1932

Abstract

Allosteric function is a critical component of many of the parts used to construct gene networks throughout synthetic biology. In this review, we discuss an emerging field of research and education, biomolecular systems engineering, that expands on the synthetic biology edifice—integrating workflows and strategies from protein engineering, chemical engineering, electrical engineering, and computer science principles. We focus on the role of engineered allosteric communication as it relates to transcriptional gene regulators—i.e., transcription factors and corresponding unit operations. In this review, we () explore allosteric communication in the lactose repressor LacI topology, () demonstrate how to leverage this understanding of allostery in the LacI system to engineer non-natural BUFFER and NOT logical operations, () illustrate how engineering workflows can be used to confer alternate allosteric functions in disparate systems that share the LacI topology, and () demonstrate how fundamental unit operations can be directed to form combinational logical operations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-090820-101708
2021-05-06
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-090820-101708.html?itemId=/content/journals/10.1146/annurev-biophys-090820-101708&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahmed MH, Ghatge MS, Safo MK. 2020. Hemoglobin: structure, function and allostery. Subcell Biochem 94:345–82
    [Google Scholar]
  2. 2. 
    Alon U. 2007. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8:450–61
    [Google Scholar]
  3. 3. 
    Aoki SK, Lillacci G, Gupta A, Baumschlager A, Schweingruber D, Khammash M. 2019. A universal biomolecular integral feedback controller for robust perfect adaptation. Nature 570:533–37
    [Google Scholar]
  4. 4. 
    Bell CE, Lewis M. 2000. A closer view of the conformation of the Lac repressor bound to operator. Nat. Struct. Biol. 7:209–14
    [Google Scholar]
  5. 5. 
    Cameron DE, Bashor CJ, Collins JJ. 2014. A brief history of synthetic biology. Nat. Rev. Microbiol. 12:381–90
    [Google Scholar]
  6. 6. 
    Chan CTY, Lee JW, Cameron DE, Bashor CJ, Collins JJ. 2016.. “ Deadman” and “Passcode” microbial kill switches for bacterial containment. Nat. Chem. Biol. 12:82–86
    [Google Scholar]
  7. 7. 
    Chen J, Matthews KS. 1994. Subunit dissociation affects DNA binding in a dimeric lac repressor produced by C-terminal deletion. Biochemistry 33:8728–35
    [Google Scholar]
  8. 8. 
    Chen J, Surendran R, Lee JC, Matthews KS. 1994. Construction of a dimeric repressor: dissection of subunit interfaces in Lac repressor. Biochemistry 33:1234–41
    [Google Scholar]
  9. 9. 
    Chen Y, Ho JML, Shis DL, Gupta C, Long J et al. 2018. Tuning the dynamic range of bacterial promoters regulated by ligand-inducible transcription factors. Nat. Commun. 9:64
    [Google Scholar]
  10. 10. 
    Choi KR, Jang WD, Yang D, Cho JS, Park D, Lee SY 2019. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol 37:817–37
    [Google Scholar]
  11. 11. 
    Courtney TM, Deiters A. 2019. Enzyme allostery: now controllable by light. Cell Chem. Biol. 26:1481–83
    [Google Scholar]
  12. 12. 
    Coyote-Maestas W, He Y, Myers CL, Schmidt D. 2019. Domain insertion permissibility-guided engineering of allostery in ion channels. Nat. Commun. 10:290
    [Google Scholar]
  13. 13. 
    Daber R, Lewis M. 2009. A novel molecular switch. J. Mol. Biol. 391:661–70
    [Google Scholar]
  14. 14. 
    Daber R, Sharp K, Lewis M. 2009. One is not enough. J. Mol. Biol. 392:1133–44
    [Google Scholar]
  15. 15. 
    Daber R, Stayrook S, Rosenberg A, Lewis M. 2007. Structural analysis of lac repressor bound to allosteric effectors. J. Mol. Biol. 370:609–19
    [Google Scholar]
  16. 16. 
    Dahiyat BI, Mayo SL. 1997. De novo protein design: fully automated sequence selection. Science 278:82–87
    [Google Scholar]
  17. 17. 
