization of ion channels in cell membranes. Sci. Rep. 7:16647
    [Google Scholar]
  35. 35.
    Duncan AL, Song W, Sansom MSP 2020. Lipid-dependent regulation of ion channels and G protein-coupled receptors: insights from structures and simulations. Annu. Rev. Pharmacol. Toxicol. 60:31–50
    [Google Scholar]
  36. 36.
    Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K et al. 2009. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:72331159–62
    [Google Scholar]
  37. 37.
    Elkins MR, Williams JK, Gelenter MD, Dai P, Kwon B et al. 2017. Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR. PNAS 114:4912946–51
    [Google Scholar]
  38. 38.
    Engel E, Hell SW, Klar TA. 2001. Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys. Rev. E 64:6066613
    [Google Scholar]
  39. 39.
    Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I 2019. Multiscale simulations of biological membranes: the challenge to understand biological phenomena in a living substance. Chem. Rev. 119:95607–774
    [Google Scholar]
  40. 40.
    Fernandes F, Loura LMS, Koehorst R, Spruijt RB, Hemminga MA et al. 2004. Quantification of protein-lipid selectivity using FRET: application to the M13 major coat protein. Biophys. J. 87:1344–52
    [Google Scholar]
  41. 41.
    Gao Y, Cao E, Julius D, Cheng Y 2016. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534:7607347–51
    [Google Scholar]
  42. 42.
    García-Nafría J, Tate CG. 2020. Cryo-electron microscopy: moving beyond X-ray crystal structures for drug receptors and drug development. Annu. Rev. Pharmacol. Toxicol. 60:51–71
    [Google Scholar]
  43. 43.
    Gerl MJ, Klose C, Surma MA, Fernandez C, Melander O et al. 2019. Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. PLOS Biol 17:10e3000443
    [Google Scholar]
  44. 44.
    Gupta K, Donlan JAC, Hopper JTS, Uzdavinys P, Landreh M et al. 2017. The role of interfacial lipids in stabilizing membrane protein oligomers. Nature 541:7637421–24
    [Google Scholar]
  45. 45.
    Gupta K, Li J, Liko I, Gault J, Bechara C et al. 2018. Identifying key membrane protein lipid interactions using mass spectrometry. Nat. Protoc. 13:51106–20
    [Google Scholar]
  46. 46.
    Guzmán C, Šolman M, Ligabue A, Blaževitš O, Andrade DM et al. 2014. The efficacy of Raf kinase recruitment to the GTPase H-ras depends on H-ras membrane conformer-specific nanoclustering. J. Biol. Chem. 289:149519–33
    [Google Scholar]
  47. 47.
    Haft CR, de la Luz Sierra M, Barr VA, Haft DH, Taylor SI 1998. Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol. Cell. Biol. 18:127278–87
    [Google Scholar]
  48. 48.
    Hanser F, Marsol C, Valencia C, Villa P, Klymchenko AS et al. 2021. Nile Red-based GPCR ligands as ultrasensitive probes of the local lipid microenvironment of the receptor. ACS Chem. Biol. 16:4651–60
    [Google Scholar]
  49. 49.
    Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola V-P et al. 2008. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16:6897–905
    [Google Scholar]
  50. 50.
    Heinemann F, Vogel SK, Schwille P. 2013. Lateral membrane diffusion modulated by a minimal actin cortex. Biophys. J. 104:71465–75
    [Google Scholar]
  51. 51.
    Hell SW, Wichmann J. 1994. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19:11780–82
    [Google Scholar]
  52. 52.
    Hellwig N, Peetz O, Ahdash Z, Tascón I, Booth PJ et al. 2018. Native mass spectrometry goes more native: investigation of membrane protein complexes directly from SMALPs. Chem. Commun. 54:9713702–5
    [Google Scholar]
  53. 53.
