1932

Abstract

Rapid flip-flop of phospholipids across the two leaflets of biological membranes is crucial for many aspects of cellular life. The transport proteins that facilitate this process are classified as pump-like flippases and floppases and channel-like scramblases. Unexpectedly, Class A G protein–coupled receptors (GPCRs), a large class of signaling proteins exemplified by the visual receptor rhodopsin and its apoprotein opsin, are constitutively active as scramblases in vitro. In liposomes, opsin scrambles lipids at a unitary rate of >100,000 per second. Atomistic molecular dynamics simulations of opsin in a lipid membrane reveal conformational transitions that expose a polar groove between transmembrane helices 6 and 7. This groove enables transbilayer lipid movement, conceptualized as the swiping of a credit card (lipid) through a card reader (GPCR). Conformational changes that facilitate scrambling are distinct from those associated with GPCR signaling. In this review, we discuss the physiological significance of GPCR scramblase activity and the modes of its regulation in cells.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-090821-083030
2022-05-09
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/biophys/51/1/annurev-biophys-090821-083030.html?itemId=/content/journals/10.1146/annurev-biophys-090821-083030&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alvadia C, Lim NK, Clerico Mosina V, Oostergetel GT, Dutzler R, Paulino C 2019. Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F. eLife 8:e44365
    [Google Scholar]
  2. 2.
    Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Molday RS. 2016. P4-ATPases as phospholipid flippases: structure, function, and enigmas. Front. Physiol. 7:275
    [Google Scholar]
  3. 3.
    Atwood BK, Lopez J, Wager-Miller J, Mackie K, Straiker A. 2011. Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genom 12:14
    [Google Scholar]
  4. 4.
    Audet M, Stevens RC. 2019. Emerging structural biology of lipid G protein-coupled receptors. Protein Sci 28:292–304
    [Google Scholar]
  5. 5.
    Balasubramanian V, Jensen T, Turilli M, Kasson P, Shirts M, Jha S 2018. Adaptive ensemble biomolecular applications at scale. arXiv 1804.04736
    [Google Scholar]
  6. 6.
    Ballesteros JA, Weinstein H. 1995. Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G-protein coupled receptors. Methods Neurosci 25:366–428
    [Google Scholar]
  7. 7.
    Beauchamp KA, Bowman GR, Lane TJ, Maibaum L, Haque IS, Pande VS. 2011. MSMBuilder2: modeling conformational dynamics at the picosecond to millisecond scale. J. Chem. Theory Comput. 7:3412–19
    [Google Scholar]
  8. 8.
    Beauchamp KA, McGibbon R, Lin YS, Pande VS. 2012. Simple few-state models reveal hidden complexity in protein folding. PNAS 109:17807–13
    [Google Scholar]
  9. 9.
    Berezhkovskii A, Hummer G, Szabo A. 2009. Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J. Chem. Phys. 130:205102
    [Google Scholar]
  10. 10.
    Bethel NP, Grabe M. 2016. Atomistic insight into lipid translocation by a TMEM16 scramblase. PNAS 113:14049–54
    [Google Scholar]
  11. 11.
    Bevers EM, Williamson PL. 2016. Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane. Physiol. Rev. 96:605–45
    [Google Scholar]
  12. 12.
    Boesze-Battaglia K, Albert AD. 1990. Cholesterol modulation of photoreceptor function in bovine retinal rod outer segments. J. Biol. Chem. 265:20727–30
    [Google Scholar]
  13. 13.
    Boesze-Battaglia K, Fliesler SJ, Albert AD. 1990. Relationship of cholesterol content to spatial distribution and age of disc membranes in retinal rod outer segments. J. Biol. Chem. 265:18867–70
    [Google Scholar]
  14. 14.
    Bowman GR, Pande VS, Noe F. 2014. An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation Berlin: Springer
  15. 15.
    Brunner JD, Lim NK, Schenck S, Duerst A, Dutzler R 2014. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516:207–12
    [Google Scholar]
  16. 16.
