1932

Abstract

Sampling and genomic efforts over the past decade have revealed an enormous quantity and diversity of life in Earth's extreme environments. This new knowledge of life on Earth poses the challenge of understandingits molecular basis in such inhospitable conditions, given that such conditions lead to loss of structure and of function in biomolecules from mesophiles. In this review, we discuss the physicochemical properties of extreme environments. We present the state of recent progress in extreme environmental genomics. We then present an overview of our current understanding of the biomolecular adaptation to extreme conditions. As our current and future understanding of biomolecular structure–function relationships in extremophiles requires methodologies adapted to extremes of pressure, temperature, and chemical composition, advances in instrumentation for probing biophysical properties under extreme conditions are presented. Finally, we briefly discuss possible future directions in extreme biophysics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-100120-072804
2021-05-06
2024-04-22
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-100120-072804.html?itemId=/content/journals/10.1146/annurev-biophys-100120-072804&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Al-Ayoubi SR, Schummel PH, Golub M, Peters J, Winter R. 2017. Influence of cosolvents, self-crowding, temperature and pressure on the sub-nanosecond dynamics and folding stability of lysozyme. Phys. Chem. Chem. Phys. 19:14230–37
    [Google Scholar]
  2. 2. 
    Allen EE, Facciotti D, Bartlett DH. 1999. Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl. Environ. Microbiol. 65:1710–20
    [Google Scholar]
  3. 3. 
    Ando N, Chenevier P, Novak M, Tate MW, Gruner SM. 2008. High hydrostatic pressure small-angle X-ray scattering cell for protein solution studies featuring diamond windows and disposable sample cells. J. Appl. Crystallogr. 41:167–75
    [Google Scholar]
  4. 4. 
    Atalah J, Cáceres-Moreno P, Espina G, Blamey JM. 2019. Thermophiles and the applications of their enzymes as new biocatalysts. Bioresour. Technol. 280:478–88
    [Google Scholar]
  5. 5. 
    Avagyan S, Vasilchuk D, Makhatadze GI. 2020. Protein adaptation to high hydrostatic pressure: computational analysis of the structural proteome. Proteins Struct. Funct. Bioinform. 88:584–92
    [Google Scholar]
  6. 6. 
    Bagar T, Altenbach K, Read ND, Benčina M. 2009. Live-cell imaging and measurement of intracellular pH in filamentous fungi using a genetically encoded ratiometric probe. Eukaryot. Cell 8:703–12
    [Google Scholar]
  7. 7. 
    Baker-Austin C, Dopson M. 2007. Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–71
    [Google Scholar]
  8. 8. 
    Bar-On YM, Phillips R, Milo R. 2018. The biomass distribution on Earth. PNAS 115:6506–11
    [Google Scholar]
  9. 9. 
    Barstow B, Ando N, Kim CU, Gruner SM 2008. Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift. PNAS 105:13362–66
    [Google Scholar]
  10. 10. 
    Benedek G, Purcell E 1954. Nuclear magnetic resonance in liquids under high pressure. J. Chem. Phys. 22:2003–12
    [Google Scholar]
  11. 11. 
    Berezovsky IN, Chen WW, Choi PJ, Shakhnovich EI. 2005. Entropic stabilization of proteins and its proteomic consequences. PLOS Comput. Biol. 1:e47
    [Google Scholar]
  12. 12. 
    Borrel G, Adam PS, McKay LJ, Chen LX, Sierra-Garcia IN et al. 2019. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat. Microbiol. 4:603–13
    [Google Scholar]
  13. 13. 
    Bourges AC, Lazarev A, Declerck N, Rogers KL, Royer CA. 2020. Quantitative high-resolution imaging of live microbial cells at high hydrostatic pressure. Biophys. J. 118:2670–79
    [Google Scholar]
  14. 14. 
    Boyd ES, Peters JW. 2013. New insights into the evolutionary history of biological nitrogen fixation. Front. Microbiol. 4:201
    [Google Scholar]
  15. 15. 
    Brazelton WJ, Thornton CN, Hyer A, Twing KI, Longino AA et al. 2017. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy. PeerJ 5:e2945
    [Google Scholar]
  16. 16. 
    Brininger C, Spradlin S, Cobani L, Evilia C. 2018. The more adaptive to change, the more likely you are to survive: protein adaptation in extremophiles. Semin. Cell Dev. Biol. 84:158–69
    [Google Scholar]
  17. 17. 
    Brock TD, Freeze H. 1969. Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile. J. Bacteriol. 98:289–97
    [Google Scholar]
  18. 18. 
    Brooks NJ, Gauthe BL, Terrill NJ, Rogers SE, Templer RH et al. 2010. Automated high pressure cell for pressure jump X-ray diffraction. Rev. Sci. Instrum. 81:64103
    [Google Scholar]
  19. 19. 