    Hoi KK, Bada Juarez JF, Judge PJ, Yen H-Y, Wu D et al. 2021. Detergent-free Lipodisq nanoparticles facilitate high-resolution mass spectrometry of folded integral membrane proteins. Nano Lett 21:72824–31
    [Google Scholar]
  54. 54.
    Huang C-S, Yu X, Fordstrom P, Choi K, Chung BC et al. 2020. Cryo-EM structures of NPC1L1 reveal mechanisms of cholesterol transport and ezetimibe inhibition. Sci. Adv. 6:25eabb1989
    [Google Scholar]
  55. 55.
    Ikonen E, Zhou X. 2021. Cholesterol transport between cellular membranes: a balancing act between interconnected lipid fluxes. Dev. Cell 56:101430–36
    [Google Scholar]
  56. 56.
    Jacobson K, Sheets ED, Simson R. 1995. Revisiting the fluid mosaic model of membranes. Science 268:52161441–42
    [Google Scholar]
  57. 57.
    Jacso T, Franks WT, Rose H, Fink U, Broecker J et al. 2012. Characterization of membrane proteins in isolated native cellular membranes by dynamic nuclear polarization solid-state NMR spectroscopy without purification and reconstitution. Angew. Chem. Int. Ed. 51:2432–35
    [Google Scholar]
  58. 58.
    Jafurulla M, Tiwari S, Chattopadhyay A. 2011. Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochem. Biophys. Res. Commun. 404:1569–73
    [Google Scholar]
  59. 59.
    Javanainen M, Enkavi G, Guixà-Gonzaléz R, Kulig W, Martinez-Seara H et al. 2019. Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions. PLOS Comput. Biol. 15:5e1007033
    [Google Scholar]
  60. 60.
    Jenkins E, Santos AM, O'Brien-Ball C, Felce JH, Wilcock MJ et al. 2019. Reconstitution of immune cell interactions in free-standing membranes. J. Cell Sci. 132:4jcs219709
    [Google Scholar]
  61. 61.
    Juhola H, Postila PA, Rissanen S, Lolicato F, Vattulainen I, Róg T. 2018. Negatively charged gangliosides promote membrane association of amphipathic neurotransmitters. Neuroscience 384:214–23
    [Google Scholar]
  62. 62.
    Kahya N, Brown DA, Schwille P. 2005. Raft partitioning and dynamic behavior of human placental alkaline phosphatase in giant unilamellar vesicles. Biochemistry 44:207479–89
    [Google Scholar]
  63. 63.
    Kenworthy AK, Petranova N, Edidin M. 2000. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell 11:51645–55
    [Google Scholar]
  64. 64.
    Klepeis JL, Floudas CA. 2003. ASTRO-FOLD: a combinatorial and global optimization framework for ab initio prediction of three-dimensional structures of proteins from the amino acid sequence. Biophys. J. 85:42119–46
    [Google Scholar]
  65. 65.
    Kociurzynski R, Beck SD, Bouhon J-B, Römer W, Knecht V 2019. Binding of SV40’s viral capsid protein VP1 to its glycosphingolipid receptor GM1 induces negative membrane curvature: a molecular dynamics study. Langmuir 35:93534–44
    [Google Scholar]
  66. 66.
    Kong L, Sochacki KA, Wang H, Fang S, Canagarajah B et al. 2018. Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature 560:7717258–62
    [Google Scholar]
  67. 67.
    Köster DV, Mayor S. 2016. Cortical actin and the plasma membrane: inextricably intertwined. Curr. Opin. Cell Biol. 38:81–89
    [Google Scholar]
  68. 68.
    Krieger JW, Singh AP, Bag N, Garbe CS, Saunders TE et al. 2015. Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat. Protoc. 10:121948–74
    [Google Scholar]
  69. 69.
    Kucherak OA, Oncul S, Darwich Z, Yushchenko DA, Arntz Y et al. 2010. Switchable Nile Red-based probe for cholesterol and lipid order at the outer leaflet of biomembranes. J. Am. Chem. Soc. 132:134907–16
    [Google Scholar]
  70. 70.