    Burger K, Gimpl G, Fahrenholz F. 2000. Regulation of receptor function by cholesterol. Cell Mol. Life Sci. 57:1577–92
    [Google Scholar]
  17. 17.
    Bushell SR, Pike ACW, Falzone ME, Rorsman NJG, Ta CM et al. 2019. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nat. Commun. 10:3956
    [Google Scholar]
  18. 18.
    Chang QL, Gummadi SN, Menon AK. 2004. Chemical modification identifies two populations of glycerophospholipid flippase in rat liver ER. Biochemistry 43:10710–18
    [Google Scholar]
  19. 19.
    Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS et al. 2007. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–65
    [Google Scholar]
  20. 20.
    Cliff L, Chadda R, Robertson JL 2020. Occupancy distributions of membrane proteins in heterogeneous liposome populations. Biochim. Biophys. Acta Biomembr. 1862:183033
    [Google Scholar]
  21. 21.
    Coleman JA, Kwok MC, Molday RS. 2009. Localization, purification, and functional reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine flippase in photoreceptor disc membranes. J. Biol. Chem. 284:32670–79
    [Google Scholar]
  22. 22.
    Comar WD, Schubert SM, Jastrzebska B, Palczewski K, Smith AW 2014. Time-resolved fluorescence spectroscopy measures clustering and mobility of a G protein-coupled receptor opsin in live cell membranes. J. Am. Chem. Soc. 136:8342–49
    [Google Scholar]
  23. 23.
    Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY et al. 2019. Emerging diversity in lipid-protein interactions. Chem. Rev. 119:5775–848
    [Google Scholar]
  24. 24.
    Daleke DL, Huestis WH. 1985. Incorporation and translocation of aminophospholipids in human erythrocytes. Biochemistry 24:5406–16
    [Google Scholar]
  25. 25.
    Deuflhard P, Weber M. 2005. Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl 398:161–84
    [Google Scholar]
  26. 26.
    Deupi X, Edwards P, Singhal A, Nickle B, Oprian D et al. 2012. Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. PNAS 109:119–24
    [Google Scholar]
  27. 27.
    Dijkstra EW. 1959. A note on two problems in connexion with graphs. Numer. Math. 1:269–71
    [Google Scholar]
  28. 28.
    Erlandson SC, McMahon C, Kruse AC. 2018. Structural basis for G protein-coupled receptor signaling. Annu. Rev. Biophys. 47:1–18
    [Google Scholar]
  29. 29.
    Ernst OP, Gramse V, Kolbe M, Hofmann KP, Heck M. 2007. Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. PNAS 104:10859–64
    [Google Scholar]
  30. 30.
    Ernst OP, Menon AK. 2015. Phospholipid scrambling by rhodopsin. Photochem. Photobiol. Sci. 14:1922–31
    [Google Scholar]
  31. 31.
    Ghanbarpour A, Valverde DP, Melia TJ, Reinisch KM 2021. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. PNAS 118:e2101562118
    [Google Scholar]
  32. 32.
    Goren MA, Morizumi T, Menon I, Joseph JS, Dittman JS et al. 2014. Constitutive phospholipid scramblase activity of a G protein-coupled receptor. Nat. Commun. 5:5115
    [Google Scholar]
  33. 33.
    Gregorio GG, Masureel M, Hilger D, Terry DS, Juette M et al. 2017. Single-molecule analysis of ligand efficacy in β2-AR–G-protein activation. Nature 547:68–73
    [Google Scholar]
  34. 34.
    Guixa-Gonzalez R, Albasanz JL, Rodriguez-Espigares I, Pastor M, Sanz F et al. 2017. Membrane cholesterol access into a G-protein-coupled receptor. Nat. Commun. 8:14505
    [Google Scholar]
  35. 35.
