1932

Abstract

Some oxidoreductase enzymes use redox-active tyrosine, tryptophan, cysteine, and/or glycine residues as one-electron, high-potential redox (radical) cofactors. Amino-acid radical cofactors typically perform one of four tasks—they work in concert with a metallocofactor to carry out a multielectron redox process, serve as storage sites for oxidizing equivalents, activate the substrate molecules, or move oxidizing equivalents over long distances. It is challenging to experimentally resolve the thermodynamic and kinetic redox properties of a single-amino-acid residue. The inherently reactive and highly oxidizing properties of amino-acid radicals increase the experimental barriers further still. This review describes a family of stable and well-structured model proteins that was made specifically to study tyrosine and tryptophan oxidation-reduction. The so-called αX model protein system was combined with very-high-potential protein film voltammetry, transient absorption spectroscopy, and theoretical methods to gain a comprehensive description of the thermodynamic and kinetic properties of protein tyrosine and tryptophan radicals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-100521-103031
2022-05-09
2024-05-29
Loading full text...

Full text loading...

/deliver/fulltext/biophys/51/1/annurev-biophys-100521-103031.html?itemId=/content/journals/10.1146/annurev-biophys-100521-103031&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Acebes S, Ruiz-Dueñas FJ, Toubes M, Saéz-Jiménez V, Pérez-Boada M et al. 2017. Mapping the long-range electron transfer route in ligninolytic peroxidases. J. Phys. Chem. B 121:3946–54
    [Google Scholar]
  2. 2.
    Armstrong DA, Huie RE, Koppenol WH, Lymar SV, Merényi G et al. 2015. Standard electrode potentials involving radicals in aqueous solution: inorganic radicals. Pure Appl. Chem. 87:1139–50
    [Google Scholar]
  3. 3.
    Backman LRF, Funk MA, Dawson CD, Drennan CL. 2017. New tricks for the glycyl radical enzyme family. Crit. Rev. Biochem. Mol. Biol. 52:674–95
    [Google Scholar]
  4. 4.
    Bak DW, Elliott SJ. 2014. Alternative FeS cluster ligands: tuning redox potentials and chemistry. Curr. Opin. Chem. Biol. 19:50–58
    [Google Scholar]
  5. 5.
    Baugher JF, Grossweiner LI. 1977. Photolysis mechanism of aqueous tryptophan. J. Phys. Chem. 81:1349–54
    [Google Scholar]
  6. 6.
    Berry BW, Elvekrog MM, Tommos C. 2007. Environmental modulation of protein cation-π interactions. J. Am. Chem. Soc. 129:5308–9
    [Google Scholar]
  7. 7.
    Berry BW, Martínez-Rivera MC, Tommos C. 2012. Reversible voltammograms and a Pourbaix diagram for a protein tyrosine radical. PNAS 109:9739–43
    [Google Scholar]
  8. 8.
    Berry SM, Ralle M, Low DW, Blackburn NJ, Lu Y. 2003. Probing the role of axial methionine in the blue copper center of azurin with unnatural amino acids. J. Am. Chem. Soc. 125:8760–68
    [Google Scholar]
  9. 9.
    Blaesi EJ, Palowitch GM, Hu K, Kim AJ, Rose HR et al. 2018. Metal-free class Ie ribonucleotide reductase from pathogens initiates catalysis with a tyrosine-derived dihydroxyphenylalanine radical. PNAS 115:10022–27
    [Google Scholar]
  10. 10.
    Blomberg MRA. 2020. Activation of O2 and NO in heme-copper oxidases—mechanistic insights from computational modelling. Chem. Soc. Rev. 49:7301–30
    [Google Scholar]
  11. 11.
    Blumberger J. 2015. Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem. Rev. 115:11191–238
    [Google Scholar]
  12. 12.
    Brettel K, Byrdin M. 2010. Reaction mechanisms of DNA photolyase. Curr. Opin. Struct. Biol. 20:693–701
    [Google Scholar]
  13. 13.
    Bridwell-Rabb J, Grell TAJ, Drennan CL. 2018. A rich man, poor man story of S-adenosylmethionine and cobalamin revisited. Annu. Rev. Biochem. 87:555–84
    [Google Scholar]
  14. 14.