    Kuimova MK. 2012. Mapping viscosity in cells using molecular rotors. Phys. Chem. Chem. Phys. 14:3712671–86
    [Google Scholar]
  71. 71.
    Kumari R, Francesconi A. 2011. Identification of GPCR localization in detergent resistant membranes. Receptor Signal Transduction Protocols GB Willars, RAJ Challiss 411–23 Totowa, NJ: Humana Press. , 3rd ed..
    [Google Scholar]
  72. 72.
    Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K et al. 2005. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34:351–78
    [Google Scholar]
  73. 73.
    Kwon B, Mandal T, Elkins MR, Oh Y, Cui Q, Hong M 2020. Cholesterol interaction with the trimeric HIV fusion protein gp41 in lipid bilayers investigated by solid-state NMR spectroscopy and molecular dynamics simulations. J. Mol. Biol. 432:164705–21
    [Google Scholar]
  74. 74.
    Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT et al. 2014. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510:7503172–75
    [Google Scholar]
  75. 75.
    Lajoie P, Nabi IR. 2010. Lipid rafts, caveolae, and their endocytosis. Int. Rev. Cell Mol. Biol. 282:135–63
    [Google Scholar]
  76. 76.
    Landreh M, Marklund EG, Uzdavinys P, Degiacomi MT, Coincon M et al. 2017. Integrating mass spectrometry with MD simulations reveals the role of lipids in N+/H+ antiporters. Nat. Commun. 8:13993
    [Google Scholar]
  77. 77.
    Lemmon MA. 2008. Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9:299–111
    [Google Scholar]
  78. 78.
    Leney AC, Heck AJR. 2017. Native mass spectrometry: What is in the name?. J. Am. Soc. Mass Spectrom. 28:15–13
    [Google Scholar]
  79. 79.
    Lenne P-F, Wawrezinieck L, Conchonaud F, Wurtz O, Boned A et al. 2006. Dynamic molecular confinement in the plasma membrane by microdomains and the cytoskeleton meshwork. EMBO J 25:143245–56
    [Google Scholar]
  80. 80.
    Lin B, Tsao S, Chen A, Hu S-K, Chao L, Chao PG. 2017. Lipid rafts sense and direct electric field-induced migration. PNAS 114:328568–73
    [Google Scholar]
  81. 81.
    Lorent JH, Diaz-Rohrer B, Lin X, Spring K, Gorfe AA et al. 2017. Structural determinants and functional consequences of protein affinity for membrane rafts. Nat. Commun. 8:1219
    [Google Scholar]
  82. 82.
    Loura LM, Prieto MJ 2011. FRET in membrane biophysics: an overview. Front. Physiol. 2:82
    [Google Scholar]
  83. 83.
    Ma Y, Yamamoto Y, Nicovich PR, Goyette J, Rossy J et al. 2017. A FRET sensor enables quantitative measurements of membrane charges in live cells. Nat. Biotechnol. 35:4363–70
    [Google Scholar]
  84. 84.
    Mahajan M, Bharambe N, Shang Y, Lu B, Mandal A et al. 2021. NMR identification of a conserved Drp1 cardiolipin-binding motif essential for stress-induced mitochondrial fission. PNAS 118:29e2023079118
    [Google Scholar]
  85. 85.
    Mahfoud R, Garmy N, Maresca M, Yahi N, Puigserver A, Fantini J 2002. Identification of a common sphingolipid-binding domain in Alzheimer, prion, and HIV-1 proteins. J. Biol. Chem. 277:1311292–96
    [Google Scholar]
  86. 86.
    Marlow B, Kuenze G, Li B, Sanders CR, Meiler J 2021. Structural determinants of cholesterol recognition in helical integral membrane proteins. Biophys. J. 120:91592–604
    [Google Scholar]
  87. 87.