    Han DS, Wang SX, Weinstein H 2008. Active state-like conformational elements in the beta2-AR and a photoactivated intermediate of rhodopsin identified by dynamic properties of GPCRs. Biochemistry 47:7317–21
    [Google Scholar]
  36. 36.
    Han M, Smith SO, Sakmar TP. 1998. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. Biochemistry 37:8253–61
    [Google Scholar]
  37. 37.
    Hankins HM, Baldridge RD, Xu P, Graham TR. 2015. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 16:35–47
    [Google Scholar]
  38. 38.
    Hessel E, Herrmann A, Muller P, Schnetkamp PP, Hofmann KP. 2000. The transbilayer distribution of phospholipids in disc membranes is a dynamic equilibrium evidence for rapid flip and flop movement. Eur. J. Biochem. 267:1473–83
    [Google Scholar]
  39. 39.
    Hessel E, Muller P, Herrmann A, Hofmann KP 2001. Light-induced reorganization of phospholipids in rod disc membranes. J. Biol. Chem. 276:2538–43
    [Google Scholar]
  40. 40.
    Hilger D, Masureel M, Kobilka BK. 2018. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25:4–12
    [Google Scholar]
  41. 41.
    Huang D, Xu B, Liu L, Wu L, Zhu Y et al. 2021. TMEM41B acts as an ER scramblase required for lipoprotein biogenesis and lipid homeostasis. Cell Metab 33:1655–70.e8
    [Google Scholar]
  42. 42.
    Hurst DP, Grossfield A, Lynch DL, Feller S, Romo TD et al. 2010. A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor. J. Biol. Chem. 285:17954–64
    [Google Scholar]
  43. 43.
    Janssen MJ, Koorengevel MC, de Kruijff B, de Kroon AI. 1999. Transbilayer movement of phosphatidylcholine in the mitochondrial outer membrane of Saccharomyces cerevisiae is rapid and bidirectional. Biochim. Biophys. Acta 1421:64–76
    [Google Scholar]
  44. 44.
    Jastrzebska B, Chen Y, Orban T, Jin H, Hofmann L, Palczewski K 2015. Disruption of rhodopsin dimerization with synthetic peptides targeting an interaction interface. J. Biol. Chem. 290:25728–44
    [Google Scholar]
  45. 45.
    Jastrzebska B, Maeda T, Zhu L, Fotiadis D, Filipek S et al. 2004. Functional characterization of rhodopsin monomers and dimers in detergents. J. Biol. Chem. 279:54663–75
    [Google Scholar]
  46. 46.
    Jiang T, Wen PC, Trebesch N, Zhao Z, Pant S et al. 2020. Computational dissection of membrane transport at a microscopic level. Trends Biochem. Sci. 45:202–16
    [Google Scholar]
  47. 47.
    Jiang T, Yu K, Hartzell HC, Tajkhorshid E 2017. Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase. eLife 6:e28671
    [Google Scholar]
  48. 48.
    Kalienkova V, Clerico Mosina V, Paulino C 2021. The groovy TMEM16 family: molecular mechanisms of lipid scrambling and ion conduction. J. Mol. Biol. 433:166941
    [Google Scholar]
  49. 49.
    Kasson PM, Jha S. 2018. Adaptive ensemble simulations of biomolecules. Curr. Opin. Struct. Biol. 52:87–94
    [Google Scholar]
  50. 50.
    Katritch V, Cherezov V, Stevens RC 2013. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53:531–56
    [Google Scholar]
  51. 51.
    Khelashvili G, Cheng X, Falzone ME, Doktorova M, Accardi A, Weinstein H 2020. Membrane lipids are both the substrates and a mechanistically responsive environment of TMEM16 scramblase proteins. J. Comput. Chem. 41:538–51
    [Google Scholar]
  52. 52.
    Khelashvili G, Falzone ME, Cheng X, Lee BC, Accardi A, Weinstein H 2019. Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca2+-bound nhTMEM16. Nat. Commun. 10:4972
    [Google Scholar]
  53. 53.
