1932

Abstract

Faithful translation of messenger RNA (mRNA) into protein is essential to maintain protein homeostasis in the cell. Spontaneous translation errors are very rare due to stringent selection of cognate aminoacyl transfer RNAs (tRNAs) and the tight control of the mRNA reading frame by the ribosome. Recoding events, such as stop codon readthrough, frameshifting, and translational bypassing, reprogram the ribosome to make intentional mistakes and produce alternative proteins from the same mRNA. The hallmark of recoding is the change of ribosome dynamics. The signals for recoding are built into the mRNA, but their reading depends on the genetic makeup of the cell, resulting in cell-specific changes in expression programs. In this review, I discuss the mechanisms of canonical decoding and tRNA–mRNA translocation; describe alternative pathways leading to recoding; and identify the links among mRNA signals, ribosome dynamics, and recoding.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-101922-072452
2023-05-09
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/biophys/52/1/annurev-biophys-101922-072452.html?itemId=/content/journals/10.1146/annurev-biophys-101922-072452&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adio S, Senyushkina T, Peske F, Fischer N, Wintermeyer W, Rodnina MV. 2015. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome. Nat. Commun. 6:7442
    [Google Scholar]
  2. 2.
    Advani VM, Dinman JD. 2016. Reprogramming the genetic code: the emerging role of ribosomal frameshifting in regulating cellular gene expression. Bioessays 38:21–26
    [Google Scholar]
  3. 3.
    Bartok O, Pataskar A, Nagel R, Laos M, Goldfarb E et al. 2021. Anti-tumour immunity induces aberrant peptide presentation in melanoma. Nature 590:332–37
    [Google Scholar]
  4. 4.
    Behrmann E, Loerke J, Budkevich TV, Yamamoto K, Schmidt A et al. 2015. Structural snapshots of actively translating human ribosomes. Cell 161:845–57
    [Google Scholar]
  5. 5.
    Beier H, Grimm M. 2001. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 29:4767–82
    [Google Scholar]
  6. 6.
    Belardinelli R, Sharma H, Caliskan N, Cunha CE, Peske F et al. 2016. Choreography of molecular movements during ribosome progression along mRNA. Nat. Struct. Mol. Biol. 23:342–48
    [Google Scholar]
  7. 7.
    Belardinelli R, Sharma H, Peske F, Rodnina MV. 2021. Perturbation of ribosomal subunit dynamics by inhibitors of tRNA translocation. RNA 27:981–90
    [Google Scholar]
  8. 8.
    Belew AT, Hepler NL, Jacobs JL, Dinman JD 2008. PRFdb: a database of computationally predicted eukaryotic programmed –1 ribosomal frameshift signals. BMC Genom. 9:339
    [Google Scholar]
  9. 9.
    Belew AT, Meskauskas A, Musalgaonkar S, Advani VM, Sulima SO et al. 2014. Ribosomal frameshifting in the CCR5 mRNA is regulated by miRNAs and the NMD pathway. Nature 512:265–69
    [Google Scholar]
  10. 10.
    Bock LV, Caliskan N, Korniy N, Peske F, Rodnina MV, Grubmuller H. 2019. Thermodynamic control of –1 programmed ribosomal frameshifting. Nat. Commun. 10:4598
    [Google Scholar]
  11. 11.
    Borovinskaya MA, Shoji S, Holton JM, Fredrick K, Cate JHD 2007. A steric block in translation caused by the antibiotic spectinomycin. ACS Chem. Biol. 2:545–52
    [Google Scholar]
  12. 12.
    Brilot AF, Korostelev AA, Ermolenko DN, Grigorieff N. 2013. Structure of the ribosome with elongation factor G trapped in the pretranslocation state. PNAS 110:20994–99
    [Google Scholar]
  13. 13.
    Caliskan N, Katunin VI, Belardinelli R, Peske F, Rodnina MV. 2014. Programmed –1 frameshifting by kinetic partitioning during impeded translocation. Cell 157:1619–31
    [Google Scholar]
  14. 14.
    Caliskan N, Wohlgemuth I, Korniy N, Pearson M, Peske F, Rodnina MV. 2017. Conditional switch between frameshifting regimes upon translation of dnaX mRNA. Mol. Cell 66:558–67.e4
    [Google Scholar]
  15. 15.