    Bugnon P, Laurenczy G, Ducommun Y, Sauvageat PY, Merbach AE et al. 1996. High-pressure stopped-flow spectrometer for kinetic studies of fast reactions by absorbance and fluorescence detection. Anal. Chem. 68:3045–49
    [Google Scholar]
  20. 20. 
    Campanaro S, Treu L, Valle G. 2008. Protein evolution in deep sea bacteria: an analysis of amino acids substitution rates. BMC Evol. Biol. 8:313
    [Google Scholar]
  21. 21. 
    Cario A, Grossi V, Schaeffer P, Oger PM. 2015. Membrane homeoviscous adaptation in the piezo-hyperthermophilic archaeon Thermococcus barophilus. Front. Microbiol. 6:1152
    [Google Scholar]
  22. 22. 
    Caro JA, Wand AJ. 2018. Practical aspects of high-pressure NMR spectroscopy and its applications in protein biophysics and structural biology. Methods 148:67–80
    [Google Scholar]
  23. 23. 
    Carr CE, Khutsishvili I, Marky LA. 2018. Energetics, ion, and water binding of the unfolding of AA/UU base pair stacks and UAU/UAU base triplet stacks in RNA. J. Phys. Chem. B 122:7057–65
    [Google Scholar]
  24. 24. 
    Chalikian TV, Völker J, Plum GE, Breslauer KJ. 1999. A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques. PNAS 96:7853–58
    [Google Scholar]
  25. 25. 
    Charlier C, Alderson TR, Courtney JM, Ying J, Anfinrud P, Bax A. 2018. Study of protein folding under native conditions by rapidly switching the hydrostatic pressure inside an NMR sample cell. PNAS 115:E4169–78
    [Google Scholar]
  26. 26. 
    Chen CR, Makhatadze GI. 2017. Molecular determinant of the effects of hydrostatic pressure on protein folding stability. Nat. Commun. 8:14561
    [Google Scholar]
  27. 27. 
    Chen T, Dave K, Gruebele M 2018. Pressure- and heat-induced protein unfolding in bacterial cells: crowding versus sticking. FEBS Lett 592:1357–65
    [Google Scholar]
  28. 28. 
    Chien A, Edgar DB, Trela JM. 1976. Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J. Bacteriol. 127:1550–57
    [Google Scholar]
  29. 29. 
    Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS et al. 2008. Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322:275–78
    [Google Scholar]
  30. 30. 
    Coker J. 2016. Extremophiles and biotechnology: current uses and prospects. F1000Res 5:396
    [Google Scholar]
  31. 31. 
    Coker J. 2019. Recent advances in understanding extremophiles. F1000Res 8:1917
    [Google Scholar]
  32. 32. 
    Collins MD, Hummer G, Quillin ML, Matthews BW, Gruner SM. 2005. Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation. PNAS 102:16668–71
    [Google Scholar]
  33. 33. 
    Collins MD, Kim CU, Gruner SM. 2011. High-pressure protein crystallography and NMR to explore protein conformations. Annu. Rev. Biophys. 40:81–98
    [Google Scholar]
  34. 34. 
    Colloc'h N, Girard E, Dhaussy A-C, Kahn R, Ascone I et al. 2006. High pressure macromolecular crystallography: the 140-MPa crystal structure at 2.3 Å resolution of urate oxidase, a 135-kDa tetrameric assembly. Biochim. Biophys. Acta Proteins Proteom. 1764:391–97
    [Google Scholar]
  35. 35. 
    Colman DR, Lindsay MR, Amenabar MJ, Boyd ES. 2019. The intersection of geology, geochemistry, and microbiology in continental hydrothermal systems. Astrobiology 19:1505–22
    [Google Scholar]
  36. 36. 
    Colman DR, Lindsay MR, Boyd ES. 2019. Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat. Commun. 10:681
    [Google Scholar]
  37. 37. 
    Colman DR, Poudel S, Hamilton TL, Havig JR, Selensky MJ et al. 2018. Geobiological feedbacks and the evolution of thermoacidophiles. ISME J 12:225–36
    [Google Scholar]
  38. 38. 
    Colman DR, Poudel S, Stamps BW, Boyd ES, Spear JR. 2017. The deep, hot biosphere: twenty-five years of retrospection. PNAS 114:6895–903
    [Google Scholar]
  39. 39. 
    Darr SC, Pace B, Pace NR 1990. Characterization of ribonuclease P from the archaebacterium Sulfolobus solfataricus. J. Biol. Chem. 265:12927–32
    [Google Scholar]
  40. 40. 
    DasSarma S, Capes MD, Karan R, DasSarma P 2013. Amino acid substitutions in cold-adapted proteins from Halorubrum lacusprofundi, an extremely halophilic microbe from Antarctica. PLOS ONE 8:e58587
    [Google Scholar]
  41. 41. 