    McLean MA, Gregory MC, Sligar SG 2018. Nanodiscs: a controlled bilayer surface for the study of membrane proteins. Annu. Rev. Biophys. 47:107–24
    [Google Scholar]
  88. 88.
    Milovanovic D, Honigmann A, Koike S, Göttfert F, Pähler G et al. 2015. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains. Nat. Commun. 6:5984
    [Google Scholar]
  89. 89.
    Moon CP, Fleming KG. 2011. Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers. PNAS 108:2510174–77
    [Google Scholar]
  90. 90.
    Morris KL, Jones JR, Halebian M, Wu S, Baker M et al. 2019. Cryo-EM of multiple cage architectures reveals a universal mode of clathrin self-assembly. Nat. Struct. Mol. Biol. 26:10890–98
    [Google Scholar]
  91. 91.
    Mueller V, Ringemann C, Honigmann A, Schwarzmann G, Medda R et al. 2011. STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys. J. 101:71651–60
    [Google Scholar]
  92. 92.
    Nazarov PV, Koehorst RBM, Vos WL, Apanasovich VV, Hemminga MA. 2007. FRET study of membrane proteins: determination of the tilt and orientation of the N-terminal domain of M13 major coat protein. Biophys. J. 92:41296–305
    [Google Scholar]
  93. 93.
    Newby ZER, O'Connell JD, Gruswitz F, Hays FA, Harries WEC et al. 2009. A general protocol for the crystallization of membrane proteins for X-ray structural investigation. Nat. Protoc. 4:5619–37
    [Google Scholar]
  94. 94.
    Newport TD, Sansom MSP, Stansfeld PJ. 2019. The MemProtMD database: a resource for membrane-embedded protein structures and their lipid interactions. Nucleic Acids Res. 47:D1D390–97
    [Google Scholar]
  95. 95.
    Nile AH, Hannoush RN. 2016. Fatty acylation of Wnt proteins. Nat. Chem. Biol. 12:260–69
    [Google Scholar]
  96. 96.
    Nile AH, Mukund S, Stanger K, Wang W, Hannoush RN. 2017. Unsaturated fatty acyl recognition by Frizzled receptors mediates dimerization upon Wnt ligand binding. PNAS 114:164147–52
    [Google Scholar]
  97. 97.
    Oddi S, Dainese E, Fezza F, Lanuti M, Barcaroli D et al. 2011. Functional characterization of putative cholesterol binding sequence (CRAC) in human type-1 cannabinoid receptor. J. Neurochem. 116:5858–65
    [Google Scholar]
  98. 98.
    Ognjenović J, Grisshammer R, Subramaniam S. 2019. Frontiers in cryo electron microscopy of complex macromolecular assemblies. Annu. Rev. Biomed. Eng. 21:395–415
    [Google Scholar]
  99. 99.
    Oluwole AO, Danielczak B, Meister A, Babalola JO, Vargas C, Keller S. 2017. Solubilization of membrane proteins into functional lipid-bilayer nanodiscs using a diisobutylene/maleic acid copolymer. Angew. Chem. Int. Ed. 56:71919–24
    [Google Scholar]
  100. 100.
    Orengo CA, Jones DT, Thornton JM. 1994. Protein superfamilies and domain superfolds. Nature 372:6507631–34
    [Google Scholar]
  101. 101.
    Özhan G, Sezgin E, Wehner D, Pfister AS, Kühl SJ et al. 2013. Lypd6 enhances Wnt/β-catenin signaling by promoting Lrp6 phosphorylation in raft plasma membrane domains. Dev. Cell 26:4331–45
    [Google Scholar]
  102. 102.
    Parker JL, Newstead S. 2016. Membrane protein crystallisation: current trends and future perspectives. Adv. Exp. Med. Biol. 922:61–72
    [Google Scholar]
  103. 103.