    Carbone CE, Loveland AB, Gamper HB Jr., Hou YM, Demo G, Korostelev AA. 2021. Time-resolved cryo-EM visualizes ribosomal translocation with EF-G and GTP. Nat. Commun. 12:7236
    [Google Scholar]
  16. 16.
    Champagne J, Pataskar A, Blommaert N, Nagel R, Wernaart D et al. 2021. Oncogene-dependent sloppiness in mRNA translation. Mol. Cell 81:4709–21.e9
    [Google Scholar]
  17. 17.
    Chen J, Petrov A, Johansson M, Tsai A, O'Leary SE, Puglisi JD 2014. Dynamic pathways of –1 translational frameshifting. Nature 512:328–32
    [Google Scholar]
  18. 18.
    Choi J, Grosely R, Prabhakar A, Lapointe CP, Wang J, Puglisi JD 2018. How messenger RNA and nascent chain sequences regulate translation elongation. Annu. Rev. Biochem. 87:421–49
    [Google Scholar]
  19. 19.
    Cook GM, Brown K, Shang P, Li Y, Soday L et al. 2022. Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. eLife 11:e75668
    [Google Scholar]
  20. 20.
    Cornish PV, Ermolenko DN, Noller HF, Ha T. 2008. Spontaneous intersubunit rotation in single ribosomes. Mol. Cell 30:578–88
    [Google Scholar]
  21. 21.
    Cridge AG, Crowe-McAuliffe C, Mathew SF, Tate WP. 2018. Eukaryotic translational termination efficiency is influenced by the 3′ nucleotides within the ribosomal mRNA channel. Nucleic Acids Res 46:1927–44
    [Google Scholar]
  22. 22.
    de la Torre D, Chin JW. 2021. Reprogramming the genetic code. Nat. Rev. Genet. 22:169–84
    [Google Scholar]
  23. 23.
    Demo G, Gamper HB, Loveland AB, Masuda I, Carbone CE et al. 2021. Structural basis for +1 ribosomal frameshifting during EF-G-catalyzed translocation. Nat. Commun. 12:4644
    [Google Scholar]
  24. 24.
    Desai VP, Frank F, Lee A, Righini M, Lancaster L et al. 2019. Co-temporal force and fluorescence measurements reveal a ribosomal gear shift mechanism of translation regulation by structured mRNAs. Mol. Cell 75:1007–19.e5
    [Google Scholar]
  25. 25.
    Dever TE, Dinman JD, Green R. 2018. Translation elongation and recoding in eukaryotes. Cold Spring Harb. Perspect. Biol. 10:a032649
    [Google Scholar]
  26. 26.
    Diaconu M, Kothe U, Schlunzen F, Fischer N, Harms JM et al. 2005. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121:991–1004
    [Google Scholar]
  27. 27.
    Drummond DA, Wilke CO. 2009. The evolutionary consequences of erroneous protein synthesis. Nat. Rev. Genet. 10:715–24
    [Google Scholar]
  28. 28.
    Dunn JG, Foo CK, Belletier NG, Gavis ER, Weissman JS 2013. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife 2:e01179
    [Google Scholar]
  29. 29.
    Endoh T, Sugimoto N. 2013. Unusual –1 ribosomal frameshift caused by stable RNA G-quadruplex in open reading frame. Anal. Chem. 85:11435–39
    [Google Scholar]
  30. 30.
    Ermolenko DN, Majumdar ZK, Hickerson RP, Spiegel PC, Clegg RM, Noller HF. 2007. Observation of intersubunit movement of the ribosome in solution using FRET. J. Mol. Biol. 370:530–40
    [Google Scholar]
  31. 31.
    Ermolenko DN, Noller HF. 2011. mRNA translocation occurs during the second step of ribosomal intersubunit rotation. Nat. Struct. Mol. Biol. 18:457–62
    [Google Scholar]
  32. 32.
    Eswarappa SM, Potdar AA, Koch WJ, Fan Y, Vasu K et al. 2014. Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell 157:1605–18
    [Google Scholar]
  33. 33.