    Dellarole M, Royer CA 2014. High-pressure fluorescence applications. Fluorescence Spectroscopy and Microscopy Y Engelborghs, AJWG Visser 53–74 Berlin: Springer
    [Google Scholar]
  42. 42. 
    D'Hondt S, Rutherford S, Spivack AJ 2002. Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–70
    [Google Scholar]
  43. 43. 
    Dumont C, Emilsson T, Gruebele M. 2009. Reaching the protein folding speed limit with large, sub-microsecond pressure jumps. Nat. Methods 6:515–19
    [Google Scholar]
  44. 44. 
    Dumorné K, Córdova DC, Astorga-Eló M, Renganathan P. 2017. Extremozymes: a potential source for industrial applications. J. Microbiol. Biotechnol. 27:649–59
    [Google Scholar]
  45. 45. 
    Ebbinghaus S, Dhar A, McDonald JD, Gruebele M. 2010. Protein folding stability and dynamics imaged in a living cell. Nat. Methods 7:319–23
    [Google Scholar]
  46. 46. 
    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A et al. 2019. The Pfam protein families database in 2019. Nucleic Acids Res 47:427–32
    [Google Scholar]
  47. 47. 
    Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK. 1997. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457–62
    [Google Scholar]
  48. 48. 
    Foglia F, Hazael R, Meersman F, Wilding MC, Sakai VG et al. 2019. In vivo water dynamics in Shewanella oneidensis bacteria at high pressure. Sci. Rep. 9:8716
    [Google Scholar]
  49. 49. 
    Fones EM, Colman DR, Kraus EA, Nothaft DB, Poudel S et al. 2019. Physiological adaptations to serpentinization in the Samail Ophiolite, Oman. ISME J. 13:1750–62
    [Google Scholar]
  50. 49a. 
    Fones EM, Colman DR, Kraus EA, Stephanauskas R, Templeton ASet al 2021. Diversification of methanogens into hyperalkaline serpentinizing environments through adaptations to minimize oxidant limitation. ISME J In press
    [Google Scholar]
  51. 50. 
    Fourme R, Girard E, Kahn R, Dhaussy A-C, Ascone I 2009. Advances in high-pressure biophysics: status and prospects of macromolecular crystallography. Annu. Rev. Biophys. 38:153–71
    [Google Scholar]
  52. 51. 
    Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM et al. 2011. Accessing protein conformational ensembles using room-temperature X-ray crystallography. PNAS 108:16247–52
    [Google Scholar]
  53. 52. 
    Frey B, Hartmann M, Herrmann M, Meyer-Pittroff R, Sommer K, Bluemelhuber G. 2006. Microscopy under pressure: an optical chamber system for fluorescence microscopic analysis of living cells under high hydrostatic pressure. Microsc. Res. Technol. 69:65–72
    [Google Scholar]
  54. 53. 
    Fu Y, Kasinath V, Moorman VR, Nucci NV, Hilser VJ, Wand AJ. 2012. Coupled motion in proteins revealed by pressure perturbation. J. Am. Chem. Soc. 134:8543–50
    [Google Scholar]
  55. 54. 
    Fujisawa T, Kato M 2002. The small-angle X-ray scattering from proteins under pressure. Biological Systems Under Extreme Conditions: Structure and Function Y Taniguchi, HE Stanley, H Ludwig 121–38 Berlin: Springer
    [Google Scholar]
  56. 55. 
    Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA et al. 2011. Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat. Commun. 2:375–79
    [Google Scholar]
  57. 56. 
    Gross M, Jaenicke R. 1994. Proteins under pressure: the influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur. J. Biochem. 221:617–30
    [Google Scholar]
  58. 57. 
    Hahn CJ, Laso-Perez R, Vulcano F, Vaziourakis KM, Stokke R et al. 2020. “Candidatus Ethanoperedens,” a thermophilic genus of archaea mediating the anaerobic oxidation of ethane. mBio 11:00600–20
    [Google Scholar]
  59. 58. 
    Hamajima Y, Nagae T, Watanabe N, Ohmae E, Kato-Yamada Y, Kato C. 2016. Pressure adaptation of 3-isopropylmalate dehydrogenase from an extremely piezophilic bacterium is attributed to a single amino acid substitution. Extremophiles 20:177–86
    [Google Scholar]
  60. 59. 
    Hartmann M, Kreuss M, Sommer K. 2004. High pressure microscopy: a powerful tool for monitoring cells and macromolecules under high hydrostatic pressure. Cell. Mol. Biol. 50:479–84
    [Google Scholar]
  61. 60. 
    Hayashi R, Kakehi Y, Kato M, Tanimizu N, Ozawa S et al. 2002. Circular dichroism under high pressure. Prog. Biotechnol 19:583–90
    [Google Scholar]
  62. 61. 