    Parton RG. 1996. Caveolae and caveolins. Curr. Opin. Cell Biol. 8:4542–48
    [Google Scholar]
  104. 104.
    Patki V, Lawe DC, Corvera S, Virbasius JV, Chawla A. 1998. A functional PtdIns(3)P-binding motif. Nature 394:6692433–34
    [Google Scholar]
  105. 105.
    Pillardy J, Czaplewski C, Liwo A, Wedemeyer WJ, Lee J et al. 2001. Development of physics-based energy functions that predict medium-resolution structures for proteins of the α, β, and α/β structural classes. J. Phys. Chem. B 105:307299–311
    [Google Scholar]
  106. 106.
    Polley A, Orłowski A, Danne R, Gurtovenko AA, Bernardino de la Serna J et al. 2017. Glycosylation and lipids working in concert direct CD2 ectodomain orientation and presentation. J. Phys. Chem. Lett. 8:51060–66
    [Google Scholar]
  107. 107.
    Raunser S, Walz T. 2009. Electron crystallography as a technique to study the structure on membrane proteins in a lipidic environment. Annu. Rev. Biophys. 38:89–105
    [Google Scholar]
  108. 108.
    Regmi R, Winkler PM, Flauraud V, Borgman KJE, Manzo C et al. 2017. Planar optical nanoantennas resolve cholesterol-dependent nanoscale heterogeneities in the plasma membrane of living cells. Nano Lett 17:106295–302
    [Google Scholar]
  109. 109.
    Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SGF, Thian FS et al. 2007. GPCR engineering yields high-resolution structural insights into 2-adrenergic receptor function. Science 318:58541266–73
    [Google Scholar]
  110. 110.
    Ruprecht JJ, Mielke T, Vogel R, Villa C, Schertler GF. 2004. Electron crystallography reveals the structure of metarhodopsin I. EMBO J 23:183609–20
    [Google Scholar]
  111. 111.
    Šachl R, Johansson LB-Å, Hof M. 2012. Förster resonance energy transfer (FRET) between heterogeneously distributed probes: application to lipid nanodomains and pores. Int. J. Mol. Sci. 13:1216141–56
    [Google Scholar]
  112. 112.
    Sanchez SA, Tricerri MA, Gunther G, Gratton E 2007. Laurdan generalized polarization: from cuvette to microscope. Modern Research and Educational Topics in Microscopy, Vol. 2 A Méndez-Vilas, J Diaz 1007–14 Badajoz, Spain: Formatex
    [Google Scholar]
  113. 113.
    Sarkis J, Vié V. 2020. Biomimetic models to investigate membrane biophysics affecting lipid-protein interaction. Front. Bioeng. Biotechnol. 8:270
    [Google Scholar]
  114. 114.
    Schneider F, Waithe D, Galiani S, Bernardino de la Serna J, Sezgin E, Eggeling C 2018. Nanoscale spatiotemporal diffusion modes measured by simultaneous confocal and stimulated emission depletion nanoscopy imaging. Nano Lett 18:74233–40
    [Google Scholar]
  115. 115.
    Schuck S, Honsho M, Ekroos K, Shevchenko A, Simons K. 2003. Resistance of cell membranes to different detergents. PNAS 100:105795–800
    [Google Scholar]
  116. 116.
    Sengupta D, Chattopadhyay A. 2012. Identification of cholesterol binding sites in the serotonin1A receptor. J. Phys. Chem. B 116:4312991–96
    [Google Scholar]
  117. 117.
    Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L et al. 2020. Improved protein structure prediction using potentials from deep learning. Nature 577:7792706–10
    [Google Scholar]
  118. 118.
    Sezgin E, Azbazdar Y, Ng XW, Teh C, Simons K et al. 2017. Binding of canonical Wnt ligands to their receptor complexes occurs in ordered plasma membrane environments. FEBS J 284:152513–26
    [Google Scholar]
  119. 119.