    Fagan CE, Maehigashi T, Dunkle JA, Miles SJ, Dunham CM. 2014. Structural insights into translational recoding by frameshift suppressor tRNASufJ. RNA 20:1944–54
    [Google Scholar]
  34. 34.
    Fei J, Kosuri P, MacDougall DD, Gonzalez RL Jr. 2008. Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation. Mol. Cell 30:348–59
    [Google Scholar]
  35. 35.
    Felsenstein KM, Goff SP. 1988. Expression of the gag-pol fusion protein of Moloney murine leukemia virus without gag protein does not induce virion formation or proteolytic processing. J. Virol. 62:2179–82
    [Google Scholar]
  36. 36.
    Firth AE, Wills NM, Gesteland RF, Atkins JF. 2011. Stimulation of stop codon readthrough: frequent presence of an extended 3′ RNA structural element. Nucleic Acids Res 39:6679–91
    [Google Scholar]
  37. 37.
    Fischer N, Neumann P, Bock LV, Maracci C, Wang Z et al. 2016. The pathway to GTPase activation of elongation factor SelB on the ribosome. Nature 540:80–85
    [Google Scholar]
  38. 38.
    Flis J, Holm M, Rundlet EJ, Loerke J, Hilal T et al. 2018. tRNA translocation by the eukaryotic 80S ribosome and the impact of GTP hydrolysis. Cell Rep 25:2676–88.e7
    [Google Scholar]
  39. 39.
    Fredrick K, Noller HF. 2003. Catalysis of ribosomal translocation by sparsomycin. Science 300:1159–62
    [Google Scholar]
  40. 40.
    Gamper H, Li H, Masuda I, Robkis DM, Christian T et al. 2021. Insights into genome recoding from the mechanism of a classic +1-frameshifting tRNA. Nat. Commun. 12:328
    [Google Scholar]
  41. 41.
    Gamper H, Mao Y, Masuda I, McGuigan H, Blaha G et al. 2021. Twice exploration of tRNA +1 frameshifting in an elongation cycle of protein synthesis. Nucleic Acids Res 49:10046–60
    [Google Scholar]
  42. 42.
    Garofalo R, Wohlgemuth I, Pearson M, Lenz C, Urlaub H, Rodnina MV. 2019. Broad range of missense error frequencies in cellular proteins. Nucleic Acids Res 47:2932–45
    [Google Scholar]
  43. 43.
    Geggier P, Dave R, Feldman MB, Terry DS, Altman RB et al. 2010. Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome. J. Mol. Biol. 399:576–95
    [Google Scholar]
  44. 44.
    Gesteland RF, Atkins JF. 1996. Recoding: dynamic reprogramming of translation. Annu. Rev. Biochem. 65:741–68
    [Google Scholar]
  45. 45.
    Girstmair H, Saffert P, Rode S, Czech A, Holland G et al. 2013. Depletion of cognate charged transfer RNA causes translational frameshifting within the expanded CAG stretch in huntingtin. Cell Rep 3:148–59
    [Google Scholar]
  46. 46.
    Goldberg AL. 1972. Degradation of abnormal proteins in Escherichia coli (protein breakdown/protein structure/mistranslation/amino acid analogs/puromycin). PNAS 69:422–26
    [Google Scholar]
  47. 47.
    Goldberg AL. 2003. Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–99
    [Google Scholar]
  48. 48.
    Gromadski KB, Daviter T, Rodnina MV. 2006. A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity. Mol. Cell 21:369–77
    [Google Scholar]
  49. 49.
    Guarraia C, Norris L, Raman A, Farabaugh PJ. 2007. Saturation mutagenesis of a +1 programmed frameshift-inducing mRNA sequence derived from a yeast retrotransposon. RNA 13:1940–47
    [Google Scholar]
  50. 50.
    Harrell L, Melcher U, Atkins JF. 2002. Predominance of six different hexanucleotide recoding signals 3′ of read-through stop codons. Nucleic Acids Res 30:2011–17
    [Google Scholar]
  51. 51.
    Hilal T, Killam BY, Grozdanovic M, Dobosz-Bartoszek M, Loerke J et al. 2022. Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon. Science 376:1338–43
    [Google Scholar]
  52. 52.
