1932

Abstract

Many proteins contain large structurally disordered regions or are entirely disordered under physiological conditions. The functions of these intrinsically disordered proteins (IDPs) often involve interactions with other biomolecules. An important emerging effort has thus been to identify the molecular mechanisms of IDP interactions and how they differ from the textbook notions of biomolecular binding for folded proteins. In this review, we summarize how the versatile tool kit of single-molecule fluorescence spectroscopy can aid the investigation of these conformationally heterogeneous and highly dynamic molecular systems. We discuss the experimental observables that can be employed and how they enable IDP complexes to be probed on timescales from nanoseconds to hours. Key insights include the diverse structural and dynamic properties of bound IDPs and the kinetic mechanisms facilitated by disorder, such as fly-casting; disorder-mediated encounter complexes; and competitive substitution via ternary complexes, which enables rapid dissociation even for high-affinity complexes. We also discuss emerging links to aggregation, liquid–liquid phase separation, and cellular processes, as well as current technical advances to further expand the scope of single-molecule spectroscopy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-101122-071930
2023-05-09
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/biophys/52/1/annurev-biophys-101122-071930.html?itemId=/content/journals/10.1146/annurev-biophys-101122-071930&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Antonik M, Felekyan S, Gaiduk A, Seidel CAM. 2006. Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. J. Phys. Chem. B 110:6970–78
    [Google Scholar]
  2. 2.
    Asher WB, Geggier P, Holsey MD, Gilmore GT, Pati AK et al. 2021. Single-molecule FRET imaging of GPCR dimers in living cells. Nat. Methods 18:397–405
    [Google Scholar]
  3. 3.
    Aubin JE. 1979. Autofluorescence of viable cultured mammalian cells. J. Histochem. Cytochem. 27:36–43
    [Google Scholar]
  4. 4.
    Avdoshenko SM, Das A, Satija R, Papoian GA, Makarov DE. 2017. Theoretical and computational validation of the Kuhn barrier friction mechanism in unfolded proteins. Sci. Rep. 7:269
    [Google Scholar]
  5. 5.
    Babu MM. 2016. The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem. Soc. Trans. 44:1185–200
    [Google Scholar]
  6. 6.
    Bah A, Forman-Kay JD. 2016. Modulation of intrinsically disordered protein function by post-translational modifications. J. Biol. Chem. 291:6696–705
    [Google Scholar]
  7. 7.
    Banerjee PR, Mitrea DM, Kriwacki RW, Deniz AA. 2016. Asymmetric modulation of protein order–disorder transitions by phosphorylation and partner binding. Angew. Chem. Int. Ed. 55:1675–79
    [Google Scholar]
  8. 8.
    Banerjee PR, Moosa MM, Deniz AA. 2016. Two-dimensional crowding uncovers a hidden conformation of α-synuclein. Angew. Chem. Int. Ed. 55:12789–92
    [Google Scholar]
  9. 9.
    Benke S, Roderer D, Wunderlich B, Nettels D, Glockshuber R, Schuler B. 2015. The assembly dynamics of the cytolytic pore toxin ClyA. Nat. Commun. 6:6198
    [Google Scholar]
  10. 10.
    Berlow RB, Dyson HJ, Wright PE. 2017. Hypersensitive termination of the hypoxic response by a disordered protein switch. Nature 543:447–51
    [Google Scholar]
  11. 11.
    Berlow RB, Dyson HJ, Wright PE. 2018. Expanding the paradigm: intrinsically disordered proteins and allosteric regulation. J. Mol. Biol. 430:2309–20
    [Google Scholar]
  12. 12.
    Best RB. 2017. Computational and theoretical advances in studies of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 42:147–54
    [Google Scholar]
  13. 13.
    Bigman LS, Iwahara J, Levy Y. 2022. Negatively charged disordered regions are prevalent and functionally important across proteomes. J. Mol. Biol. 434:167660
    [Google Scholar]
  14. 14.
    Boersma AJ, Zuhorn IS, Poolman B. 2015. A sensor for quantification of macromolecular crowding in living cells. Nat. Methods 12:227–29
    [Google Scholar]
  15. 15.
    Böhmer M, Wahl M, Rahn HJ, Erdmann R, Enderlein J. 2002. Time-resolved fluorescence correlation spectroscopy. Chem. Phys. Lett. 353:439–45
    [Google Scholar]
  16. 16.
    Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO et al. 2018. Extreme disorder in an ultrahigh-affinity protein complex. Nature 555:61–66
    [Google Scholar]
  17. 17.
    Borgia A, Zheng W, Buholzer K, Borgia MB, Schuler A et al. 2016. Consistent view of polypeptide chain expansion in chemical denaturants from multiple experimental methods. J. Am. Chem. Soc. 138:11714–26
    [Google Scholar]
  18. 18.
    Bottaro S, Lindorff-Larsen K. 2018. Biophysical experiments and biomolecular simulations: a perfect match?. Science 361:355–60
    [Google Scholar]
  19. 19.