    Hedlund BP, Dodsworth JA, Murugapiran SK, Rinke C, Woyke T. 2014. Impact of single-cell genomics and metagenomics on the emerging view of extremophile “microbial dark matter.”. Extremophiles 18:865–75
    [Google Scholar]
  63. 62. 
    Heerklotz H, Seelig J. 2002. Application of pressure perturbation calorimetry to lipid bilayers. Biophys. J. 82:1445–52
    [Google Scholar]
  64. 63. 
    Hollien J, Marqusee S. 1999. A thermodynamic comparison of mesophilic and thermophilic ribonucleases H. Biochemistry 38:3831–36
    [Google Scholar]
  65. 64. 
    Hsieh YC, Liu MY, Wang VCC, Chiang YL, Liu EH et al. 2010. Structural insights into the enzyme catalysis from comparison of three forms of dissimilatory sulphite reductase from Desulfovibrio gigas. Mol. Microbiol. 78:1101–16
    [Google Scholar]
  66. 65. 
    Hug LA, Thomas BC, Brown CT, Frischkorn KR, Williams KH et al. 2015. Aquifer environment selects for microbial species cohorts in sediment and groundwater. ISME J 9:1846–56
    [Google Scholar]
  67. 66. 
    Ilina Y, Lorent C, Katz S, Jeoung JH, Shima S et al. 2019. X-ray crystallography and vibrational spectroscopy reveal the key determinants of biocatalytic dihydrogen cycling by [NiFe] hydrogenases. Angew. Chem. Int. Ed. 58:18710–14
    [Google Scholar]
  68. 67. 
    Jenkins KA, Fossat MJ, Zhang S, Rai DK, Klein S et al. 2018. The consequences of cavity creation on the folding landscape of a repeat protein depend upon context. PNAS 115:E8153–61
    [Google Scholar]
  69. 68. 
    Jonas J 2002. High-resolution nuclear magnetic resonance studies of proteins. Biochem. Biophys. Acta Protein Struct. Mol. Enzymol. 1595:145–59
    [Google Scholar]
  70. 69. 
    Jorgensen BB. 2011. Deep subseafloor microbial cells on physiological standby. PNAS 108:18193–94
    [Google Scholar]
  71. 70. 
    Karnachuk OV, Frank YA, Lukina AP, Kadnikov VV, Beletsky AV et al. 2019. Domestication of previously uncultivated Candidatus Desulforudis audaxviator from a deep aquifer in Siberia sheds light on its physiology and evolution. ISME J 13:1947–59
    [Google Scholar]
  72. 71. 
    Kasahara R, Sato T, Tamegai H, Kato C. 2009. Piezo-adapted 3-isopropylmalate dehydrogenase of the obligate piezophile Shewanella benthica DB21MT-2 isolated from the 11,000-m depth of the Mariana Trench. Biosci. Biotechnol. Biochem. 73:2541–43
    [Google Scholar]
  73. 72. 
    Kasinath V, Fu Y, Sharp KA, Wand AJ. 2015. A sharp thermal transition of fast aromatic-ring dynamics in ubiquitin. Angew. Chem. Int. Ed. 54:102–7
    [Google Scholar]
  74. 73. 
    Keedy DA, van den Bedem H, Sivak DA, Petsko GA, Ringe D et al. 2014. Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR. Structure 22:899–910
    [Google Scholar]
  75. 74. 
    Kieft TL. 2016. Microbiology of the deep continental biosphere. Their World: A Diversity of Microbial Environments CJ Hurst 225–49 Berlin: Springer
    [Google Scholar]
  76. 75. 
    Kremer W, Arnold M, Munte CE, Hartl R, Erlach MB et al. 2011. Pulsed pressure perturbations, an extra dimension in NMR spectroscopy of proteins. J. Am. Chem. Soc. 133:13646–51
    [Google Scholar]
  77. 76. 
    Krulwich TA, Sachs G, Padan E. 2011. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9:330–43
    [Google Scholar]
  78. 77. 
    Krywka C, Sternemann C, Paulus M, Tolan M, Royer C, Winter R. 2008. Effect of osmolytes on pressure-induced unfolding of proteins: a high-pressure SAXS study. Chem. Phys. Chem. 9:2809–15
    [Google Scholar]
  79. 78. 
    Kumar S, Tsai CJ, Nussinov R. 2001. Thermodynamic differences among homologous thermophilic and mesophilic proteins. Biochemistry 40:14152–65
    [Google Scholar]
  80. 79. 
    Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM et al. 2017. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int. J. Syst. Evol. Microbiol. 67:824–31
    [Google Scholar]
  81. 80. 