    Khelashvili G, Pillai AN, Lee J, Pandey K, Payne AM et al. 2021. Unusual mode of dimerization of retinitis pigmentosa-associated F220C rhodopsin. Sci. Rep. 11:10536
    [Google Scholar]
  54. 54.
    Kobayashi T, Menon AK. 2018. Transbilayer lipid asymmetry. Curr. Biol. 28:R386–91
    [Google Scholar]
  55. 55.
    Kohlhoff KJ, Shukla D, Lawrenz M, Bowman GR, Konerding DE et al. 2014. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nat. Chem. 6:15–21
    [Google Scholar]
  56. 56.
    Kornberg RD, McConnell HM. 1971. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 10:1111–20
    [Google Scholar]
  57. 57.
    Lee BC, Khelashvili G, Falzone M, Menon AK, Weinstein H, Accardi A. 2018. Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase. Nat. Commun. 9:3251
    [Google Scholar]
  58. 58.
    Lee JY, Lyman E. 2012. Predictions for cholesterol interaction sites on the A2A adenosine receptor. J. Am. Chem. Soc. 134:16512–15
    [Google Scholar]
  59. 59.
    Li YE, Wang Y, Du X, Zhang T, Mak HY et al. 2021. TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. J. Cell. Biol. 220:e202103105
    [Google Scholar]
  60. 60.
    Liu F, Lee J, Chen J 2021. Molecular structures of the eukaryotic retinal importer ABCA4. eLife 10:e63524
    [Google Scholar]
  61. 61.
    Liu W, Chun E, Thompson AA, Chubukov P, Xu F et al. 2012. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–36
    [Google Scholar]
  62. 62.
    Lyons JA, Timcenko M, Dieudonne T, Lenoir G, Nissen P. 2020. P4-ATPases: how an old dog learnt new tricks—structure and mechanism of lipid flippases. Curr. Opin. Struct. Biol. 63:65–73
    [Google Scholar]
  63. 63.
    Malvezzi M, Andra KK, Pandey K, Lee BC, Falzone ME et al. 2018. Out-of-the-groove transport of lipids by TMEM16 and GPCR scramblases. PNAS 115:E7033–42
    [Google Scholar]
  64. 64.
    Malvezzi M, Chalat M, Janjusevic R, Picollo A, Terashima H et al. 2013. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat. Commun. 4:2367
    [Google Scholar]
  65. 65.
    Marrink SJ, Corradi V, Souza PCT, Ingolfsson HI, Tieleman DP, Sansom MSP. 2019. Computational modeling of realistic cell membranes. Chem. Rev. 119:6184–226
    [Google Scholar]
  66. 66.
    Menon I, Huber T, Sanyal S, Banerjee S, Barre P et al. 2011. Opsin is a phospholipid flippase. Curr. Biol. 21:149–53
    [Google Scholar]
  67. 67.
    Molgedey L, Schuster HG. 1994. Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 72:3634–37
    [Google Scholar]
  68. 68.
    Morra G, Razavi AM, Pandey K, Weinstein H, Menon AK, Khelashvili G. 2018. Mechanisms of lipid scrambling by the G protein-coupled receptor opsin. Structure 26:356–67.e3
    [Google Scholar]
  69. 69.
    Muller MP, Jiang T, Sun C, Lihan M, Pant S et al. 2019. Characterization of lipid-protein interactions and lipid-mediated modulation of membrane protein function through molecular simulation. Chem. Rev. 119:6086–161
    [Google Scholar]
  70. 70.
    Nagata S, Sakuragi T, Segawa K. 2020. Flippase and scramblase for phosphatidylserine exposure. Curr. Opin. Immunol. 62:31–38
    [Google Scholar]
  71. 71.
    Nakao H, Ikeda K, Ishihama Y, Nakano M. 2016. Membrane-spanning sequences in endoplasmic reticulum proteins promote phospholipid flip-flop. Biophys. J. 110:2689–97
    [Google Scholar]
  72. 72.