    Brady JP, Farber PJ, Sekhar A, Lin YH, Huang R et al. 2017. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. PNAS 114:E8194–203
    [Google Scholar]
  20. 20.
    Brangwynne CP, Tompa P, Pappu RV. 2015. Polymer physics of intracellular phase transitions. Nat. Phys. 11:899–904
    [Google Scholar]
  21. 21.
    Bremer A, Farag M, Borcherds WM, Peran I, Martin EW et al. 2022. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14:196–207
    [Google Scholar]
  22. 22.
    Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L et al. 2002. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416:507–11
    [Google Scholar]
  23. 23.
    Budde J-H, van der Voort N, Felekyan S, Folz J, Kühnemuth R et al. 2021. FRET nanoscopy enables seamless imaging of molecular assemblies with sub-nanometer resolution. arXiv:2108.00024 [physics.optics]
  24. 24.
    Burke KA, Janke AM, Rhine CL, Fawzi NL. 2015. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol. Cell 60:231–41
    [Google Scholar]
  25. 25.
    Camacho-Zarco AR, Schnapka V, Guseva S, Abyzov A, Adamski W et al. 2022. NMR provides unique insight into the functional dynamics and interactions of intrinsically disordered proteins. Chem. Rev. 122:9331–56
    [Google Scholar]
  26. 26.
    Chen TY, Cheng YS, Huang PS, Chen P. 2018. Facilitated unbinding via multivalency-enabled ternary complexes: new paradigm for protein-DNA interactions. Acc. Chem. Res. 51:860–68
    [Google Scholar]
  27. 27.
    Chowdhury A, Kovalenko SA, Aramburu IV, Tan PS, Ernsting NP, Lemke EA. 2019. Mechanism-dependent modulation of ultrafast interfacial water dynamics in intrinsically disordered protein complexes. Angew. Chem. Int. Ed. 58:4720–24
    [Google Scholar]
  28. 28.
    Chung HS, Eaton WA. 2018. Protein folding transition path times from single molecule FRET. Curr. Opin. Struct. Biol. 48:30–39
    [Google Scholar]
  29. 29.
    Chung HS, Louis JM, Gopich IV. 2016. Analysis of fluorescence lifetime and energy transfer efficiency in single-molecule photon trajectories of fast-folding proteins. J. Phys. Chem. B 120:680–99
    [Google Scholar]
  30. 30.
    Chung HS, Meng F, Kim JY, McHale K, Gopich IV, Louis JM. 2017. Oligomerization of the tetramerization domain of p53 probed by two- and three-color single-molecule FRET. PNAS 114:E6812–21
    [Google Scholar]
  31. 31.
    Crawford R, Torella JP, Aigrain L, Plochowietz A, Gryte K et al. 2013. Long-lived intracellular single-molecule fluorescence using electroporated molecules. Biophys. J. 105:2439–50
    [Google Scholar]
  32. 32.
    Cremades N, Cohen SIA, Deas E, Abramov AY, Chen AY et al. 2012. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 149:1048–59
    [Google Scholar]
  33. 33.
    Cubuk J, Alston JJ, Incicco JJ, Singh S, Stuchell-Brereton MD et al. 2021. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat. Commun. 12:1936
    [Google Scholar]
  34. 34.
    Das RK, Ruff KM, Pappu RV. 2015. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 32:102–12
    [Google Scholar]
  35. 35.
    de Torres J, Ghenuche P, Moparthi SB, Grigoriev V, Wenger J. 2015. FRET enhancement in aluminum zero-mode waveguides. ChemPhysChem 16:782–88
    [Google Scholar]
  36. 36.
    Demarest SJ, Martinez-Yamout M, Chung J, Chen H, Xu W et al. 2002. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 415:549–53
    [Google Scholar]
  37. 37.
    Dignon GL, Best RB, Mittal J. 2020. Biomolecular phase separation: from molecular driving forces to macroscopic properties. Annu. Rev. Phys. Chem. 71:53–75
    [Google Scholar]
  38. 38.
    Dingfelder F, Wunderlich B, Benke S, Zosel F, Zijlstra N et al. 2017. Rapid microfluidic double-jump mixing device for single-molecule spectroscopy. J. Am. Chem. Soc. 139:6062–65
    [Google Scholar]
  39. 39.
    Doose S, Neuweiler H, Sauer M. 2009. Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem 10:1389–98
    [Google Scholar]
  40. 40.
    Dyson HJ, Wright PE. 2021. NMR illuminates intrinsic disorder. Curr. Opin. Struct. Biol. 70:44–52
    [Google Scholar]
  41. 41.
    Eaton WA, Wolynes PG. 2017. Theory, simulations, and experiments show that proteins fold by multiple pathways. PNAS 114:E9759–60
    [Google Scholar]
  42. 42.
    Felekyan S, Kalinin S, Sanabria H, Valeri A, Seidel CAM 2012. Filtered FCS: Species auto- and cross-correlation functions highlight binding and dynamics in biomolecules. ChemPhysChem 13:1036–53
    [Google Scholar]
  43. 43.