    Hill CH, Cook GM, Napthine S, Kibe A, Brown K et al. 2021. Investigating molecular mechanisms of 2A-stimulated ribosomal pausing and frameshifting in Theilovirus. Nucleic Acids Res 49:11938–58
    [Google Scholar]
  53. 53.
    Hoffer ED, Hong S, Sunita S, Maehigashi T, Gonzalez RL Jr. et al. 2020. Structural insights into mRNA reading frame regulation by tRNA modification and slippery codon-anticodon pairing. eLife 9:e51898
    [Google Scholar]
  54. 54.
    Hofstetter H, Monstein HJ, Weissmann C. 1974. The readthrough protein A1 is essential for the formation of viable Q beta particles. Biochim. Biophys. Acta 374:238–51
    [Google Scholar]
  55. 55.
    Howard MT, Shirts BH, Petros LM, Flanigan KM, Gesteland RF, Atkins JF. 2000. Sequence specificity of aminoglycoside-induced stop codon readthrough: potential implications for treatment of Duchenne muscular dystrophy. Ann. Neurol. 48:164–69
    [Google Scholar]
  56. 56.
    Huang WP, Cho CP, Chang KY. 2018. mRNA-mediated duplexes play dual roles in the regulation of bidirectional ribosomal frameshifting. Int. J. Mol. Sci. 19:3867
    [Google Scholar]
  57. 57.
    Ieong KW, Uzun U, Selmer M, Ehrenberg M. 2016. Two proofreading steps amplify the accuracy of genetic code translation. PNAS 113:13744–49
    [Google Scholar]
  58. 58.
    Jungreis I, Chan CS, Waterhouse RM, Fields G, Lin MF, Kellis M. 2016. Evolutionary dynamics of abundant stop codon readthrough. Mol. Biol. Evol. 33:3108–32
    [Google Scholar]
  59. 59.
    Jungreis I, Lin MF, Spokony R, Chan CS, Negre N et al. 2011. Evidence of abundant stop codon readthrough in Drosophila and other metazoa. Genome Res 21:2096–113
    [Google Scholar]
  60. 60.
    Khan YA, Loughran G, Steckelberg AL, Brown K, Kiniry SJ et al. 2022. Evaluating ribosomal frameshifting in CCR5 mRNA decoding. Nature 604:E16–23
    [Google Scholar]
  61. 61.
    Kim E, Magen A, Ast G 2007. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res 35:125–31
    [Google Scholar]
  62. 62.
    Kim HK, Liu F, Fei J, Bustamante C, Gonzalez RL Jr., Tinoco I Jr. 2014. A frameshifting stimulatory stem loop destabilizes the hybrid state and impedes ribosomal translocation. PNAS 111:5538–43
    [Google Scholar]
  63. 63.
    Kisonaite M, Wild K, Lapouge K, Ruppert T, Sinning I. 2022. High-resolution structures of a thermophilic eukaryotic 80S ribosome reveal atomistic details of translocation. Nat. Commun. 13:476
    [Google Scholar]
  64. 64.
    Konevega AL, Fischer N, Semenkov YP, Stark H, Wintermeyer W, Rodnina MV. 2007. Spontaneous reverse movement of mRNA-bound tRNA through the ribosome. Nat. Struct. Mol. Biol. 14:318–24
    [Google Scholar]
  65. 65.
    Kornblihtt AR, Schor IE, Allo M, Dujardin G, Petrillo E, Munoz MJ. 2013. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat. Rev. Mol. Cell Biol. 14:153–65
    [Google Scholar]
  66. 66.
    Korniy N, Goyal A, Hoffmann M, Samatova E, Peske F et al. 2019. Modulation of HIV-1 Gag/Gag-Pol frameshifting by tRNA abundance. Nucleic Acids Res 47:5210–22
    [Google Scholar]
  67. 67.
    Korniy N, Samatova E, Anokhina MM, Peske F, Rodnina MV. 2019. Mechanisms and biomedical implications of –1 programmed ribosome frameshifting on viral and bacterial mRNAs. FEBS Lett 593:1468–82
    [Google Scholar]
  68. 68.