    Nakao H, Sugimoto Y, Ikeda K, Saito H, Nakano M. 2020. Structural feature of lipid scrambling model transmembrane peptides: same-side positioning of hydrophilic residues and their deeper position. J. Phys. Chem. Lett. 11:1662–67
    [Google Scholar]
  73. 73.
    Naritomi Y, Fuchigami S. 2011. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions. J. Chem. Phys. 134:065101
    [Google Scholar]
  74. 74.
    Noda NN. 2021. Atg2 and Atg9: intermembrane and interleaflet lipid transporters driving autophagy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866:158956
    [Google Scholar]
  75. 75.
    Noe F, Clementi C 2017. Collective variables for the study of long-time kinetics from molecular trajectories: theory and methods. Curr. Opin. Struct. Biol. 43:141–47
    [Google Scholar]
  76. 76.
    Noe F, Fischer S 2008. Transition networks for modeling the kinetics of conformational change in macromolecules. Curr. Opin. Struct. Biol. 18:154–62
    [Google Scholar]
  77. 77.
    Odoemelam CS, Percival B, Wallis H, Chang M-W, Ahmad Z et al. 2020. G-protein coupled receptors: structure and function in drug discovery. RSC Adv 10:36337–48
    [Google Scholar]
  78. 78.
    Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V. 2004. The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J. Mol. Biol. 342:571–83
    [Google Scholar]
  79. 79.
    Padayatti PS, Lee SC, Stanfield RL, Wen PC, Tajkhorshid E et al. 2019. Structural insights into the lipid A transport pathway in MsbA. Structure 27:1114–23.e3
    [Google Scholar]
  80. 80.
    Pande VS, Beauchamp K, Bowman GR. 2010. Everything you wanted to know about Markov state models but were afraid to ask. Methods 52:99–105
    [Google Scholar]
  81. 81.
    Pandey K, Ploier B, Goren MA, Levitz J, Khelashvili G, Menon AK. 2017. An engineered opsin monomer scrambles phospholipids. Sci. Rep. 7:16741
    [Google Scholar]
  82. 82.
    Park JH, Morizumi T, Li Y, Hong JE, Pai EF et al. 2013. Opsin, a structural model for olfactory receptors?. Angew. Chem. Int. Ed. Engl. 52:11021–24
    [Google Scholar]
  83. 83.
    Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP. 2008. Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183–87
    [Google Scholar]
  84. 84.
    Perez A, Martinez-Rosell G, De Fabritiis G. 2018. Simulations meet machine learning in structural biology. Curr. Opin. Struct. Biol. 49:139–44
    [Google Scholar]
  85. 85.
    Perez-Hernandez G, Paul F, Giorgino T, De Fabritiis G, Noe F. 2013. Identification of slow molecular order parameters for Markov model construction. J. Chem. Phys. 139:015102
    [Google Scholar]
  86. 86.
    Pinamonti G, Zhao J, Condon DE, Paul F, Noe F et al. 2017. Predicting the kinetics of RNA oligonucleotides using Markov state models. J. Chem. Theory Comput. 13:926–34
    [Google Scholar]
  87. 87.
    Plattner N, Doerr S, De Fabritiis G, Noe F. 2017. Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling. Nat. Chem. 9:1005–11
    [Google Scholar]
  88. 88.
    Ploier B, Caro LN, Morizumi T, Pandey K, Pearring JN et al. 2016. Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants. Nat. Commun. 7:12832
    [Google Scholar]
  89. 89.
    Ploier B, Menon AK. 2016. A fluorescence-based assay of phospholipid scramblase activity. J. Vis. Exp. 20:54635
    [Google Scholar]
  90. 90.
    Pomorski T, Menon AK. 2006. Lipid flippases and their biological functions. Cell Mol. Life Sci. 63:2908–21
    [Google Scholar]
  91. 91.