    Ferreon ACM, Ferreon JC, Wright PE, Deniz AA. 2013. Modulation of allostery by protein intrinsic disorder. Nature 498:390–94
    [Google Scholar]
  44. 44.
    Ferreon ACM, Gambin Y, Lemke EA, Deniz AA. 2009. Interplay of α-synuclein binding and conformational switching probed by single-molecule fluorescence. PNAS 106:5645–50
    [Google Scholar]
  45. 45.
    Fitzgerald GA, Terry DS, Warren AL, Quick M, Javitch JA, Blanchard SC. 2019. Quantifying secondary transport at single-molecule resolution. Nature 575:528–34
    [Google Scholar]
  46. 46.
    Follis AV, Llambi F, Merritt P, Chipuk JE, Green DR, Kriwacki RW. 2015. Pin1-induced proline isomerization in cytosolic p53 mediates BAX activation and apoptosis. Mol. Cell 59:677–84
    [Google Scholar]
  47. 47.
    Förster T. 1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 6:55–75
    [Google Scholar]
  48. 48.
    Frege T, Uversky VN. 2015. Intrinsically disordered proteins in the nucleus of human cells. Biochem. Biophys. Rep. 1:33–51
    [Google Scholar]
  49. 49.
    Fuxreiter M, Tompa P, eds. 2012. Fuzziness: Structural Disorder in Protein Complexes Adv. Exp. Med. Biol. 725 Austin, TX: Landes Biosci.
  50. 50.
    Gambin Y, Vandelinder V, Ferreon AC, Lemke EA, Groisman A, Deniz AA. 2011. Visualizing a one-way protein encounter complex by ultrafast single-molecule mixing. Nat. Methods 8:239–41
    [Google Scholar]
  51. 51.
    George EM, Brown DT. 2010. Prothymosin alpha is a component of a linker histone chaperone. FEBS Lett 584:2833–36
    [Google Scholar]
  52. 52.
    Gianni S, Dogan J, Jemth P. 2016. Coupled binding and folding of intrinsically disordered proteins: What can we learn from kinetics?. Curr. Opin. Struct. Biol. 36:18–24
    [Google Scholar]
  53. 53.
    Gibbons RM. 1969. Scaled particle theory for particles of arbitrary shape. Mol. Phys. 17:81–86
    [Google Scholar]
  54. 54.
    Gibbs EB, Lu F, Portz B, Fisher MJ, Medellin BP et al. 2017. Phosphorylation induces sequence-specific conformational switches in the RNA polymerase II C-terminal domain. Nat. Commun. 8:15233
    [Google Scholar]
  55. 55.
    Gomes GN, Gradinaru CC. 2017. Insights into the conformations and dynamics of intrinsically disordered proteins using single-molecule fluorescence. Biochim. Biophys. Acta Proteins Proteom. 1865:1696–706
    [Google Scholar]
  56. 56.
    Gopich IV, Szabo A. 2005. Theory of photon statistics in single-molecule Förster resonance energy transfer. J. Chem. Phys. 122:14707
    [Google Scholar]
  57. 57.
    Gopich IV, Szabo A. 2009. Decoding the pattern of photon colors in single-molecule FRET. J. Phys. Chem. B 113:10965–73
    [Google Scholar]
  58. 58.
    Gopich IV, Szabo A. 2012. Theory of the energy transfer efficiency and fluorescence lifetime distribution in single-molecule FRET. PNAS 109:7747–52
    [Google Scholar]
  59. 59.
    Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J et al. 2020. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17:217–24
    [Google Scholar]
  60. 60.
    Heidarsson PO, Mercadante D, Sottini A, Nettels D, Borgia MB et al. 2022. Release of linker histone from the nucleosome driven by polyelectrolyte competition with a disordered protein. Nat. Chem. 14:224–31
    [Google Scholar]
  61. 61.
    Hellenkamp B, Schmid S, Doroshenko O, Opanasyuk O, Kuhnemuth R et al. 2018. Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study. Nat. Methods 15:669–76
    [Google Scholar]
  62. 62.
    Hellenkamp B, Thurn J, Stadlmeier M, Hugel T. 2018. Kinetics of transient protein complexes determined via diffusion-independent microfluidic mixing and fluorescence stoichiometry. J. Phys. Chem. B 122:11554–60
    [Google Scholar]
  63. 63.
    Hergeth SP, Schneider R. 2015. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle. EMBO Rep 16:1439–53
    [Google Scholar]
  64. 64.
    Hillger F, Hänni D, Nettels D, Geister S, Grandin M et al. 2008. Probing protein-chaperone interactions with single molecule fluorescence spectroscopy. Angew. Chem. Int. Ed. 47:6184–88
    [Google Scholar]
  65. 65.
    Hines KE, Bankston JR, Aldrich RW. 2015. Analyzing single-molecule time series via nonparametric Bayesian inference. Biophys. J. 108:540–56
    [Google Scholar]
  66. 66.