    Sezgin E, Levental I, Grzybek M, Schwarzmann G, Mueller V et al. 2012. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes. Biochim. Biophys. Acta Biomembr. 1818:71777–84
    [Google Scholar]
  120. 120.
    Sezgin E, Levental I, Mayor S, Eggeling C 2017. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18:6361–74
    [Google Scholar]
  121. 121.
    Sezgin E, Schneider F, Galiani S, Urbančič I, Waithe D et al. 2019. Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED-FCS. Nat. Protoc. 14:41054–83
    [Google Scholar]
  122. 122.
    Sharma P, Varma R, Sarasij RC, Gousset K, Krishnamoorthy G et al. 2004. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:4577–89
    [Google Scholar]
  123. 123.
    Shrivastava S, Jafurulla M, Tiwari S, Chattopadhyay A 2018. Identification of sphingolipid-binding motif in G protein-coupled receptors. Biochemical and Biophysical Roles of Cell Surface Molecules K Chattopadhyay, SC Basu 141–49 Berlin: Springer
    [Google Scholar]
  124. 124.
    Simcock PW, Bublitz M, Cipcigan F, Ryadnov MG, Crain J et al. 2021. Membrane binding of antimicrobial peptides is modulated by lipid charge modification. J. Chem. Theory Comput. 17:21218–28
    [Google Scholar]
  125. 125.
    Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387:6633569–72
    [Google Scholar]
  126. 126.
    Simons KT, Kooperberg C, Huang E, Baker D. 1997. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268:1209–25
    [Google Scholar]
  127. 127.
    Singer SJ, Nicolson GL. 1972. The fluid mosaic model of the structure of cell membranes. Science 175:4023720–31
    [Google Scholar]
  128. 128.
    Song C, de Groot BL, Sansom MSP. 2019. Lipid bilayer composition influences the activity of the antimicrobial peptide dermcidin channel. Biophys. J. 116:91658–66
    [Google Scholar]
  129. 129.
    Srinivasan R, Rose GD. 2002. Ab initio prediction of protein structure using LINUS. Proteins Struct. Funct. Bioinform. 47:4489–95
    [Google Scholar]
  130. 130.
    Stahelin RV. 2009. Lipid binding domains: more than simple lipid effectors. J. Lipid Res. 50:Suppl.S299–304
    [Google Scholar]
  131. 131.
    Stansfeld PJ, Sansom MSP. 2011. From coarse grained to atomistic: a serial multiscale approach to membrane protein simulations. J. Chem. Theory Comput. 7:41157–66
    [Google Scholar]
  132. 132.
    Steinberger T, Macháň R, Hof M. 2014. Z-scan fluorescence correlation spectroscopy as a tool for diffusion measurements in planar lipid membranes. Methods Mol. Biol. 1076:617–34
    [Google Scholar]
  133. 133.
    Steinkühler J, Sezgin E, Urbančič I, Eggeling C, Dimova R. 2019. Mechanical properties of plasma membrane vesicles correlate with lipid order, viscosity and cell density. Commun. Biol. 2:337
    [Google Scholar]
  134. 134.
    Stenmark H, Aasland R, Toh B-H, D'Arrigo A 1996. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J. Biol. Chem. 271:3924048–54
    [Google Scholar]
  135. 135.
    Suárez-Germà C, Loura LMS, Prieto M, Domènech Ò, Montero MT et al. 2012. Membrane protein-lipid selectivity: enhancing sensitivity for modeling FRET data. J. Phys. Chem. B. 116:82438–45
    [Google Scholar]
  136. 136.
    Sun D, Varlakhanova NV, Tornabene BA, Ramachandran R, Zhang P, Ford MGJ. 2020. The cryo-EM structure of the SNX-BAR Mvp1 tetramer. Nat. Commun. 11:1506
    [Google Scholar]
  137. 137.
    Sych T, Gurdap C, Wedemann L, Sezgin E 2021. How does liquid-liquid phase separation in model membranes reflect cell membrane heterogeneity?. Membranes 11:5323
    [Google Scholar]
  138. 138.