    Elowitz MB, Leibler S. 2000. A synthetic oscillatory network of transcriptional regulators. Nature 403:335–38
    [Google Scholar]
  18. 18. 
    Flynn TC, Swint-Kruse L, Kong Y, Booth C, Matthews KS, Ma J. 2003. Allosteric transition pathways in the lactose repressor protein core domains: asymmetric motions in a homodimer. Protein Sci 12:2523–41
    [Google Scholar]
  19. 19. 
    Friedman AM, Fischmann TO, Steitz TA. 1995. Crystal structure of lac repressor core tetramer and its implications for DNA looping. Science 268:1721–27
    [Google Scholar]
  20. 20. 
    Gordley RM, Bugaj LJ, Lim WA. 2016. Modular engineering of cellular signaling proteins and networks. Curr. Opin. Struct. Biol. 39:106–14
    [Google Scholar]
  21. 21. 
    Groseclose TM, Rondon RE, Herde ZD, Aldrete CA, Wilson CJ. 2020. Engineered systems of inducible anti-repressors for the next generation of biological programming. Nat. Commun. 11:4440
    [Google Scholar]
  22. 22. 
    Guet CC, Elowitz MB, Hsing W, Leibler S. 2002. Combinatorial synthesis of genetic networks. Science 296:1466–70
    [Google Scholar]
  23. 23. 
    Hasty J, Dolnik M, Rottschäfer V, Collins JJ. 2002. Synthetic gene network for entraining and amplifying cellular oscillations. Phys. Rev. Lett. 88:148101
    [Google Scholar]
  24. 24. 
    Hooshangi S, Thiberge S, Weiss R. 2005. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. PNAS 102:3581–86
    [Google Scholar]
  25. 25. 
    Howell SC, Inampudi KK, Bean DP, Wilson CJ. 2014. Understanding thermal adaptation of enzymes through the multistate rational design and stability prediction of 100 adenylate kinases. Structure 22:218–29
    [Google Scholar]
  26. 26. 
    Huang PS, Boyken SE, Baker D. 2016. The coming of age of de novo protein design. Nature 537:320–27
    [Google Scholar]
  27. 27. 
    Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J et al. 2009. Measuring the activity of BioBrick promoters using an in vivo reference standard. J. Biol. Eng. 3:4
    [Google Scholar]
  28. 28. 
    Khalil AS, Collins JJ. 2010. Synthetic biology: applications come of age. Nat. Rev. Genet. 11:367–79
    [Google Scholar]
  29. 29. 
    Lee J, Natarajan M, Nashine VC, Socolich M, Vo T et al. 2008. Surface sites for engineering allosteric control in proteins. Science 322:438–42
    [Google Scholar]
  30. 30. 
    Lewis M, Chang G, Horton NC, Kercher MA, Pace HC et al. 1996. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271:1247–54
    [Google Scholar]
  31. 31. 
    Lim WA. 2010. Designing customized cell signalling circuits. Nat. Rev. Mol. Cell Biol. 11:393–403
    [Google Scholar]
  32. 32. 
    Lim WA, June CH. 2017. The principles of engineering immune cells to treat cancer. Cell 168:724–40
    [Google Scholar]
  33. 33. 
    Lockless SW, Ranganathan R. 1999. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286:295–99
    [Google Scholar]
  34. 34. 
    Ma CW, Xiu ZL, Zeng AP. 2015. Exploring signal transduction in heteromultimeric protein based on energy dissipation model. J. Biomol. Struct. Dyn. 33:134–46
    [Google Scholar]
  35. 35. 
    Meinhardt S, Manley MW Jr., Becker NA, Hessman JA, Maher LJ 3rd, Swint-Kruse L 2012. Novel insights from hybrid LacI/GalR proteins: family-wide functional attributes and biologically significant variation in transcription repression. Nucleic Acids Res 40:11139–54
    [Google Scholar]
  36. 36. 
    Meyer S, Ramot R, Kishore Inampudi K, Luo B, Lin C et al. 2013. Engineering alternate cooperative-communications in the lactose repressor protein scaffold. Protein Eng. Des. Sel. 26:433–43
    [Google Scholar]
  37. 37. 