    Broderick JB, Duffus BR, Duschene KS, Shepard EM. 2014. Radical S-adenosylmethionine enzymes. Chem. Rev. 114:4229–317
    [Google Scholar]
  15. 15.
    Can M, Armstrong FA, Ragsdale SW 2014. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem. Rev. 114:4149–74
    [Google Scholar]
  16. 16.
    Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T et al. 2011. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62:335–64
    [Google Scholar]
  17. 17.
    Chin JW. 2017. Expanding and reprogramming the genetic code. Nature 550:53–60
    [Google Scholar]
  18. 18.
    Clark MM, Reguera G. 2020. Biology and biotechnology of microbial pilus nanowires. J. Ind. Microbiol. Biotechnol. 47:897–907
    [Google Scholar]
  19. 19.
    Clarke WM. 1960. Oxidation-Reduction Potentials of Organic Systems Baltimore, MD: Waverly Press
  20. 20.
    Dai Q-H, Tommos C, Fuentes EJ, Blomberg MRA, Dutton PL, Wand AJ. 2002. Structure of a de novo designed protein model of radical enzymes. J. Am. Chem. Soc. 124:10952–53
    [Google Scholar]
  21. 21.
    Davidson VL, Wilmot CM. 2013. Posttranslational biosynthesis of the protein-derived cofactor tryptophan tryptophylquinone. Annu. Rev. Biochem. 82:531–50
    [Google Scholar]
  22. 22.
    Dixon WT, Murphy D. 1976. Determination of the acidity constants of some phenol radical cations by means of electron spin resonance. J. Chem. Soc. Faraday Trans. 72:1221–30
    [Google Scholar]
  23. 23.
    Edwards EH, Bren KL. 2020. Light-driven catalysis with engineered enzymes and biomimetic systems. Biotechnol. Appl. Biochem. 67:463–83
    [Google Scholar]
  24. 24.
    Ener ME, Gray HB, Winkler JR. 2017. Hole hopping through tryptophan in cytochrome P450. Biochemistry 56:3531–38
    [Google Scholar]
  25. 25.
    Feitelson J, Hayon E. 1973. Electron ejection and electron capture by phenolic compounds. J. Phys. Chem. 77:10–15
    [Google Scholar]
  26. 26.
    Fu B, Balskus EP. 2020. Discovery of C–C bond-forming and bond-breaking radical enzymes: enabling transformations for metabolic engineering. Curr. Opin. Biotech. 65:94–101
    [Google Scholar]
  27. 27.
    Gadda G. 2013. Flavins. Encyclopedia of Biophysics GCK Roberts Berlin: Springer https://doi.org/10.1007/978-3-642-16712-6_45
    [Crossref] [Google Scholar]
  28. 28.
    Geng J, Dornevil K, Davidson VL, Liu A 2013. Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG. PNAS 110:9639–44
    [Google Scholar]
  29. 29.
    Gil AA, Laptenok SP, Iuliano JN, Lukacs A, Verma A et al. 2017. Photoactivation of the BLUF protein pixD probed by the site-specific incorporation of fluorotyrosine residues. J. Am. Chem. Soc. 139:14638–48
    [Google Scholar]
  30. 30.
    Glover SD, Jorge C, Liang L, Valentine KG, Hammarström L, Tommos C. 2014. Photochemical tyrosine oxidation in the structurally well-defined α3Y protein: proton-coupled electron transfer and a long-lived tyrosine radical. J. Am. Chem. Soc. 136:14039–51
    [Google Scholar]
  31. 31.
    Glover SD, Tyburski R, Liang L, Tommos C, Hammarström L 2018. Pourbaix diagram, proton-coupled electron transfer, and decay kinetics of a protein tryptophan radical: comparing the redox properties of W32· and Y32· generated inside the structurally characterized α3W and α3Y proteins. J. Am. Chem. Soc. 140:185–92
    [Google Scholar]
  32. 32.
    Granold M, Hajieva P, Toşa MI, Irimie F-D, Moosmann B. 2018. Modern diversification of the amino acid repertoire driven by oxygen. PNAS 115:41–46
    [Google Scholar]
  33. 33.
    Gray HB, Winkler JR. 2015. Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage. PNAS 112:10920–25
    [Google Scholar]
  34. 34.
    Gray HB, Winkler JR. 2018. Living with oxygen. Acc. Chem. Res. 51:1850–57
    [Google Scholar]
  35. 35.