    Hoffer NQ, Woodside MT. 2019. Probing microscopic conformational dynamics in folding reactions by measuring transition paths. Curr. Opin. Chem. Biol. 53:68–74
    [Google Scholar]
  67. 67.
    Hoffmann A, Kane A, Nettels D, Hertzog DE, Baumgärtel P et al. 2007. Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy. PNAS 104:105–10
    [Google Scholar]
  68. 68.
    Holmstrom ED, Holla A, Zheng W, Nettels D, Best RB, Schuler B. 2018. Accurate transfer efficiencies, distance distributions, and ensembles of unfolded and intrinsically disordered proteins from single-molecule FRET. Methods Enzymol 611:287–325
    [Google Scholar]
  69. 69.
    Holmstrom ED, Liu ZW, Nettels D, Best RB, Schuler B. 2019. Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat. Commun. 10:2453
    [Google Scholar]
  70. 70.
    Hwang H, Myong S 2014. Protein induced fluorescence enhancement (PIFE) for probing protein–nucleic acid interactions. Chem. Soc. Rev. 43:1221–29
    [Google Scholar]
  71. 71.
    Iljina M, Garcia GA, Horrocks MH, Tosatto L, Choi ML et al. 2016. Kinetic model of the aggregation of α-synuclein provides insights into prion-like spreading. PNAS 113:E1206–15
    [Google Scholar]
  72. 72.
    Juette MF, Terry DS, Wasserman MR, Altman RB, Zhou Z et al. 2016. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods 13:341–44
    [Google Scholar]
  73. 73.
    Kalinin S, Valeri A, Antonik M, Felekyan S, Seidel CA. 2010. Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. J. Phys. Chem. B 114:7983–95
    [Google Scholar]
  74. 74.
    Kang H, Pincus PA, Hyeon C, Thirumalai D. 2015. Effects of macromolecular crowding on the collapse of biopolymers. Phys. Rev. Lett. 114:068303
    [Google Scholar]
  75. 75.
    Kapanidis AN, Laurence TA, Lee NK, Margeat E, Kong X, Weiss S. 2005. Alternating-laser excitation of single molecules. Acc. Chem. Res. 38:523–33
    [Google Scholar]
  76. 76.
    Kar M, Dar F, Welsh TJ, Vogel LT, Kuhnemuth R et al. 2022. Phase-separating RNA-binding proteins form heterogeneous distributions of clusters in subsaturated solutions. PNAS 119:e2202222119
    [Google Scholar]
  77. 77.
    Kikhney AG, Svergun DI. 2015. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 589:2570–77
    [Google Scholar]
  78. 78.
    Kim JY, Chung HS. 2020. Disordered proteins follow diverse transition paths as they fold and bind to a partner. Science 368:1253–57
    [Google Scholar]
  79. 79.
    Kim JY, Meng F, Yoo J, Chung HS. 2018. Diffusion-limited association of disordered protein by non-native electrostatic interactions. Nat. Commun. 9:4707
    [Google Scholar]
  80. 80.
    Kim PS, Baldwin RL. 1982. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu. Rev. Biochem. 51:459–89
    [Google Scholar]
  81. 81.
    Klose D, Holla A, Gmeiner C, Nettels D, Ritsch I et al. 2021. Resolving distance variations by single-molecule FRET and EPR spectroscopy using rotamer libraries. Biophys. J. 120:4842–58
    [Google Scholar]
  82. 82.
    Knight JB, Vishwanath A, Brody JP, Austin RH. 1998. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys. Rev. Lett. 80:3863–66
    [Google Scholar]
  83. 83.
    König I, Soranno A, Nettels D, Schuler B. 2021. Impact of in-cell and in-vitro crowding on the conformations and dynamics of an intrinsically disordered protein. Angew. Chem. Int. Ed. 60:10724–29
    [Google Scholar]
  84. 84.
    König I, Zarrine-Afsar A, Aznauryan M, Soranno A, Wunderlich B et al. 2015. Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells. Nat. Methods 12:773–79
    [Google Scholar]
  85. 85.
    Kudryavtsev V, Sikor M, Kalinin S, Mokranjac D, Seidel CAM, Lamb DC. 2012. Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. ChemPhysChem 13:1060–78
    [Google Scholar]
  86. 86.
    Lakowicz JR. 1999. Principles of Fluorescence Spectroscopy New York: Kluwer Acad.
  87. 87.
    Lamboy JA, Kim H, Lee KS, Ha T, Komives EA. 2011. Visualization of the nanospring dynamics of the IκBα ankyrin repeat domain in real time. PNAS 108:10178–83
    [Google Scholar]
  88. 88.
    LeBlanc SJ, Kulkarni P, Weninger KR. 2018. Single molecule FRET: a powerful tool to study intrinsically disordered proteins. Biomolecules 8:140
    [Google Scholar]
  89. 89.
    Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J et al. 2005. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 88:2939–53
    [Google Scholar]
  90. 90.