    Kothe U, Rodnina MV. 2006. Delayed release of inorganic phosphate from elongation factor Tu following GTP hydrolysis on the ribosome. Biochemistry 45:12767–74
    [Google Scholar]
  69. 69.
    Kothe U, Wieden HJ, Mohr D, Rodnina MV. 2004. Interaction of helix D of elongation factor Tu with helices 4 and 5 of protein L7/12 on the ribosome. J. Mol. Biol. 336:1011–21
    [Google Scholar]
  70. 70.
    Kramer EB, Farabaugh PJ. 2007. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA 13:87–96
    [Google Scholar]
  71. 71.
    Loughran G, Chou MY, Ivanov IP, Jungreis I, Kellis M et al. 2014. Evidence of efficient stop codon readthrough in four mammalian genes. Nucleic Acids Res 42:8928–38
    [Google Scholar]
  72. 72.
    Loveland AB, Demo G, Grigorieff N, Korostelev AA. 2017. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature 546:113–17
    [Google Scholar]
  73. 73.
    Loveland AB, Demo G, Korostelev AA. 2020. Cryo-EM of elongating ribosome with EF-Tu*GTP elucidates tRNA proofreading. Nature 584:640–45
    [Google Scholar]
  74. 74.
    Manickam N, Nag N, Abbasi A, Patel K, Farabaugh PJ. 2014. Studies of translational misreading in vivo show that the ribosome very efficiently discriminates against most potential errors. RNA 20:9–15
    [Google Scholar]
  75. 75.
    Manjunath LE, Singh A, Som S, Eswarappa SM. 2023. Mammalian proteome expansion by stop codon readthrough. Wiley Interdiscip. Rev. RNA 14:2e1739
    [Google Scholar]
  76. 76.
    Manktelow E, Shigemoto K, Brierley I. 2005. Characterization of the frameshift signal of Edr, a mammalian example of programmed –1 ribosomal frameshifting. Nucleic Acids Res 33:1553–63
    [Google Scholar]
  77. 77.
    Manuvakhova M, Keeling K, Bedwell DM. 2000. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA 6:1044–55
    [Google Scholar]
  78. 78.
    Maracci C, Rodnina MV. 2016. Translational GTPases. Biopolymers 105:463–75
    [Google Scholar]
  79. 79.
    Meydan S, Klepacki D, Karthikeyan S, Margus T, Thomas P et al. 2017. Programmed ribosomal frameshifting generates a copper transporter and a copper chaperone from the same gene. Mol. Cell 65:207–19
    [Google Scholar]
  80. 80.
    Meyerovich M, Mamou G, Ben-Yehuda S. 2010. Visualizing high error levels during gene expression in living bacterial cells. PNAS 107:11543–48
    [Google Scholar]
  81. 81.
    Mordret E, Dahan O, Asraf O, Rak R, Yehonadav A et al. 2019. Systematic detection of amino acid substitutions in proteomes reveals mechanistic basis of ribosome errors and selection for translation fidelity. Mol. Cell 75:427–41.e5
    [Google Scholar]
  82. 82.
    Morse JC, Girodat D, Burnett BJ, Holm M, Altman RB et al. 2020. Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection. PNAS 117:3610–20
    [Google Scholar]
  83. 83.
    Namy O, Duchateau-Nguyen G, Hatin I, Hermann-Le Denmat S, Termier M, Rousset JP 2003. Identification of stop codon readthrough genes in Saccharomyces cerevisiae. Nucleic Acids Res 31:2289–96
    [Google Scholar]
  84. 84.
    Nguyen K, Whitford PC. 2016. Steric interactions lead to collective tilting motion in the ribosome during mRNA-tRNA translocation. Nat. Commun. 7:10586
    [Google Scholar]
  85. 85.
    Niblett D, Nelson C, Leung CS, Rexroad G, Cozy J et al. 2021. Mutations in domain IV of elongation factor EF-G confer –1 frameshifting. RNA 27:40–53
    [Google Scholar]
  86. 86.
    Nishima W, Girodat D, Holm M, Rundlet EJ, Alejo JL et al. 2022. Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting. Nucleic Acids Res 50:8302–20
    [Google Scholar]
  87. 87.