    Pomorski TG, Menon AK. 2016. Lipid somersaults: uncovering the mechanisms of protein-mediated lipid flipping. Prog. Lipid Res. 64:69–84
    [Google Scholar]
  92. 92.
    Prinz JH, Wu H, Sarich M, Keller B, Senne M et al. 2011. Markov models of molecular kinetics: generation and validation. J. Chem. Phys. 134:174105
    [Google Scholar]
  93. 93.
    Pucadyil TJ, Chattopadhyay A. 2006. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog. Lipid Res. 45:295–333
    [Google Scholar]
  94. 94.
    Quast RB, Margeat E. 2019. Studying GPCR conformational dynamics by single molecule fluorescence. Mol. Cell Endocrinol. 493:110469
    [Google Scholar]
  95. 95.
    Quazi F, Lenevich S, Molday RS 2012. ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer. Nat. Commun. 3:925
    [Google Scholar]
  96. 96.
    Quazi F, Molday RS. 2014. ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal. PNAS 111:5024–29
    [Google Scholar]
  97. 97.
    Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY et al. 2011. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–55
    [Google Scholar]
  98. 98.
    Razavi AM, Khelashvili G, Weinstein H. 2017. A Markov state-based quantitative kinetic model of sodium release from the dopamine transporter. Sci. Rep. 7:40076
    [Google Scholar]
  99. 99.
    Razavi AM, Khelashvili G, Weinstein H. 2018. How structural elements evolving from bacterial to human SLC6 transporters enabled new functional properties. BMC Biol 16:31
    [Google Scholar]
  100. 100.
    Roth CB, Hanson MA, Stevens RC 2008. Stabilization of the human beta2-adrenergic receptor TM4-TM3-TM5 helix interface by mutagenesis of Glu1223.41, a critical residue in GPCR structure. J. Mol. Biol. 376:1305–19
    [Google Scholar]
  101. 101.
    Rothman JE, Tsai DK, Dawidowicz EA, Lenard J 1976. Transbilayer phospholipid asymmetry and its maintenance in the membrane of influenza virus. Biochemistry 15:2361–70
    [Google Scholar]
  102. 102.
    Sanyal S, Menon AK. 2009. Flipping lipids: why an' what's the reason for?. ACS Chem. Biol. 4:895–909
    [Google Scholar]
  103. 103.
    Sarkar P, Chattopadhyay A. 2020. Cholesterol interaction motifs in G protein-coupled receptors: slippery hot spots?. Wiley Interdiscip. Rev. Syst. Biol. Med. 12:e1481
    [Google Scholar]
  104. 104.
    Schenk B, Fernandez F, Waechter CJ. 2001. The ins(ide) and out(side) of dolichyl phosphate biosynthesis and recycling in the endoplasmic reticulum. Glycobiology 11:61R–70R
    [Google Scholar]
  105. 105.
    Schwantes CR, Pande VS. 2013. Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9. J. Chem. Theory Comput. 9:2000–9
    [Google Scholar]
  106. 106.
    Seigneuret M, Devaux PF. 1984. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. PNAS 81:3751–55
    [Google Scholar]
  107. 107.
    Sheetz MP, Singer SJ. 1974. Biological membranes as bilayer couples: a molecular mechanism of drug-erythrocyte interactions. PNAS 71:4457–61
    [Google Scholar]
  108. 108.
    Shihoya W, Inoue K, Singh M, Konno M, Hososhima S et al. 2019. Crystal structure of heliorhodopsin. Nature 574:132–36
    [Google Scholar]
  109. 109.
    Shin HW, Takatsu H. 2020. Phosphatidylserine exposure in living cells. Crit. Rev. Biochem. Mol. Biol. 55:166–78
    [Google Scholar]
  110. 110.
    Shukla D, Meng Y, Roux B, Pande VS 2014. Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat. Commun. 5:3397
    [Google Scholar]
  111. 111.