    Michalodimitrakis K, Isalan M. 2009. Engineering prokaryotic gene circuits. FEMS Microbiol. Rev. 33:27–37
    [Google Scholar]
  38. 38. 
    Milk L, Daber R, Lewis M 2010. Functional rules for lac repressor–operator associations and implications for protein–DNA interactions. Protein Sci 19:1162–72
    [Google Scholar]
  39. 39. 
    Miller JP, Melicher MS, Schepartz A. 2014. Positive allostery in metal ion binding by a cooperatively folded β-peptide bundle. J. Am. Chem. Soc. 136:14726–29
    [Google Scholar]
  40. 40. 
    Monod J, Changeux JP, Jacob F 1963. Allosteric proteins and cellular control systems. J. Mol. Biol. 6:306–29
    [Google Scholar]
  41. 41. 
    Monod J, Wyman J, Changeux JP. 1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12:88–118
    [Google Scholar]
  42. 42. 
    Motlagh HN, Wrabl JO, Li J, Hilser VJ. 2014. The ensemble nature of allostery. Nature 508:331–39
    [Google Scholar]
  43. 43. 
    Mukhopadhyay A, Redding AM, Rutherford BJ, Keasling JD. 2008. Importance of systems biology in engineering microbes for biofuel production. Curr. Opin. Biotechnol. 19:228–34
    [Google Scholar]
  44. 44. 
    Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V et al. 2016. Genetic circuit design automation. Science 352:aac7341
    [Google Scholar]
  45. 45. 
    Nielsen J, Keasling JD. 2016. Engineering cellular metabolism. Cell 164:1185–97
    [Google Scholar]
  46. 46. 
    Nussinov R, Tsai CJ, Xin F, Radivojac P. 2012. Allosteric post-translational modification codes. Trends Biochem. Sci. 37:447–55
    [Google Scholar]
  47. 47. 
    Poelwijk FJ, de Vos MGJ, Tans SJ. 2011. Tradeoffs and optimality in the evolution of gene regulation. Cell 146:462–70
    [Google Scholar]
  48. 48. 
    Popovych N, Sun S, Ebright RH, Kalodimos CG. 2006. Dynamically driven protein allostery. Nat. Struct. Mol. Biol. 13:831–38
    [Google Scholar]
  49. 49. 
    Purnick PE, Weiss R. 2009. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10:410–22
    [Google Scholar]
  50. 50. 
    Raman AS, White KI, Ranganathan R. 2016. Origins of allostery and evolvability in proteins: a case study. Cell 166:468–80
    [Google Scholar]
  51. 51. 
    Richards DH, Meyer S, Wilson CJ. 2017. Fourteen ways to reroute cooperative communications in the lactose repressor: engineering regulatory proteins with alternate repressive functions. ACS Synth. Biol. 6:6–12
    [Google Scholar]
  52. 52. 
    Rondon RE, Groseclose TM, Short AE, Wilson CJ. 2019. Transcriptional programming using engineered systems of transcription factors and genetic architectures. Nat. Commun. 10:4784
    [Google Scholar]
  53. 53. 
    Rondon RE, Wilson CJ. 2019. Engineering a new class of anti-LacI transcription factors with alternate DNA recognition. ACS Synth. Biol. 8:307–17
    [Google Scholar]
  54. 54. 
    Saibil HR, Fenton WA, Clare DK, Horwich AL. 2013. Structure and allostery of the chaperonin GroEL. J. Mol. Biol. 425:1476–87
    [Google Scholar]
  55. 55. 
    Sartorius J, Lehming N, Kisters B, von Wilcken-Bergmann B, Müller-Hill B. 1989. lac repressor mutants with double or triple exchanges in the recognition helix bind specifically to lac operator variants with multiple exchanges. EMBO J 8:1265–70
    [Google Scholar]
  56. 56. 