    Noel JK, Whitford PC. 2016. How EF-Tu can contribute to efficient proofreading of aa-tRNA by the ribosome. Nat. Commun. 7:13314
    [Google Scholar]
  88. 88.
    Ogle JM, Ramakrishnan V. 2005. Structural insights into translational fidelity. Annu. Rev. Biochem. 74:129–77
    [Google Scholar]
  89. 89.
    Pan D, Kirillov SV, Cooperman BS. 2007. Kinetically competent intermediates in the translocation step of protein synthesis. Mol. Cell 25:519–29
    [Google Scholar]
  90. 90.
    Paolini NA, Attwood M, Sondalle SB, Vieira C, van Adrichem AM et al. 2017. A ribosomopathy reveals decoding defective ribosomes driving human dysmorphism. Am. J. Hum. Genet. 100:506–22
    [Google Scholar]
  91. 91.
    Pavlov MY, Ehrenberg M. 2018. Substrate-induced formation of ribosomal decoding center for accurate and rapid genetic code translation. Annu. Rev. Biophys. 47:525–48
    [Google Scholar]
  92. 92.
    Pelham HR. 1978. Leaky UAG termination codon in tobacco mosaic virus RNA. Nature 272:469–71
    [Google Scholar]
  93. 93.
    Peng BZ, Bock LV, Belardinelli R, Peske F, Grubmuller H, Rodnina MV. 2019. Active role of elongation factor G in maintaining the mRNA reading frame during translation. Sci. Adv. 5:eaax8030
    [Google Scholar]
  94. 94.
    Peske F, Savelsbergh A, Katunin VI, Rodnina MV, Wintermeyer W. 2004. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J. Mol. Biol. 343:1183–94
    [Google Scholar]
  95. 95.
    Petrychenko V, Peng BZ, de AP Schwarzer AC, Peske F, Rodnina MV, Fischer N. 2021. Structural mechanism of GTPase-powered ribosome-tRNA movement. Nat. Commun. 12:5933
    [Google Scholar]
  96. 96.
    Poulis P, Patel A, Rodnina MV, Adio S. 2022. Altered tRNA dynamics during translocation on slippery mRNA as determinant of spontaneous ribosome frameshifting. Nat. Commun 13:4231
    [Google Scholar]
  97. 97.
    Qu X, Wen JD, Lancaster L, Noller HF, Bustamante C, Tinoco I Jr. 2011. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475:118–21
    [Google Scholar]
  98. 98.
    Ramakrishnan V. 2014. The ribosome emerges from a black box. Cell 159:979–84
    [Google Scholar]
  99. 99.
    Ranjan N, Leidel SA. 2019. The epitranscriptome in translation regulation: mRNA and tRNA modifications as the two sides of the same coin?. FEBS Lett 593:1483–93
    [Google Scholar]
  100. 100.
    Ranjan N, Rodnina MV. 2017. Thio-modification of tRNA at the wobble position as regulator of the kinetics of decoding and translocation on the ribosome. J. Am. Chem. Soc. 139:5857–64
    [Google Scholar]
  101. 101.
    Rodnina MV. 2018. Translation in prokaryotes. Cold Spring Harb. Perspect. Biol. 10:a032664
    [Google Scholar]
  102. 102.
    Rodnina MV, Fischer N, Maracci C, Stark H. 2017. Ribosome dynamics during decoding. Philos. Trans. R. Soc. Lond. B 372:20160182
    [Google Scholar]
  103. 103.
    Rodnina MV, Korniy N, Klimova M, Karki P, Peng BZ et al. 2020. Translational recoding: canonical translation mechanisms reinterpreted. Nucleic Acids Res 48:1056–67
    [Google Scholar]
  104. 104.
    Rodnina MV, Savelsbergh A, Katunin VI, Wintermeyer W. 1997. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385:37–41
    [Google Scholar]
  105. 105.
    Rossello-Tortella M, Llinas-Arias P, Sakaguchi Y, Miyauchi K, Davalos V et al. 2020. Epigenetic loss of the transfer RNA-modifying enzyme TYW2 induces ribosome frameshifts in colon cancer. PNAS 117:20785–93
    [Google Scholar]
  106. 106.