    Taghon GJ, Rowe JB, Kapolka NJ, Isom DG. 2021. Predictable cholesterol binding sites in GPCRs lack consensus motifs. Structure 29:5499–506.e3
    [Google Scholar]
  139. 139.
    Tisza MJ, Zhao W, Fuentes JSR, Prijic S, Chen X et al. 2016. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget 7:3251553–68
    [Google Scholar]
  140. 140.
    Tittel J, Welz T, Czogalla A, Dietrich S, Samol-Wolf A et al. 2015. Membrane targeting of the Spir·formin actin nucleator complex requires a sequential handshake of polar interactions. J. Biol. Chem. 290:106428–44
    [Google Scholar]
  141. 141.
    Umebayashi M, Takemoto S, Reymond L, Sundukova M, Hovius R et al. 2020. Receptor-linked environment-sensitive probe monitors the local membrane environment surrounding the insulin receptor. bioRxiv 424145. https://doi.org/10.1101/2020.12.23.424145
    [Crossref]
  142. 142.
    Urbančič I, Schiffelers L, Jenkins E, Gong W, Santos AM et al. 2021. Aggregation and mobility of membrane proteins interplay with local lipid order in the plasma membrane of T cells. FEBS Lett 595:162127–46
    [Google Scholar]
  143. 143.
    Veatch SL, Keller SL. 2003. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85:53074–83
    [Google Scholar]
  144. 144.
    Vitkup D, Melamud E, Moult J, Sander C. 2001. Completeness in structural genomics. Nat. Struct. Biol. 8:6559–66
    [Google Scholar]
  145. 145.
    Vitrac H, MacLean DM, Jayaraman V, Bogdanov M, Dowhan W. 2015. Dynamic membrane protein topological switching upon changes in phospholipid environment. PNAS 112:4513874–79
    [Google Scholar]
  146. 146.
    Wawrezinieck L, Rigneault H, Marguet D, Lenne P-F. 2005. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J. 89:64029–42
    [Google Scholar]
  147. 147.
    Westerlund AM, Fleetwood O, Pérez-Conesa S, Delemotte L. 2020. Network analysis reveals how lipids and other cofactors influence membrane protein allostery. J. Chem. Phys. 153:14141103
    [Google Scholar]
  148. 148.
    Xu F, Liu W, Hanson MA, Stevens RC, Cherezov V. 2011. Development of an automated high throughput LCP-FRAP assay to guide membrane protein crystallization in lipid mesophases. Crystal Growth Des 11:41193–201
    [Google Scholar]
  149. 149.
    Xu P, Huang S, Zhang H, Mao C, Zhou XE et al. 2021. Structural insights into the lipid and ligand regulation of serotonin receptors. Nature 592:7854469–73
    [Google Scholar]
  150. 150.
    Yamamoto E, Akimoto T, Kalli AC, Yasuoka K, Sansom MSP 2017. Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity. Sci. Adv. 3:e1601871
    [Google Scholar]
  151. 151.
    Yang J, Gong Z, Lu Y-B, Xu C-J, Wei T-F et al. 2020. FLIM-FRET-based structural characterization of a class-A GPCR dimer in the cell membrane. J. Mol. Biol. 432:164596–611
    [Google Scholar]
  152. 152.
    Yen H-Y, Hoi KK, Liko I, Hedger G, Horrell MR et al. 2018. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling. Nature 559:7714423–27
    [Google Scholar]
  153. 153.
    Zhang M, Gui M, Wang Z-F, Gorgulla C, Yu JJ et al. 2021. Cryo-EM structure of an activated GPCR-G protein complex in lipid nanodiscs. Nat. Struct. Mol. Biol. 28:3258–67
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-090721-072718
Loading
/content/journals/10.1146/annurev-biophys-090721-072718
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error