    Green BL, Kang G, Cui C, Bennati M, Nocera DG et al. 2020. Ribonucleotide reductases: Structure, chemistry, and metabolism suggest new therapeutic targets. Annu. Rev. Biochem. 89:45–75
    [Google Scholar]
  36. 36.
    Hammes-Schiffer S. 2015. Proton-coupled electron transfer: moving together and charging forward. J. Am. Chem. Soc. 137:8860–71
    [Google Scholar]
  37. 37.
    Hay S, Westerlund K, Tommos C 2005. Moving a phenol hydroxyl group from the surface to the interior of a protein: effects on the phenol potential and pKA. Biochemistry 44:11891–902
    [Google Scholar]
  38. 38.
    Heider J, Spormann AM, Beller HR, Widdel F. 1999. Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol. Rev. 22:459–73
    [Google Scholar]
  39. 39.
    Hofer A, Crona M, Logan DT, Sjöberg BM 2012. DNA building blocks: keeping control of manufacture. Crit. Rev. Biochem. Mol. Biol. 47:50–63
    [Google Scholar]
  40. 40.
    Kang G, Taguchi AT, Stubbe J, Drennan CL. 2020. Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex. Science 368:424–27
    [Google Scholar]
  41. 41.
    Kathiresan M, English AM. 2017. LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H2O2. Chem. Sci. 8:1152–62
    [Google Scholar]
  42. 42.
    Kathiresan M, English AM. 2018. LC-MS/MS proteoform profiling exposes cytochrome c peroxidase self-oxidation in mitochondria and functionally important hole hopping from its heme. J. Am. Chem. Soc. 140:12033–39
    [Google Scholar]
  43. 43.
    Komorsky-Lovrić Š, Lovrić M. 1995. Kinetic measurements of a surface confined redox reaction. Anal. Chim. Acta 305:248–55
    [Google Scholar]
  44. 44.
    Krieger CJ, Roseboom W, Albracht SPJ, Spormann AM. 2001. A stable organic free radical in anaerobic benzylsuccinate synthase of Azoarcus sp. strain T. J. Biol. Chem. 276:12924–27
    [Google Scholar]
  45. 45.
    Lacombat F, Espagne A, Dozova N, Plaza P, Müller P et al. 2019. Ultrafast oxidation of a tyrosine by proton-coupled electron transfer promotes light activation of an animal-like cryptochrome. J. Am. Chem. Soc. 141:13394–409
    [Google Scholar]
  46. 46.
    Lampa-Pastirk S, Veazey JP, Walsh KA, Feliciano GT, Steidl RJ et al. 2016. Thermally activated charge transport in microbial protein nanowires. Sci. Rep. 6:23517
    [Google Scholar]
  47. 47.
    Land EJ, Prütz WA. 1979. Reaction of azide radicals with amino acids and proteins. Int. J. Radiat. Biol. 36:75–83
    [Google Scholar]
  48. 48.
    Landgraf BJ, McCarthy EL, Booker SJ. 2016. Radical S-adenosylmethionine enzymes in human health and disease. Annu. Rev. Biochem. 85:485–514
    [Google Scholar]
  49. 49.
    Lee W, Kasanmascheff M, Huynh M, Quartararo A, Costentin C et al. 2018. Properties of site-specifically incorporated 3-aminotyrosine in proteins to study redox-active tyrosines: Escherichia coli ribonucleotide reductase as a paradigm. Biochemistry 57:3402–15
    [Google Scholar]
  50. 50.
    Levin BJ, Balskus EP. 2018. Discovering radical-dependent enzymes in the human gut microbiota. Curr. Opin. Chem. Biol. 47:86–93
    [Google Scholar]
  51. 51.
    Levin BJ, Huang YY, Peck SC, Wei Y, Martinez-del Campo A et al. 2017. A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-1-proline. Science 355:eaai8386
    [Google Scholar]
  52. 52.
    Lin C, Top D, Manahana CC, Young MW, Crane BR 2018. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction. PNAS 115:3822–27
    [Google Scholar]
  53. 53.
    Liu CC, Schultz PG. 2010. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79:413–44
    [Google Scholar]
  54. 54.
    Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S et al. 2014. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem. Rev. 114:4366–69
    [Google Scholar]
  55. 55.