    Rozov A, Demeshkina N, Khusainov I, Westhof E, Yusupov M, Yusupova G. 2016. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code. Nat. Commun. 7:10457
    [Google Scholar]
  107. 107.
    Rozov A, Demeshkina N, Westhof E, Yusupov M, Yusupova G. 2015. Structural insights into the translational infidelity mechanism. Nat. Commun. 6:7251
    [Google Scholar]
  108. 108.
    Rozov A, Demeshkina N, Westhof E, Yusupov M, Yusupova G. 2016. New structural insights into translational miscoding. Trends Biochem. Sci 41:798–814
    [Google Scholar]
  109. 109.
    Rozov A, Westhof E, Yusupov M, Yusupova G. 2016. The ribosome prohibits the G*U wobble geometry at the first position of the codon-anticodon helix. Nucleic Acids Res 44:6434–41
    [Google Scholar]
  110. 110.
    Rozov A, Wolff P, Grosjean H, Yusupov M, Yusupova G, Westhof E. 2018. Tautomeric G*U pairs within the molecular ribosomal grip and fidelity of decoding in bacteria. Nucleic Acids Res 46:7425–35
    [Google Scholar]
  111. 111.
    Ruiz Cuevas MV, Hardy MP, Holly J, Bonneil E, Durette C et al. 2021. Most non-canonical proteins uniquely populate the proteome or immunopeptidome. Cell Rep 34:108815
    [Google Scholar]
  112. 112.
    Rundlet EJ, Holm M, Schacherl M, Natchiar SK, Altman RB et al. 2021. Structural basis of early translocation events on the ribosome. Nature 595:741–45
    [Google Scholar]
  113. 113.
    Salas-Marco J, Bedwell DM. 2005. Discrimination between defects in elongation fidelity and termination efficiency provides mechanistic insights into translational readthrough. J. Mol. Biol. 348:801–15
    [Google Scholar]
  114. 114.
    Sanbonmatsu KY. 2019. Large-scale simulations of nucleoprotein complexes: ribosomes, nucleosomes, chromatin, chromosomes and CRISPR. Curr. Opin. Struct. Biol. 55:104–13
    [Google Scholar]
  115. 115.
    Sanbonmatsu KY, Joseph S, Tung CS 2005. Simulating movement of tRNA into the ribosome during decoding. PNAS 102:15854–59
    [Google Scholar]
  116. 116.
    Savelsbergh A, Katunin VI, Mohr D, Peske F, Rodnina MV, Wintermeyer W. 2003. An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol. Cell 11:1517–23
    [Google Scholar]
  117. 117.
    Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV IV et al. 2009. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326:688–94
    [Google Scholar]
  118. 118.
    Sharma H, Adio S, Senyushkina T, Belardinelli R, Peske F, Rodnina MV. 2016. Kinetics of spontaneous and EF-G-accelerated rotation of ribosomal subunits. Cell Rep 16:2187–96
    [Google Scholar]
  119. 119.
    Shoji S, Walker SE, Fredrick K. 2006. Reverse translocation of tRNA in the ribosome. Mol. Cell 24:931–42
    [Google Scholar]
  120. 120.
    Stahl G, Ben Salem S, Li Z, McCarty G, Raman A et al. 2001. Programmed +1 translational frameshifting in the yeast Saccharomyces cerevisiae results from disruption of translational error correction. Cold Spring Harb. Symp. Quant. Biol. 66:249–58
    [Google Scholar]
  121. 121.
    Stansfield I, Jones KM, Herbert P, Lewendon A, Shaw WV, Tuite MF. 1998. Missense translation errors in Saccharomyces cerevisiae. J. Mol. Biol. 282:13–24
    [Google Scholar]
  122. 122.
    Suzuki T. 2021. The expanding world of tRNA modifications and their disease relevance. Nat. Rev. Mol. Cell Biol. 22:375–92
    [Google Scholar]
  123. 123.
    Taliaferro D, Farabaugh PJ. 2007. An mRNA sequence derived from the yeast EST3 gene stimulates programmed +1 translational frameshifting. RNA 13:606–13
    [Google Scholar]
  124. 124.
    Tian B, Manley JL. 2017. Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol. 18:18–30
    [Google Scholar]
  125. 125.