    Shukla S, Baumgart T. 2021. Enzymatic trans-bilayer lipid transport: mechanisms, efficiencies, slippage, and membrane curvature. Biochim. Biophys. Acta Biomembr. 1863:183534
    [Google Scholar]
  112. 112.
    Straub MS, Alvadia C, Sawicka M, Dutzler R 2021. Cryo-EM structures of the caspase-activated protein XKR9 involved in apoptotic lipid scrambling. eLife 10:e69800
    [Google Scholar]
  113. 113.
    Suzuki J, Denning DP, Imanishi E, Horvitz HR, Nagata S. 2013. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341:403–6
    [Google Scholar]
  114. 114.
    Suzuki J, Umeda M, Sims PJ, Nagata S. 2010. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–38
    [Google Scholar]
  115. 115.
    Taghon GJ, Rowe JB, Kapolka NJ, Isom DG. 2021. Predictable cholesterol binding sites in GPCRs lack consensus motifs. Structure 29:499–506.e3
    [Google Scholar]
  116. 116.
    Tang X, Halleck MS, Schlegel RA, Williamson P. 1996. A subfamily of P-type ATPases with aminophospholipid transporting activity. Science 272:1495–97
    [Google Scholar]
  117. 117.
    Vehring S, Pakkiri L, Schroer A, Alder-Baerens N, Herrmann A et al. 2007. Flip-flop of fluorescently labeled phospholipids in proteoliposomes reconstituted with Saccharomyces cerevisiae microsomal proteins. Eukaryot. Cell 6:1625–34
    [Google Scholar]
  118. 118.
    Verchere A, Cowton A, Jenni A, Rauch M, Haner R et al. 2021. Complexity of the eukaryotic dolichol-linked oligosaccharide scramblase suggested by activity correlation profiling mass spectrometry. Sci. Rep. 11:1411
    [Google Scholar]
  119. 119.
    Verchere A, Ou WL, Ploier B, Morizumi T, Goren MA et al. 2017. Light-independent phospholipid scramblase activity of bacteriorhodopsin from Halobacterium salinarum. Sci. Rep. 7:9522
    [Google Scholar]
  120. 120.
    Voelz VA, Bowman GR, Beauchamp K, Pande VS. 2010. Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1–39). J. Am. Chem. Soc. 132:1526–28
    [Google Scholar]
  121. 121.
    Wang L, Iwasaki Y, Andra KK, Pandey K, Menon AK, Butikofer P. 2018. Scrambling of natural and fluorescently tagged phosphatidylinositol by reconstituted G protein-coupled receptor and TMEM16 scramblases. J. Biol. Chem. 293:18318–27
    [Google Scholar]
  122. 122.
    Wieczorek M, Abualrous ET, Sticht J, Alvaro-Benito M, Stolzenberg S et al. 2017. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front. Immunol. 8:292
    [Google Scholar]
  123. 123.
    Wu G, Hubbell WL. 1993. Phospholipid asymmetry and transmembrane diffusion in photoreceptor disc membranes. Biochemistry 32:879–88
    [Google Scholar]
  124. 124.
    Yeliseev A, Iyer MR, Joseph TT, Coffey NJ, Cinar R et al. 2021. Cholesterol as a modulator of cannabinoid receptor CB2 signaling. Sci. Rep. 11:3706
    [Google Scholar]
  125. 125.
    Zhou Q, Yang D, Wu M, Guo Y, Guo W et al. 2019. Common activation mechanism of class A GPCRs. eLife 8:e50279
    [Google Scholar]
  126. 126.
    Zhou Z, White KA, Polissi A, Georgopoulos C, Raetz CR. 1998. Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J. Biol. Chem. 273:12466–75
    [Google Scholar]
  127. 127.
    Zuckerman DM, Chong LT. 2017. Weighted ensemble simulation: review of methodology, applications, and software. Annu. Rev. Biophys. 46:43–57
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-090821-083030
Loading
/content/journals/10.1146/annurev-biophys-090821-083030
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error