    Leisle L, Chadda R, Lueck JD, Infield DT, Galpin JD et al. 2016. Cellular encoding of Cy dyes for single-molecule imaging. eLife 5:e19088
    [Google Scholar]
  91. 91.
    Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V et al. 2021. FRET-based dynamic structural biology: challenges, perspectives and an appeal for open-science practices. eLife 10:e60416
    [Google Scholar]
  92. 92.
    Li J, Hilser VJ. 2018. Assessing allostery in intrinsically disordered proteins with ensemble allosteric model. Methods Enzymol 611:531–57
    [Google Scholar]
  93. 93.
    Lipman EA, Schuler B, Bakajin O, Eaton WA. 2003. Single-molecule measurement of protein folding kinetics. Science 301:1233–35
    [Google Scholar]
  94. 94.
    Martin EW, Holehouse AS, Peran I, Farag M, Incicco JJ et al. 2020. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367:694–99
    [Google Scholar]
  95. 95.
    McKibben KM, Rhoades E. 2019. Independent tubulin binding and polymerization by the proline-rich region of Tau is regulated by Tau's N-terminal domain. J. Biol. Chem. 294:19381–94
    [Google Scholar]
  96. 96.
    McKinney SA, Joo C, Ha T. 2006. Analysis of single-molecule FRET trajectories using hidden Markov modeling. Biophys. J. 91:1941–51
    [Google Scholar]
  97. 97.
    Melo AM, Coraor J, Alpha-Cobb G, Elbaum-Garfinkle S, Nath A, Rhoades E 2016. A functional role for intrinsic disorder in the tau-tubulin complex. PNAS 113:14336–41
    [Google Scholar]
  98. 98.
    Meng F, Yoo J, Chung HS. 2022. Single-molecule fluorescence imaging and deep learning reveal highly heterogeneous aggregation of amyloid-beta 42. PNAS 119:e2116736119
    [Google Scholar]
  99. 99.
    Metskas LA, Rhoades E. 2020. Single-molecule FRET of intrinsically disordered proteins. Annu. Rev. Phys. Chem. 71:391–414
    [Google Scholar]
  100. 100.
    Milles S, Huy Bui K, Koehler C, Eltsov M, Beck M, Lemke EA 2013. Facilitated aggregation of FG nucleoporins under molecular crowding conditions. EMBO Rep 14:178–83
    [Google Scholar]
  101. 101.
    Milles S, Mercadante D, Aramburu IV, Jensen MR, Banterle N et al. 2015. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 163:734–45
    [Google Scholar]
  102. 102.
    Mitrea DM, Cika JA, Guy CS, Ban D, Banerjee PR et al. 2016. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife 5:e13571
    [Google Scholar]
  103. 103.
    Mitrea DM, Cika JA, Stanley CB, Nourse A, Onuchic PL et al. 2018. Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation. Nat. Commun. 9:842
    [Google Scholar]
  104. 104.
    Mittag T, Forman-Kay JD. 2007. Atomic-level characterization of disordered protein ensembles. Curr. Opin. Struct. Biol. 17:3–14
    [Google Scholar]
  105. 105.
    Mittag T, Marsh J, Grishaev A, Orlicky S, Lin H et al. 2010. Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. Structure 18:494–506
    [Google Scholar]
  106. 106.
    Morger D, Zosel F, Buhlmann M, Zuger S, Mittelviefhaus M et al. 2018. The three-fold axis of the HIV-1 capsid lattice is the species-specific binding interface for TRIM5α. J. Virol. 92:e01541–17
    [Google Scholar]
  107. 107.
    Nasir I, Onuchic PL, Labra SR, Deniz AA. 2019. Single-molecule fluorescence studies of intrinsically disordered proteins and liquid phase separation. Biochim. Biophys. Acta Proteins Proteom. 1867:980–87
    [Google Scholar]
  108. 108.
    Nath A, Sammalkorpi M, DeWitt DC, Trexler AJ, Elbaum-Garfinkle S et al. 2012. The conformational ensembles of α-synuclein and tau: combining single-molecule FRET and simulations. Biophys. J. 103:1940–49
    [Google Scholar]
  109. 109.
    Nettels D, Gopich IV, Hoffmann A, Schuler B. 2007. Ultrafast dynamics of protein collapse from single-molecule photon statistics. PNAS 104:2655–60
    [Google Scholar]
  110. 110.
    Nir E, Michalet X, Hamadani KM, Laurence TA, Neuhauser D et al. 2006. Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. J. Phys. Chem. B 110:22103–24
    [Google Scholar]
  111. 111.
    Nüesch MF, Ivanovic MT, Claude JB, Nettels D, Best RB et al. 2022. Single-molecule detection of ultrafast biomolecular dynamics with nanophotonics. J. Am. Chem. Soc. 144:52–56
    [Google Scholar]
  112. 112.
    Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ et al. 2013. D2P2: database of disordered protein predictions. Nucleic Acids Res 41:D508–16
    [Google Scholar]
  113. 113.