    Toth MJ, Murgola EJ, Schimmel P. 1988. Evidence for a unique first position codon-anticodon mismatch in vivo. J. Mol. Biol. 201:451–54
    [Google Scholar]
  126. 126.
    Touriol C, Bornes S, Bonnal S, Audigier S, Prats H et al. 2003. Generation of protein isoform diversity by alternative initiation of translation at non-AUG codons. Biol. Cell. 95:169–78
    [Google Scholar]
  127. 127.
    Traverse CC, Ochman H. 2016. Conserved rates and patterns of transcription errors across bacterial growth states and lifestyles. PNAS 113:3311–16
    [Google Scholar]
  128. 128.
    Urban C, Zerfass K, Fingerhut C, Beier H. 1996. UGA suppression by tRNACmCATrp occurs in diverse virus RNAs due to a limited influence of the codon context. Nucleic Acids Res 24:3424–30
    [Google Scholar]
  129. 129.
    Urbonavicius J, Qian Q, Durand JM, Hagervall TG, Bjork GR. 2001. Improvement of reading frame maintenance is a common function for several tRNA modifications. EMBO J 20:4863–73
    [Google Scholar]
  130. 130.
    Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V. 2010. The mechanism for activation of GTP hydrolysis on the ribosome. Science 330:835–38
    [Google Scholar]
  131. 131.
    Wang L, Pulk A, Wasserman MR, Feldman MB, Altman RB et al. 2012. Allosteric control of the ribosome by small-molecule antibiotics. Nat. Struct. Mol. Biol. 19:957–63
    [Google Scholar]
  132. 132.
    Warias M, Grubmuller H, Bock LV. 2020. tRNA dissociation from EF-Tu after GTP hydrolysis: primary steps and antibiotic inhibition. Biophys. J. 118:151–61
    [Google Scholar]
  133. 133.
    Wasserman MR, Alejo JL, Altman RB, Blanchard SC. 2016. Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation. Nat. Struct. Mol. Biol. 23:333–41
    [Google Scholar]
  134. 134.
    Whitford PC, Geggier P, Altman RB, Blanchard SC, Onuchic JN, Sanbonmatsu KY. 2010. Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways. RNA 16:1196–204
    [Google Scholar]
  135. 135.
    Williams I, Richardson J, Starkey A, Stansfield I. 2004. Genome-wide prediction of stop codon readthrough during translation in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 32:6605–16
    [Google Scholar]
  136. 136.
    Wohlgemuth I, Garofalo R, Samatova E, Gunenc AN, Lenz C et al. 2021. Translation error clusters induced by aminoglycoside antibiotics. Nat. Commun. 12:1830
    [Google Scholar]
  137. 137.
    Wu CC, Peterson A, Zinshteyn B, Regot S, Green R. 2020. Ribosome collisions trigger general stress responses to regulate cell fate. Cell 182:404–16.e14
    [Google Scholar]
  138. 138.
    Yan S, Wen JD, Bustamante C, Tinoco I Jr. 2015. Ribosome excursions during mRNA translocation mediate broad branching of frameshift pathways. Cell 160:870–81
    [Google Scholar]
  139. 139.
    Yu CH, Teulade-Fichou MP, Olsthoorn RC 2014. Stimulation of ribosomal frameshifting by RNA G-quadruplex structures. Nucleic Acids Res 42:1887–92
    [Google Scholar]
  140. 140.
    Zaher HS, Green R. 2009. Quality control by the ribosome following peptide bond formation. Nature 457:161–66
    [Google Scholar]
  141. 141.
    Zhang Z, Shah B, Bondarenko PV. 2013. G/U and certain wobble position mismatches as possible main causes of amino acid misincorporations. Biochemistry 52:8165–76
    [Google Scholar]
  142. 142.
    Zhou J, Lancaster L, Donohue JP, Noller HF. 2014. How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation. Science 345:1188–91
    [Google Scholar]
  143. 143.
    Zhou J, Lancaster L, Donohue JP, Noller HF. 2019. Spontaneous ribosomal translocation of mRNA and tRNAs into a chimeric hybrid state. PNAS 116:7813–18
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-101922-072452
Loading
/content/journals/10.1146/annurev-biophys-101922-072452
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error