    Lauro FM, Tran K, Vezzi A, Vitulo N, Valle G, Bartlett DH. 2008. Large-scale transposon mutagenesis of Photobacterium profundum SS9 reveals new genetic loci important for growth at low temperature and high pressure. J. Bacteriol. 190:1699–709
    [Google Scholar]
  82. 81. 
    Lerch MT, Horwitz J, McCoy J, Hubbell WL, Horwitza J et al. 2013. Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin. PNAS 110:E4714–22
    [Google Scholar]
  83. 82. 
    Lerch MT, Yang Z, Altenbach C, Hubbell WL 2015. High-pressure EPR and site-directed spin labeling for mapping molecular flexibility in proteins. Electron Paramagnetic Resonance Investigations of Biological Systems PZ Qin, K Warncke 29–57 Amsterdam: Elsevier
    [Google Scholar]
  84. 83. 
    Lim SA, Bolin ER, Marqusee S. 2018. Tracing a protein's folding pathway over evolutionary time using ancestral sequence reconstruction and hydrogen exchange. eLife 7:e38369
    [Google Scholar]
  85. 84. 
    Lin L-N, Brandts JMF, Plotnikov V. 2002. Determination of the volumetric properties of proteins and other solutes using pressure perturbation calorimetry. Anal. Biochem. 302:144–60
    [Google Scholar]
  86. 85. 
    Lindsay MR, Colman DR, Amenabar MJ, Fristad KE, Fecteau KM et al. 2019. Probing the geological source and biological fate of hydrogen in Yellowstone hot springs. Environ. Microbiol. 21:3816–30
    [Google Scholar]
  87. 86. 
    Liu CC, LiCata VJ. 2014. The stability of Taq DNA polymerase results from a reduced entropic folding penalty: identification of other thermophilic proteins with similar folding thermodynamics. Proteins Struct. Funct. Bioinform. 82:785–93
    [Google Scholar]
  88. 87. 
    Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. 2018. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems 3:00055–18
    [Google Scholar]
  89. 88. 
    Ma L, Ouyang Q, Werthmann GC, Thompson HM, Morrow EM. 2017. Live-cell microscopy and fluorescence-based measurement of luminal pH in intracellular organelles. Front. Cell Dev. Biol. 5:71
    [Google Scholar]
  90. 89. 
    Macalady JL, Vestling MM, Baumler D, Boekelheide N, Kaspar CW, Banfield JF. 2004. Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid. Extremophiles 8:411–19
    [Google Scholar]
  91. 90. 
    Maier RM, Drees KP, Neilson JW, Henderson DA, Quade J, Betancourt JL. 2004. Microbial life in the Atacama Desert. Science 306:1289–90
    [Google Scholar]
  92. 91. 
    Makhatadze G, Privalov P. 1995. Energetics of protein structure. Adv. Protein Chem. 47:307–425
    [Google Scholar]
  93. 92. 
    Makhatadze GI, Loladze VV, Gribenko AV, Lopez MM. 2004. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions. J. Mol. Biol. 336:929–42
    [Google Scholar]
  94. 93. 
    Marietou A, Nguyen ATT, Allen EE, Bartlett DH 2014. Adaptive laboratory evolution of Escherichia coli K-12 MG1655 for growth at high hydrostatic pressure. Front. Microbiol. 5:749
    [Google Scholar]
  95. 94. 
    Martin W, Baross J, Kelley D, Russell MJ 2008. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6:805–14
    [Google Scholar]
  96. 95. 
    Matsuura Y, Takehira M, Makhatadze GI, Joti Y, Naitow H et al. 2018. Strategy for stabilization of CutA1 proteins due to ion-ion interactions at temperatures of over 100°C. Biochemistry 57:2649–56
    [Google Scholar]
  97. 96. 
    McMahon S, Parnell J. 2014. Weighing the deep continental biosphere. FEMS Microbiol. Ecol. 87:113–20
    [Google Scholar]
  98. 97. 
    Michoud G, Jebbar M. 2016. High hydrostatic pressure adaptive strategies in an obligate piezophile Pyrococcus yayanosii. Sci. Rep. 6:27289
    [Google Scholar]
  99. 98. 
    Mitra L, Smolin N, Ravindra R, Royer C, Winter R. 2006. Pressure perturbation calorimetric studies of the solvation properties and the thermal unfolding of proteins in solution: experiments and theoretical interpretation. Phys. Chem. Chem. Phys. 8:1249–65
    [Google Scholar]
  100. 99. 
    Möller J, Schroer M, Erlkamp M, Grobelny S, Paulus M et al. 2012. The effect of ionic strength, temperature, and pressure on the interaction potential of dense protein solutions: from nonlinear pressure response to protein crystallization. Biophys. J. 102:2641–48
    [Google Scholar]
  101. 100. 
    Moody J. 1976. Serpentinization: a review. Lithos 9:125–38
    [Google Scholar]
  102. 101. 