    Shis DL, Hussain F, Meinhardt S, Swint-Kruse L, Bennett MR. 2014. Modular, multi-input transcriptional logic gating with orthogonal LacI/GalR family chimeras. ACS Synth. Biol. 3:645–51
    [Google Scholar]
  57. 57. 
    Siuti P, Yazbek J, Lu TK. 2013. Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol. 31:448–52
    [Google Scholar]
  58. 58. 
    Sousa FL, Parente DJ, Shis DL, Hessman JA, Chazelle A et al. 2016. AlloRep: a repository of sequence, structural and mutagenesis data for the LacI/GalR transcription regulators. J. Mol. Biol. 428:671–78
    [Google Scholar]
  59. 59. 
    Stock G, Hamm P. 2018. A non-equilibrium approach to allosteric communication. Phil. Trans. R. Soc. Lond. B 373:0187
    [Google Scholar]
  60. 60. 
    Suckow J, Markiewicz P, Kleina LG, Miller J, Kisters-Woike B, Müller-Hill B. 1996. Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J. Mol. Biol. 261:509–23
    [Google Scholar]
  61. 61. 
    Süel GM, Lockless SW, Wall MA, Ranganathan R. 2003. Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat. Struct. Biol. 10:59–69
    [Google Scholar]
  62. 62. 
    Swint-Kruse L, Matthews KS. 2009. Allostery in the LacI/GalR family: variations on a theme. Curr. Opin. Microbiol. 12:129–37
    [Google Scholar]
  63. 63. 
    Tamsir A, Tabor JJ, Voigt CA. 2011. Robust multicellular computing using genetically encoded NOR gates and chemical “wires. .” Nature 469:212–15
    [Google Scholar]
  64. 64. 
    Taylor ND, Garruss AS, Moretti R, Chan S, Arbing MA et al. 2016. Engineering an allosteric transcription factor to respond to new ligands. Nat. Methods 13:177–83
    [Google Scholar]
  65. 65. 
    Tobin PH, Richards DH, Callender RA, Wilson CJ. 2014. Protein engineering: a new frontier for biological therapeutics. Curr. Drug Metab. 15:743–56
    [Google Scholar]
  66. 66. 
    Voigt CA. 2006. Genetic parts to program bacteria. Curr. Opin. Biotechnol. 17:548–57
    [Google Scholar]
  67. 67. 
    Wehrs M, Tanjore D, Eng T, Lievense J, Pray TR, Mukhopadhyay A. 2019. Engineering robust production microbes for large-scale cultivation. Trends Microbiol 27:524–37
    [Google Scholar]
  68. 68. 
    Wilson CJ, Das P, Clementi C, Matthews KS, Wittung-Stafshede P 2005. The experimental folding landscape of monomeric lactose repressor, a large two-domain protein, involves two kinetic intermediates. PNAS 102:14563–68
    [Google Scholar]
  69. 69. 
    Wilson CJ, Zhan H, Swint-Kruse L, Matthews KS. 2007. The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding. Cell Mol. Life Sci. 64:3–16
    [Google Scholar]
  70. 70. 
    Wilson CJ, Zhan H, Swint-Kruse L, Matthews KS. 2007. Ligand interactions with lactose repressor protein and the repressor–operator complex: the effects of ionization and oligomerization on binding. Biophys. Chem. 126:94–105
    [Google Scholar]
  71. 71. 
    Wodak SJ, Paci E, Dokholyan NV, Berezovsky IN, Horovitz A et al. 2019. Allostery in its many disguises: from theory to applications. Structure 27:566–78
    [Google Scholar]
  72. 72. 
    Woolston BM, Edgar S, Stephanopoulos G. 2013. Metabolic engineering: past and future. Annu. Rev. Chem. Biomol. Eng. 4:259–88
    [Google Scholar]
  73. 73. 
    Wright PE, Dyson HJ. 2015. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16:18–29
    [Google Scholar]
  74. 74. 
    Zhan J, Ding B, Ma R, Ma X, Su X et al. 2010. Develop reusable and combinable designs for transcriptional logic gates. Mol. Syst. Biol. 6:388
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-090820-101708
Loading
/content/journals/10.1146/annurev-biophys-090820-101708
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error