    O'Brien EP, Morrison G, Brooks BR, Thirumalai D. 2009. How accurate are polymer models in the analysis of Förster resonance energy transfer experiments on proteins?. J. Chem. Phys. 130:124903
    [Google Scholar]
  114. 114.
    Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK. 2008. Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genom. 9:Suppl. 1S1
    [Google Scholar]
  115. 115.
    Olsen JG, Teilum K, Kragelund BB. 2017. Behaviour of intrinsically disordered proteins in protein-protein complexes with an emphasis on fuzziness. Cell. Mol. Life Sci. 74:3175–83
    [Google Scholar]
  116. 116.
    Orte A, Birkett NR, Clarke RW, Devlin GL, Dobson CM, Klenerman D. 2008. Direct characterization of amyloidogenic oligomers by single-molecule fluorescence. PNAS 105:14424–29
    [Google Scholar]
  117. 117.
    Patterson G, Davidson M, Manley S, Lippincott-Schwartz J. 2010. Superresolution imaging using single-molecule localization. Annu. Rev. Phys. Chem. 61:345–67
    [Google Scholar]
  118. 118.
    Peng B, Muthukumar M. 2015. Modeling competitive substitution in a polyelectrolyte complex. J. Chem. Phys. 143:243133
    [Google Scholar]
  119. 119.
    Peng S, Sun R, Wang W, Chen C. 2017. Single-molecule photoactivation FRET: a general and easy-to-implement approach to break the concentration barrier. Angew. Chem. Int. Ed. 56:6882–85
    [Google Scholar]
  120. 120.
    Pfeil SH, Wickersham CE, Hoffmann A, Lipman EA. 2009. A microfluidic mixing system for single-molecule measurements. Rev. Sci. Instrum. 80:055105
    [Google Scholar]
  121. 121.
    Phillips AH, Kriwacki RW. 2020. Intrinsic protein disorder and protein modifications in the processing of biological signals. Curr. Opin. Struct. Biol. 60:1–6
    [Google Scholar]
  122. 122.
    Pinotsi D, Buell AK, Galvagnion C, Dobson CM, Kaminski Schierle GS, Kaminski CF. 2014. Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy. Nano Lett 14:339–45
    [Google Scholar]
  123. 123.
    Plitzko JM, Schuler B, Selenko P. 2017. Structural biology outside the box—inside the cell. Curr. Opin. Struct. Biol. 46:110–21
    [Google Scholar]
  124. 124.
    Rajagopalan S, Huang F, Fersht AR. 2011. Single-molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53. Nucleic Acids Res 39:2294–303
    [Google Scholar]
  125. 125.
    Ruff KM, Pappu RV, Holehouse AS. 2019. Conformational preferences and phase behavior of intrinsically disordered low complexity sequences: insights from multiscale simulations. Curr. Opin. Struct. Biol. 56:1–10
    [Google Scholar]
  126. 126.
    Sakmann B, Neher E. 1995. Single Channel Recording New York: Plenum Press
  127. 127.
    Sakon JJ, Weninger KR. 2010. Detecting the conformation of individual proteins in live cells. Nat. Methods 7:203–5
    [Google Scholar]
  128. 128.
    Sarkar M, Smith AE, Pielak GJ. 2013. Impact of reconstituted cytosol on protein stability. PNAS 110:19342–47
    [Google Scholar]
  129. 129.
    Schreiber G, Haran G, Zhou HX. 2009. Fundamental aspects of protein-protein association kinetics. Chem. Rev. 109:839–60
    [Google Scholar]
  130. 130.
    Schuler B. 2013. Single-molecule FRET of protein structure and dynamics—a primer. J. Nanobiotechnol. 11:Suppl. 1S2
    [Google Scholar]
  131. 131.
    Schuler B. 2018. Perspective: chain dynamics of unfolded and intrinsically disordered proteins from nanosecond fluorescence correlation spectroscopy combined with single-molecule FRET. J. Chem. Phys. 149:010901
    [Google Scholar]
  132. 132.
    Schuler B, Borgia A, Borgia MB, Heidarsson PO, Holmstrom ED et al. 2020. Binding without folding—the biomolecular function of disordered polyelectrolyte complexes. Curr. Opin. Struct. Biol. 60:66–76
    [Google Scholar]
  133. 133.
    Schuler B, Lipman EA, Steinbach PJ, Kumke M, Eaton WA. 2005. Polyproline and the “spectroscopic ruler” revisited with single molecule fluorescence. PNAS 102:2754–59
    [Google Scholar]
  134. 134.
    Schuler B, Soranno A, Hofmann H, Nettels D. 2016. Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu. Rev. Biophys. 45:207–31
    [Google Scholar]
  135. 135.
    Seim I, Posey AE, Snead WT, Stormo BM, Klotsa D et al. 2022. Dilute phase oligomerization can oppose phase separation and modulate material properties of a ribonucleoprotein condensate. PNAS 119:e2120799119
    [Google Scholar]
  136. 136.