    Motlagh HN, Wrabl JO, Li J, Hilser VJ. 2014. The ensemble nature of allostery. Nature 508:331–39
    [Google Scholar]
  103. 102. 
    Murakami C, Ohmae E, Tate S, Gekko K, Nakasone K, Kato C. 2011. Comparative study on dihydrofolate reductases from Shewanella species living in deep-sea and ambient atmospheric-pressure environments. Extremophiles 15:165–75
    [Google Scholar]
  104. 103. 
    Mus F, Alleman AB, Pence N, Seefeldt L, Peters JW. 2018. Exploring the alternatives of biological nitrogen fixation. Metallomics 10:523–38
    [Google Scholar]
  105. 104. 
    Nagae T, Kawamura T, Chavas LMG, Niwa K, Hasegawa M et al. 2012. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase. Acta Crystallogr. D 68:300–9
    [Google Scholar]
  106. 105. 
    Nagata Y, Takeda R, Suginome M. 2016. High-pressure circular dichroism spectroscopy up to 400 MPa using polycrystalline yttrium aluminum garnet (YAG) as pressure-resistant optical windows. RSC Adv 6:109726–29
    [Google Scholar]
  107. 106. 
    Nath A, Subbiah K. 2016. Insights into the molecular basis of piezophilic adaptation: extraction of piezophilic signatures. J. Theor. Biol. 390:117–26
    [Google Scholar]
  108. 107. 
    Norton C, Grant W. 1988. Survival of halobacteria within fluid inclusions in salt crystals. J. Gen. Microbiol. 134:1365–73
    [Google Scholar]
  109. 108. 
    Odling-Smee FJ, Laland KN, Feldman MW. 1996. Niche construction. Am. Nat. 147:641–48
    [Google Scholar]
  110. 109. 
    Ohmae E, Murakami C, Tate SI, Gekko K, Hata K et al. 2012. Pressure dependence of activity and stability of dihydrofolate reductases of the deep-sea bacterium Moritella profunda and Escherichia coli. Biochim. Biophys. Acta Proteins Proteom. 1824:511–19
    [Google Scholar]
  111. 110. 
    Oliveira TF, Franklin E, Afonso JP, Khan AR, Oldham NJ et al. 2011. Structural insights into dissimilatory sulfite reductases: structure of desulforubidin from Desulfomicrobium norvegicum. Front. Microbiol. 2:71
    [Google Scholar]
  112. 111. 
    Oren A. 2013. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Front. Microbiol. 4:315
    [Google Scholar]
  113. 112. 
    Papini CM, Pandharipande PP, Royer CA, Makhatadze GI. 2017. Putting the piezolyte hypothesis under pressure. Biophys. J. 113:974–77
    [Google Scholar]
  114. 113. 
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. 2018. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36:996–1004
    [Google Scholar]
  115. 114. 
    Pennisi E. 1997. Biotechnology: In industry, extremophiles begin to make their mark. Science 276:705–6
    [Google Scholar]
  116. 115. 
    Pereira IAC, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS. 2011. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front. Microbiol. 2:69
    [Google Scholar]
  117. 116. 
    Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM et al. 2015. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta Mol. Cell Res. 1853:1350–69
    [Google Scholar]
  118. 117. 
    Peterson RW, Wand AJ. 2005. Self-contained high-pressure cell, apparatus, and procedure for the preparation of encapsulated proteins dissolved in low viscosity fluids for nuclear magnetic resonance spectroscopy. Rev. Sci. Instrum. 76:094101
    [Google Scholar]
  119. 118. 
    Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA. 2015. Alkaliphilic bacteria with impact on industrial applications, concepts of early life forms, and bioenergetics of ATP synthesis. Front. Bioeng. Biotechnol. 3:75
    [Google Scholar]
  120. 119. 
    Prigozhin MB, Zhang Y, Schulten K, Gruebele M, Pogorelov TV. 2019. Fast pressure-jump all-atom simulations and experiments reveal site-specific protein dehydration-folding dynamics. PNAS 116:5356–61
    [Google Scholar]
  121. 119a. 
    Rai DK, Gillilan RE, Huang Q, Miller R, Ting Eet al 2021. High-pressure small-angle X-ray scattering cell for biological solutions and soft materials. J. Appl. Crystallogr 54:11122
    [Google Scholar]
  122. 120. 
    Rayan G, Macgregor RB Jr. 2009. Pressure-induced helix-coil transition of DNA copolymers is linked to water activity. Biophys. Chem. 144:62–66
    [Google Scholar]
  123. 121. 
    Razvi A, Scholtz JM. 2006. A thermodynamic comparison of HPr proteins from extremophilic organisms. Biochemistry 45:4084–92
    [Google Scholar]
  124. 122. 