    Liu X, Yu Y, Hu C, Zhang W, Lu Y, Wang J 2012. Significant increase of oxidase activity through the genetic incorporation of a tyrosine-histidine cross-link in a myoglobin model of heme-copper oxidase. Angew. Chem. Int. Ed. 51:4312–16
    [Google Scholar]
  56. 56.
    Liu Z, Tan C, Guo X, Li J, Wang L et al. 2013. Determining complete electron flow in the cofactor photoreduction of oxidized photolyase. PNAS 110:12966–71
    [Google Scholar]
  57. 57.
    Madej E, Wardman P. 2007. The oxidizing power of the glutathione thiyl radical as measured by its electrode potential at physical pH. Arch. Biochem. Biophys. 462:94–102
    [Google Scholar]
  58. 58.
    Maiocco SJ, Grove TL, Booker SJ, Elliott SJ. 2015. Electrochemical resolution of the [4Fe-4S] centers of the AdoMet radical enzyme BtrN: evidence of proton coupling and an unusual, low-potential auxiliary cluster. J. Am. Chem. Soc. 137:8664–67
    [Google Scholar]
  59. 59.
    Martínez-Rivera MC. 2013. Using model proteins to study tyrosine oxidation-reduction: reversible voltammograms, long-lived radicals and detailed design of the radical site PhD Thesis, Univ. Pa. Philadelphia:
  60. 60.
    Martínez-Rivera MC, Berry BW, Valentine KG, Westerlund K, Hay S, Tommos C. 2011. Electrochemical and structural properties of a protein system designed to generate tyrosine Pourbaix diagrams. J. Am. Chem. Soc. 133:17786–95
    [Google Scholar]
  61. 61.
    Migliore A, Polizzi NF, Therien MJ, Beratan DN. 2014. Biochemistry and theory of proton-coupled electron transfer. Chem. Rev. 114:3381–465
    [Google Scholar]
  62. 62.
    Minnihan EC, Nocera DG, Stubbe J. 2013. Reversible, long-range radical transfer in E. coli class 1a ribonucleotide reductase. Acc. Chem. Res. 46:2524–35
    [Google Scholar]
  63. 63.
    Minnihan EC, Young DD, Schultz PG, Stubbe J. 2011. Incorporation of fluorotyrosines into ribonucleotide reductase using an evolved, polyspecific aminoacyl-tRNA synthetase. J. Am. Chem. Soc. 133:15942–45
    [Google Scholar]
  64. 64.
    Mirts EN, Bhagi-Damodaran A, Lu Y. 2019. Understanding and modulating metalloenzymes with unnatural amino acids, non-native metal ions, and non-native metallocofactors. Acc. Chem. Res. 52:935–44
    [Google Scholar]
  65. 65.
    Moody PCE, Raven EL 2018. The nature and reactivity of ferryl heme in compounds I and II. Acc. Chem. Res. 51:427–35
    [Google Scholar]
  66. 66.
    Moosmann B. 2021. Redox biochemistry of the genetic code. Trends Biochem. Sci. 46:83–86
    [Google Scholar]
  67. 67.
    Neumann H, Haze JL, Weinstein J, Mehl RA, Chin JW. 2008. Genetically encoding protein oxidative damage. J. Am. Chem. Soc. 130:4028–33
    [Google Scholar]
  68. 68.
    Nicholls DG, Ferguson SJ. 2013. Bioenergetics Amsterdam: Elsevier. , 4th ed..
  69. 69.
    Nilsen-Moe A, Reinhardt CR, Glover SD, Liang L, Hammes-Schiffer S et al. 2020. Proton-coupled electron transfer from tyrosine in the interior of a de novo protein: mechanisms and primary proton acceptor. J. Am. Chem. Soc. 142:11550–59
    [Google Scholar]
  70. 70.
    Nilsson H, Cournac L, Rappaport F, Messinger J, Lavergne J. 2016. Estimation of the driving force for dioxygen formation in photosynthesis. Biochim. Biophys. Acta Bioenerg. 1857:23–33
    [Google Scholar]
  71. 71.
    Njuma OJ, Davis I, Ndontsa EN, Krewall JR, Liu A, Goodwin DC. 2017. Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron hole-hopping within the enzyme. J. Biol. Chem. 292:18408–21
    [Google Scholar]
  72. 72.
    Nocera DG. 2012. The artificial leaf. Acc. Chem. Res. 45:767–76
    [Google Scholar]
  73. 73.