    Selvin PR, Ha T. 2008. Single-Molecule Techniques: A Laboratory Manual New York: Cold Spring Harb. Lab. Press
  137. 137.
    Sgouralis I, Madaan S, Djutanta F, Kha R, Hariadi RF, Presse S. 2019. A Bayesian nonparametric approach to single molecule Förster resonance energy transfer. J. Phys. Chem. B 123:675–88
    [Google Scholar]
  138. 138.
    Shammas SL, Crabtree MD, Dahal L, Wicky BI, Clarke J 2016. Insights into coupled folding and binding mechanisms from kinetic studies. J. Biol. Chem. 291:6689–95
    [Google Scholar]
  139. 139.
    Shammas SL, Garcia GA, Kumar S, Kjaergaard M, Horrocks MH et al. 2015. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers. Nat. Commun. 6:7025
    [Google Scholar]
  140. 140.
    Shea JE, Best RB, Mittal J. 2021. Physics-based computational and theoretical approaches to intrinsically disordered proteins. Curr. Opin. Struct. Biol. 67:219–25
    [Google Scholar]
  141. 141.
    Shoemaker BA, Portman JJ, Wolynes PG. 2000. Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. PNAS 97:8868–73
    [Google Scholar]
  142. 142.
    Sisamakis E, Valeri A, Kalinin S, Rothwell PJ, Seidel CAM. 2010. Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol 475:455–514
    [Google Scholar]
  143. 143.
    Smyth S, Zhang Z, Bah A, Tsangaris TE, Dawson J et al. 2022. Multisite phosphorylation and binding alter conformational dynamics of the 4E-BP2 protein. Biophys. J 1213049–60
  144. 144.
    Soranno A, Buchli B, Nettels D, Müller-Späth S, Cheng RR et al. 2012. Quantifying internal friction in unfolded and intrinsically disordered proteins with single molecule spectroscopy. PNAS 109:17800–6
    [Google Scholar]
  145. 145.
    Soranno A, Holla A, Dingfelder F, Nettels D, Makarov DE, Schuler B. 2017. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations. PNAS 114:E1833–39
    [Google Scholar]
  146. 146.
    Soranno A, König I, Borgia MB, Hofmann H, Zosel F et al. 2014. Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments. PNAS 111:4874–79
    [Google Scholar]
  147. 147.
    Soranno A, Zosel F, Hofmann H. 2018. Internal friction in an intrinsically disordered protein—comparing Rouse-like models with experiments. J. Chem. Phys. 148:123326
    [Google Scholar]
  148. 148.
    Sottini A, Borgia A, Borgia MB, Bugge K, Nettels D et al. 2020. Polyelectrolyte interactions enable rapid association and dissociation in high affinity disordered protein complexes. Nat. Commun. 11:5736
    [Google Scholar]
  149. 149.
    Stadler AM, Stingaciu L, Radulescu A, Holderer O, Monkenbusch M et al. 2014. Internal nanosecond dynamics in the intrinsically disordered myelin basic protein. J. Am. Chem. Soc. 136:6987–94
    [Google Scholar]
  150. 150.
    Stracy M, Kapanidis AN. 2017. Single-molecule and super-resolution imaging of transcription in living bacteria. Methods 120:103–14
    [Google Scholar]
  151. 151.
    Stryer L, Haugland RP. 1967. Energy transfer: a spectroscopic ruler. PNAS 58:719–26
    [Google Scholar]
  152. 152.
    Stuchell-Brereton MD, Zimmerman MI, Miller JJ, Mallimadugula UL, Incicco JJ et al. 2023. Apolipoprotein E4 has extensive conformational heterogeneity in lipid-free and lipid-bound forms. PNAS 120e2215371120
  153. 153.
    Sturzenegger F, Zosel F, Holmstrom ED, Buholzer KJ, Makarov DE et al. 2018. Transition path times of coupled folding and binding reveal the formation of an encounter complex. Nat. Commun. 9:4708
    [Google Scholar]
  154. 154.
    Szalai AM, Siarry B, Lukin J, Giusti S, Unsain N et al. 2021. Super-resolution imaging of energy transfer by intensity-based STED-FRET. Nano Lett 21:2296–303
    [Google Scholar]
  155. 155.
    Tan PS, Aramburu IV, Mercadante D, Tyagi S, Chowdhury A et al. 2018. Two differential binding mechanisms of FG-nucleoporins and nuclear transport receptors. Cell Rep 22:3660–71
    [Google Scholar]
  156. 156.
    Theillet FX, Kalmar L, Tompa P, Han KH, Selenko P et al. 2013. The alphabet of intrinsic disorder: I. Act like a Pro: on the abundance and roles of proline residues in intrinsically disordered proteins. Intrinsically Disord. Proteins 1:e24360
    [Google Scholar]
  157. 157.
    Thomasen FE, Lindorff-Larsen K. 2022. Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins. Biochem. Soc. Trans. 50:541–54
    [Google Scholar]
  158. 158.