    Reed CJ, Lewis H, Trejo E, Winston V, Evilia C 2013. Protein adaptations in archaeal extremophiles. Archaea 2013:373275
    [Google Scholar]
  125. 123. 
    Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–37
    [Google Scholar]
  126. 124. 
    Roche J, Caro JA, Norberto DR, Barthe P, Roumestand C et al. 2012. Cavities determine the pressure unfolding of proteins. PNAS 109:6945–50
    [Google Scholar]
  127. 125. 
    Roche J, Royer CA, Roumestand C. 2019. Exploring Protein Conformational Landscapes Using High-Pressure NMR Amsterdam: Elsevier 1st ed .
  128. 126. 
    Roe D. 1985. Sapphire NMR tube for high-resolution studies at elevated pressure. J. Magn. Res. 63:388–91
    [Google Scholar]
  129. 127. 
    Sawle L, Ghosh K. 2011. How do thermophilic proteins and proteomes withstand high temperature?. Biophys. J. 101:217–27
    [Google Scholar]
  130. 128. 
    Schiffer A, Parey K, Warkentin E, Diederichs K, Huber H et al. 2008. Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J. Mol. Biol. 379:1063–74
    [Google Scholar]
  131. 129. 
    Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D et al. 1995. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J. Bacteriol. 117:7050–59
    [Google Scholar]
  132. 130. 
    Schroer MA, Paulus M, Jeworrek C, Krywka C, Schmacke S et al. 2010. High-pressure SAXS study of folded and unfolded ensembles of proteins. Biophys. J. 99:3430–37
    [Google Scholar]
  133. 131. 
    Schroer MA, Zhai Y, Wieland DCF, Sahle CJ, Nase J et al. 2011. Exploring the piezophilic behavior of natural cosolvent mixtures. Angew. Chem. Int. Ed. 50:11413–16
    [Google Scholar]
  134. 132. 
    Schweiker KL, Makhatadze GI. 2009. Use of Pressure Perturbation Calorimetry to Characterize the Volumetric Properties of Proteins Amsterdam: Elsevier 1st ed .
  135. 133. 
    Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM et al. 2002. Microbial activity at gigapascal pressures. Science 295:1514–16
    [Google Scholar]
  136. 134. 
    Shiraki K, Nishikori S, Fujiwara S, Hashimoto H, Kai Y et al. 2001. Comparative analyses of the conformational stability of a hyperthermophilic protein and its mesophilic counterpart. Eur. J. Biochem. 268:4144–50
    [Google Scholar]
  137. 135. 
    Shock EL, Holland ME. 2007. Quantitative habitability. Astrobiology 7:839–51
    [Google Scholar]
  138. 136. 
    Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S. 2011. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct. Biol. 11:50
    [Google Scholar]
  139. 137. 
    Siliakus M, van der Oost J, Kengen S. 2017. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21:651–70
    [Google Scholar]
  140. 138. 
    Silva J, Weber G. 1993. Pressure stability of proteins. Annu. Rev. Phys. Chem. 44:89–113
    [Google Scholar]
  141. 139. 
    Silva JL, Foguel D, Royer CA. 2001. Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem. Sci. 26:612–18
    [Google Scholar]
  142. 140. 
    Starnawski P, Bataillon T, Ettema TJG, Jochum LM, Schreiber L et al. 2017. Microbial community assembly and evolution in subseafloor sediment. PNAS 114:2940–45
    [Google Scholar]
  143. 141. 
    Suhre K, Claverie JM. 2003. Genomic correlates of hyperthermostability, an update. J. Biol. Chem. 278:17198–202
    [Google Scholar]
  144. 142. 
    Suzuki S, Ishii S, Hoshino T, Rietze A, Tenney A et al. 2017. Unusual metabolic diversity of hyperalkaliphilic microbial communities associated with subterranean serpentinization at The Cedars. ISME J 11:2584–98
    [Google Scholar]
  145. 143. 
    Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM et al. 2001. Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Int. J. Syst. Evol. Microbiol. 51:1245–56
    [Google Scholar]
  146. 144. 
    Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M et al. 2008. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophillic methanogen under high-pressure cultivation. PNAS 105:10949–54
    [Google Scholar]
  147. 145. 
    Teixeira SCM, Leāo JB, Gagnon C, McHugh MA. 2018. High pressure cell for Bio-SANS studies under sub-zero temperatures or heat denaturing conditions. J. Neutron Res. 20:11–21
    [Google Scholar]
  148. 146. 
    Thauer RK. 1998. Biochemistry of methanogenesis: a tribute to Mary Stevenson. 1442377–406
  149. 147. 
    Tremblay P-L, Zhang T, Dar SA, Leang C, Lovley DR. 2012. The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. mBio 4:e00406–12
    [Google Scholar]
  150. 148. 