    O'Dea JJ, Osteryoung JG 1993. Characterization of quasi-reversible surface processes by square-wave voltammetry. Anal. Chem. 65:3090–97
    [Google Scholar]
  74. 74.
    Paradisi A, Johnston EM, Tovborg M, Nicoll CR, Ciano L et al. 2019. Formation of a copper(II)-tyrosyl complex at the active site of lytic polysaccharide monooxygenase following oxidation by H2O2. J. Am. Chem. Soc. 141:18585–99
    [Google Scholar]
  75. 75.
    Peck SC, Denger K, Burricher A, Irwin SM, Balskus EP, Schlenheck D. 2019. A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia. PNAS 116:3171–76
    [Google Scholar]
  76. 76.
    Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y et al. 2014. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. PNAS 111:12883–88
    [Google Scholar]
  77. 77.
    Posener ML, Adams GE, Wardman P, Cundall RB 1976. Mechanism of tryptophan oxidation by some inorganic radical-anions: a pulse radiolysis study. J. Chem. Soc. Faraday Trans. 72:2231–39
    [Google Scholar]
  78. 78.
    Proppe AH, Li YC, Aspuru-Gizik A, Berlinguette CP, Chang CJ et al. 2020. Bioinspiration in light harvesting and catalysis. Nat. Rev. Mater. 5:828–46
    [Google Scholar]
  79. 79.
    Proshlyakov DA, Pressler MA, Babcock GT. 1998. Dioxygen activation and bond cleavage by mixed-valence cytochrome c oxidase. PNAS 95:8020–25
    [Google Scholar]
  80. 80.
    Rajakovich LJ, Balskus EP. 2019. Metabolic functions of the human gut microbiota: the role of metalloenzymes. Nat. Prod. Rep. 36:593–625
    [Google Scholar]
  81. 81.
    Ramirez-Flandes S, Gonzalez B, Ulloa O. 2019. Redox traits characterize the organization of global microbial communities. PNAS 116:3630–35
    [Google Scholar]
  82. 82.
    Ravichandran KR, Liang L, Stubbe J, Tommos C. 2013. Formal reduction potential of 3,5-difluorotyrosine in a structured protein: insight into multistep radical transfer. Biochemistry 52:8907–15
    [Google Scholar]
  83. 83.
    Ravichandran KR, Taguchi AT, Wei Y, Tommos C, Nocera DG, Stubbe J. 2016. A >200 meV uphill thermodynamic landscape for radical transport in Escherichia coli ribonucleotide reductase determined using fluorotyrosine-substituted enzymes. J. Am. Chem. Soc. 138:13706–16
    [Google Scholar]
  84. 84.
    Ravichandran KR, Zong AB, Taguchi AT, Nocera DG, Stubbe J, Tommos C. 2017. Formal reduction potentials of difluorotyrosine and trifluorotyrosine protein residues: defining the thermodynamics of multistep radical transfer. J. Am. Chem. Soc. 139:2994–3004
    [Google Scholar]
  85. 85.
    Reeves JH, Song S, Bowden EF 1993. Application of square wave voltammetry to strongly adsorbed quasireversible redox molecules. Anal. Chem. 65:683–88
    [Google Scholar]
  86. 86.
    Reinhardt CR, Sequeira R, Tommos C, Hammes-Schiffer S. 2021. Computing proton-coupled redox potentials of fluorotyrosines in a protein environment. J. Phys. Chem. B 125:128–36
    [Google Scholar]
  87. 87.
    Renata H, Wang ZJ, Arnold FH 2015. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew. Chem. Int. Ed. 54:3351–67
    [Google Scholar]
  88. 88.
    Rouzer CA, Marnett LJ. 2020. Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs. Chem. Rev. 120:7592–641
    [Google Scholar]
  89. 89.
    Saéz-Jiménez V, Rencoret J, Rodríguez-Carvajal MA, Gutiérrez A, Ruiz-Dueñas FJ, Martínez AT. 2016. Role of surface tryptophan for peroxide oxidation of nonphenolic lignin. Biotechnol. Biofuels 9:198
    [Google Scholar]
  90. 90.
    Seefeldt LC, Yang Z-Y, Lukoyanov DA, Harris DF, Dean DR et al. 2020. Reduction of substrates by nitrogenases. Chem. Rev. 120:5082–106
    [Google Scholar]
  91. 91.