    Tompa P, Fuxreiter M. 2008. Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. Trends Biochem. Sci. 33:2–8
    [Google Scholar]
  159. 159.
    Trexler AJ, Rhoades E. 2009. α-Synuclein binds large unilamellar vesicles as an extended helix. Biochemistry 48:2304–6
    [Google Scholar]
  160. 160.
    Tsang B, Pritisanac I, Scherer SW, Moses AM, Forman-Kay JD. 2020. Phase separation as a missing mechanism for interpretation of disease mutations. Cell 183:1742–56
    [Google Scholar]
  161. 161.
    Tsytlonok M, Sanabria H, Wang Y, Felekyan S, Hemmen K et al. 2019. Dynamic anticipation by Cdk2/Cyclin A-bound p27 mediates signal integration in cell cycle regulation. Nat. Commun. 10:1676
    [Google Scholar]
  162. 162.
    van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW et al. 2014. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114:6589–631
    [Google Scholar]
  163. 163.
    Vancraenenbroeck R, Harel YS, Zheng W, Hofmann H. 2019. Polymer effects modulate binding affinities in disordered proteins. PNAS 116:19506–12
    [Google Scholar]
  164. 164.
    Veldhuis G, Segers-Nolten I, Ferlemann E, Subramaniam V 2009. Single-molecule FRET reveals structural heterogeneity of SDS-bound α-synuclein. ChemBioChem 10:436–39
    [Google Scholar]
  165. 165.
    Weickert S, Cattani J, Drescher M. 2019. Intrinsically disordered proteins (IDPs) studied by EPR and in-cell EPR. Electron Paramagnetic Resonance, Vol. 261–37. London: R. Soc. Chem.
    [Google Scholar]
  166. 166.
    Wen J, Hong L, Krainer G, Yao Q-Q, Knowles TPJ et al. 2021. Conformational expansion of Tau in condensates promotes irreversible aggregation. J. Am. Chem. Soc. 143:13056–64
    [Google Scholar]
  167. 167.
    Wiggers F, Wohl S, Dubovetskyi A, Rosenblum G, Zheng W, Hofmann H. 2021. Diffusion of a disordered protein on its folded ligand. PNAS 118:e2106690118
    [Google Scholar]
  168. 168.
    Wright PE, Dyson HJ. 2009. Linking folding and binding. Curr. Opin. Struct. Biol. 19:31–38
    [Google Scholar]
  169. 169.
    Wright PE, Dyson HJ. 2015. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16:18–29
    [Google Scholar]
  170. 170.
    Wunderlich B, Nettels D, Benke S, Clark J, Weidner S et al. 2013. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Nat. Protoc. 8:1459–74
    [Google Scholar]
  171. 171.
    Zbinden A, Perez-Berlanga M, De Rossi P, Polymenidou M. 2020. Phase separation and neurodegenerative diseases: a disturbance in the force. Dev. Cell 55:45–68
    [Google Scholar]
  172. 172.
    Zheng W, Hofmann H, Schuler B, Best RB. 2018. Origin of internal friction in disordered proteins depends on solvent quality. J. Phys. Chem. B 122:11478–87
    [Google Scholar]
  173. 173.
    Zheng W, Zerze GH, Borgia A, Mittal J, Schuler B, Best RB. 2018. Inferring properties of disordered chains from FRET transfer efficiencies. J. Chem. Phys. 148:123329
    [Google Scholar]
  174. 174.
    Zhou HX, Rivas GN, Minton AP. 2008. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 37:375–97
    [Google Scholar]
  175. 175.
    Zhu P, Craighead HG. 2012. Zero-mode waveguides for single-molecule analysis. Annu. Rev. Biophys. 41:269–93
    [Google Scholar]
  176. 176.
    Zijlstra N, Dingfelder F, Wunderlich B, Zosel F, Benke S et al. 2017. Rapid microfluidic dilution for single-molecule spectroscopy of low-affinity biomolecular complexes. Angew. Chem. Int. Ed. 56:7126–29
    [Google Scholar]
  177. 177.
    Zimmerman SB, Trach SO. 1991. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 222:599–620
    [Google Scholar]
  178. 178.
    Ziv G, Thirumalai D, Haran G. 2009. Collapse transition in proteins. Phys. Chem. Chem. Phys. 11:83–93
    [Google Scholar]
  179. 179.
    Zosel F, Holla A, Schuler B. 2022. Labeling of proteins for single-molecule fluorescence spectroscopy. Methods Mol. Biol. 2376:207–33
    [Google Scholar]
  180. 180.
    Zosel F, Mercadante D, Nettels D, Schuler B. 2018. A proline switch explains kinetic heterogeneity in a coupled folding and binding reaction. Nat. Commun. 9:3332
    [Google Scholar]
  181. 181.
    Zosel F, Soranno A, Buholzer KJ, Nettels D, Schuler B. 2020. Depletion interactions modulate the binding between disordered proteins in crowded environments. PNAS 117:13480–89
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-101122-071930
Loading
/content/journals/10.1146/annurev-biophys-101122-071930
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error