    Tuukkanen AT, Spilotros A, Svergun DI. 2017. Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons. IUCrJ 4:518–28
    [Google Scholar]
  151. 149. 
    Urayama P, Phillips GN, Gruner SM. 2002. Probing substrates in sperm whale myoglobin using high-pressure crystallography. Structure 10:51–60
    [Google Scholar]
  152. 150. 
    Urbauer JL, Ehrhardt MR, Bieber RJ, Flynn PF, Wand AJ. 1996. High resolution triple resonance NMR spectroscopy of a novel calmodulin·peptide complex at kilobar pressures. J. Am. Chem. Soc. 118:11329–30
    [Google Scholar]
  153. 151. 
    Valentine D. 2007. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat. Rev. Microbiol. 5:316–23
    [Google Scholar]
  154. 152. 
    Vanlint D, Mitchell R, Bailey E, Meersman F, McMillan PF et al. 2011. Rapid acquisition of gigapascal-high-pressure resistance by Escherichia coli. mBio 2:00130–10
    [Google Scholar]
  155. 153. 
    Vass H, Black SL, Flors C, Lloyd D, Ward FB, Allen RJ. 2013. Single-molecule imaging at high hydrostatic pressure. Appl. Phys. Lett. 102:154103
    [Google Scholar]
  156. 154. 
    Vass H, Black SL, Herzig EM, Ward FB, Clegg PS, Allen RJ 2010. A multipurpose modular system for high-resolution microscopy at high hydrostatic pressure. Rev. Sci. Instrum. 81:053710
    [Google Scholar]
  157. 155. 
    Vauclare P, Natali F, Kleman JP, Zaccai G, Franzetti B. 2020. Surviving salt fluctuations: stress and recovery in Halobacterium salinarum, an extreme halophilic Archaeon. Sci. Rep. 10:3298
    [Google Scholar]
  158. 156. 
    Vezzi AA, Campanaro S, Angelo MD, Simonato F, Vitulo N et al. 2005. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459–61
    [Google Scholar]
  159. 157. 
    Wainø M, Tindall BJ, Ingvorsen K. 2000. Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int. J. Syst. Evol. Microbiol. 50:183–90
    [Google Scholar]
  160. 158. 
    Wang B, Qin W, Ren Y, Zhou X, Jung MY et al. 2019. Expansion of Thaumarchaeota habitat range is correlated with horizontal transfer of ATPase operons. ISME J 13:3067–79
    [Google Scholar]
  161. 159. 
    Wang Z. 2006. Materials science: high-pressure microscopy. Science 312:1149–50
    [Google Scholar]
  162. 160. 
    Weinisch L, Kühner S, Roth R, Grimm M, Roth T et al. 2018. Identification of osmoadaptive strategies in the halophile, heterotrophic ciliate Schmidingerothrix salinarum. PLOS Biol 16:e2003892
    [Google Scholar]
  163. 161. 
    Winnikoff JR, Francis WR, Thuesen EV, Haddock SHD. 2019. Combing transcriptomes for secrets of deep-sea survival: Environmental diversity drives patterns of protein evolution. Integr. Comp. Biol. 59:786–98
    [Google Scholar]
  164. 162. 
    Winter R, Jeworrek C. 2009. Effect of pressure on membranes. Soft Matter 5:3157–73
    [Google Scholar]
  165. 163. 
    Wirth AJ, Liu Y, Prigozhin MB, Schulten K, Gruebele M. 2015. Comparing fast pressure jump and temperature jump protein folding experiments and simulations. J. Am. Chem. Soc. 137:7152–59
    [Google Scholar]
  166. 164. 
    Woenckhaus J, Köhling R, Winter R, Thiyagarajan P, Finet S. 2000. High pressure-jump apparatus for kinetic studies of protein folding reactions using the small-angle synchrotron X-ray scattering technique. AIP Rev. Sci. Instrum. 71:3895–99
    [Google Scholar]
  167. 165. 
    Yamada H, Nishikawa K, Honda M, Shimura T, Akasaka K, Tabayashi K. 2001. Pressure-resisting cell for high-pressure, high-resolution nuclear magnetic resonance measurements at very high magnetic fields. Rev. Sci. Instrum. 72:1463
    [Google Scholar]
  168. 166. 
    Yancey PH. 2020. Cellular responses in marine animals to hydrostatic pressure. J. Exp. Zool. A 333:398–420
    [Google Scholar]
  169. 167. 
    Zeng X, Birrien JL, Fouquet Y, Cherkashov G, Jebbar M et al. 2009. Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J 3:873–76
    [Google Scholar]
  170. 168. 
    Zhou L, Sazanov LA. 2019. Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase. Science 365:eaaw9144
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-100120-072804
Loading
/content/journals/10.1146/annurev-biophys-100120-072804
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error