    Seyedsayamdost MR, Xie J, Chan CTY, Schultz PG, Stubbe J. 2007. Site-specific insertion of 3-aminotyrosine into subunit α2 of E. coli ribonucleotide reductase: direct evidence for involvement of Y730 and Y731 in radical propagation. J. Am. Chem. Soc. 129:15060–71
    [Google Scholar]
  92. 92.
    Seyedsayamdost MR, Yee CS, Stubbe J 2007. Site-specific incorporation of fluorotyrosines into the R2 subunit of E. coli ribonucleotide reductase by expressed protein ligation. Nat. Protoc. 2:1225–35
    [Google Scholar]
  93. 93.
    Shen J-R. 2015. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Annu. Rev. Plant Biol. 66:23–48
    [Google Scholar]
  94. 94.
    Shibamoto T, Kato Y, Sugiura M, Watanabe T. 2009. Redox potential of the primary plastoquinone electron acceptor QA in photosystem II from Thermosynechococcus elongatus determined by spectroelectrochemistry. Biochemistry 48:10682–84
    [Google Scholar]
  95. 95.
    Shipps C, Kelly HR, Dahl PJ, Yi SM, Vu D et al. 2021. Intrinsic electronic conductivity of individual atomically resolved amyloid crystals reveals micrometer-long hole hopping via tyrosines. PNAS 118:e2014139118
    [Google Scholar]
  96. 96.
    Shisler KA, Broderick JB. 2014. Glycyl radical activating enzymes: structure, mechanism, and substrate interactions. Arch. Biochem. Biophys. 546:64–71
    [Google Scholar]
  97. 97.
    Sjöberg B-M, Reichard P, Gräslund A, Ehrenberg A 1977. Nature of free radical in ribonucleotide reductase from Escherichia coli. J. Biol. Chem. 252:536–41
    [Google Scholar]
  98. 98.
    Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE. 2001. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–106
    [Google Scholar]
  99. 99.
    Solar S, Getoff N, Surdhar PS, Armstrong DA, Singh A 1991. Oxidation of tryptophan and N-methylindole by N3·, Br2·−, and (SCN)2·− radicals in light- and heavy-water solutions: a pulse radiolysis study. J. Phys. Chem. 95:3639–43
    [Google Scholar]
  100. 100.
    Srinivas V, Lebrette H, Lundin D, Kutin Y, Sahlin M et al. 2018. Metal-free ribonucleotide reduction powered by a DOPA radical in Mycoplasma pathogens. Nature 563:416–20
    [Google Scholar]
  101. 101.
    Stubbe J, Nocera DG, Yee CS, Chang MCY 2003. Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer?. Chem. Rev. 103:2167–202
    [Google Scholar]
  102. 102.
    Sun X, Harder J, Krook M, Jörnvall H, Sjöberg B-M, Reichard P. 1993. A possible glycine radical in anaerobic ribonucleotide reductase from Escherichia coli: nucleotide sequence of the cloned nrdD gene. PNAS 90:577–81
    [Google Scholar]
  103. 103.
    Sun X, Ollagnier S, Schmidt PP, Atta M, Mulliez E et al. 1996. The free radical of the anaerobic ribonucleotide reductase from Escherichia coli is at glycine 681. J. Biol. Chem. 271:6827–31
    [Google Scholar]
  104. 104.
    Tarboush NA, Jensen LMR, Yukl ET, Geng J, Liu A et al. 2011. Mutagenesis of tryptophan199 suggests that hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis. PNAS 108:16956–61
    [Google Scholar]
  105. 105.
    Teo RD, Wang R, Smithwick ER, Migliore A, Theriern MJ, Beratan DN. 2019. Mapping hole hopping escape routes in proteins. PNAS 116:15811–16
    [Google Scholar]
  106. 106.
    Tommos C, Babcock GT. 2000. Proton and hydrogen currents in photosynthetic water oxidation. Biochim. Biophys. Acta Bioenerg. 1458:199–219
    [Google Scholar]
  107. 107.
    Tommos C, Skalicky JJ, Pilloud DL, Wand AJ, Dutton PL. 1999. De novo proteins as models of radical enzymes. Biochemistry 38:9495–507
    [Google Scholar]
  108. 108.
    Tommos C, Valentine KG, Martínez-Rivera MC, Liang L, Moorman VR 2013. Reversible phenol oxidation and reduction in the structurally well-defined 2-mercaptophenol-α3C protein. Biochemistry 52:1409–18
    [Google Scholar]
  109. 109.
    Tyburski R, Liu T, Glover SD, Hammarström L. 2021. Proton-coupled electron transfer guidelines, fair and square. J. Am. Chem. Soc. 143:560–76
    [Google Scholar]
  110. 110.
    Vidal LS, Kelly CL, Mordaka PM, Heap JT. 2018. Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochem. Biophys. Acta Proteins Proteom. 1866:327–47
    [Google Scholar]
  111. 111.
    Wagner AFV, Frey M, Neugebauer FA, Schäfer W, Knappe J. 1992. The free radical in pyruvate formate-lyase is located on glycine-734. PNAS 89:996–1000
    [Google Scholar]
  112. 112.
    Watt IN, Montgomery MG, Runswick MJ, Leslie AGW, Walker JE 2010. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. PNAS 107:16823–27
    [Google Scholar]
  113. 113.
    Westerlund K, Berry BW, Privett HK, Tommos C. 2005. Exploring amino-acid radical chemistry: protein engineering and de novo design. Biochim. Biophys. Acta Bioenerg. 1707:103–16
    [Google Scholar]
  114. 114.
    Wikström M, Krab K, Sharma V. 2018. Oxygen activation and energy conservation by cytochrome c oxidase. Chem. Rev. 118:2469–90
    [Google Scholar]
  115. 115.
    Wikström M, Springett R. 2020. Thermodynamic efficiency, reversibility, and degree of coupling in energy conservation by the mitochondrial respiratory chain. Commun. Biol. 3:45
    [Google Scholar]
  116. 116.
    Wilson TD, Yu Y, Lu Y 2013. Understanding copper-thiolate containing electron transfer centers by incorporation of unnatural amino acids and the CuA center into the type 1 copper protein azurin. Coord. Chem. Rev. 257:260–76
    [Google Scholar]
  117. 117.
    Winkler JR, Gray HB. 2014. Electron flow through metalloproteins. Chem. Rev. 114:3369–80
    [Google Scholar]
  118. 118.
    Yamamoto J, Shimizu K, Kanda T, Hosokawa Y, Iwai S, Plaza P, Müller P. 2017. Loss of fourth electron-transferring tryptophan in animal (6−4) photolyase impairs DNA repair activity in bacterial cells. Biochemistry 56:5356–64
    [Google Scholar]
  119. 119.
    Yee EF, Dzikovski B, Crane BR. 2019. Tuning radical relay residues by proton management rescues protein electron hopping. J. Am. Chem. Soc. 141:17571–87
    [Google Scholar]
  120. 120.
    Yonetani T, Schleyer H, Ehrenberg A. 1966. Studies on cytochrome c peroxidase. VII. Electron paramagnetic resonance absorptions of the enzyme and complex es in dissolved and crystalline forms. J. Biol. Chem. 241:3240–43
    [Google Scholar]
  121. 121.
    Young DD, Schultz PG. 2018. Playing with the molecules of life. ACS Chem. Biol. 13:854–70
    [Google Scholar]
  122. 122.
    Yu Y, Cui C, Wang J, Lu Y 2017. Biosynthetic approach to modeling and understanding metallo-proteins using unnatural amino acids. Sci. China Chem. 60:188–200
    [Google Scholar]
  123. 123.
    Yu Y, Lv X, Li J, Zhou Q, Cui C et al. 2015. Defining the role of tyrosine and rational tuning of oxidase activity by genetic incorporation of unnatural tyrosine analogs. J. Am. Chem. Soc. 137:4594–97
    [Google Scholar]
  124. 124.
    Yu Y, Zhou Q, Wang L, Liu X, Zhang W et al. 2015. Significant improvement of oxidase activity through the genetic incorporation of a redox-active unnatural amino acid. Chem. Sci. 6:3881–85
    [Google Scholar]
  125. 125.
    Zanetti-Polzi L, Daidone I, Corni S 2019. Evidence of a thermodynamic ramp for hole hopping to protect a redox enzyme from oxidative damage. J. Phys. Chem. Lett. 10:1450–56
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-100521-103031
Loading
/content/journals/10.1146/annurev-biophys-100521-103031
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error