1932

Abstract

Two groundbreaking papers published in 1954 laid out the theory of the mechanism of muscle contraction based on force-generating interactions between myofilaments in the sarcomere that cause filaments to slide past one another during muscle contraction. The succeeding decades of research in muscle physiology have revealed a unifying interest: to understand the multiscale processes—from atom to organ—that govern muscle function. Such an understanding would have profound consequences for a vast array of applications, from developing new biomimetic technologies to treating heart disease. However, connecting structural and functional properties that are relevant at one spatiotemporal scale to those that are relevant at other scales remains a great challenge. Through a lens of multiscale dynamics, we review in this article current and historical research in muscle physiology sparked by the sliding filament theory.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-110320-062613
2021-05-06
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-110320-062613.html?itemId=/content/journals/10.1146/annurev-biophys-110320-062613&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adhikari BB, Regnier M, Rivera AJ, Kreutziger KL, Martyn DA 2004. Cardiac length dependence of force and force redevelopment kinetics with altered cross-bridge cycling. Biophys. J. 87:31784–94
    [Google Scholar]
  2. 2. 
    Ait-Mou Y, Hsu K, Farman GP, Kumar M, Greaser ML et al. 2016. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins. PNAS 113:82306–11
    [Google Scholar]
  3. 3. 
    Aliev MK, Tikhonov AN. 2004. Random walk analysis of restricted metabolite diffusion in skeletal myofibril systems. Mol. Cell. Biochem. 256:1/2257–66
    [Google Scholar]
  4. 4. 
    Anderson RL, Trivedi DV, Sarkar SS, Henze M, Ma W et al. 2018. Deciphering the super relaxed state of human β-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers. PNAS 115:35E8143–52
    [Google Scholar]
  5. 5. 
    April EW, Brandt PW, Elliott GF. 1971. The myofilament lattice: studies on isolated fibers. J. Cell Biol. 51:172–82
    [Google Scholar]
  6. 6. 
    Arrio-Dupont M, Foucault G, Vacher M, Devaux PF, Cribier S. 2000. Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells. Biophys. J. 78:2901–7
    [Google Scholar]
  7. 7. 
    Astbury WT. 1947. Croonian Lecture—on the structure of biological fibres and the problem of muscle. Proc. R. Soc. Lond. B 134:876303–28
    [Google Scholar]
  8. 8. 
    Bianco P, Mártonfalvi Z, Naftz K, Koszegi D, Kellermayer M. 2015. Titin domains progressively unfolded by force are homogenously distributed along the molecule. Biophys. J. 109:2340–45
    [Google Scholar]
  9. 9. 
    Brunello E, Caremani M, Melli L, Linari M, Fernandez-Martinez M et al. 2014. The contributions of filaments and cross-bridges to sarcomere compliance in skeletal muscle. J. Physiol. 592:173881–99
    [Google Scholar]
  10. 10. 
    Brunello E, Fusi L, Ghisleni A, Park-Holohan S-J, Ovejero JG et al. 2020. Myosin filament-based regulation of the dynamics of contraction in heart muscle. PNAS 117:148177–86
    [Google Scholar]
  11. 11. 
    Burgoyne T, Heumann JM, Morris EP, Knupp C, Liu J et al. 2019. Three-dimensional structure of the basketweave Z-band in midshipman fish sonic muscle. PNAS 116:3115534–39
    [Google Scholar]
  12. 12. 
    Campbell KS. 2006. Filament compliance effects can explain tension overshoots during force development. Biophys. J. 91:114102–9
    [Google Scholar]
  13. 13. 
    Campbell KS, Janssen PML, Campbell SG. 2018. Force-dependent recruitment from the myosin off state contributes to length-dependent activation. Biophys. J. 115:3543–53
    [Google Scholar]
  14. 14. 
    Campbell SG, Lionetti F V, Campbell KS, McCulloch AD. 2010. Coupling of adjacent tropomyosins enhances cross-bridge-mediated cooperative activation in a Markov model of the cardiac thin filament. Biophys. J. 98:102254–64
    [Google Scholar]
  15. 15. 
    Caremani M, Pinzauti F, Powers JD, Governali S, Narayanan T et al. 2018. Inotropic interventions do not change the resting state of myosin motors during cardiac diastole. J. Gen. Physiol. 151:153–65
    [Google Scholar]
  16. 16. 
    Caremani M, Pinzauti F, Reconditi M, Piazzesi G, Stienen GJM et al. 2016. Size and speed of the working stroke of cardiac myosin in situ. PNAS 113:133675–80
    [Google Scholar]
  17. 17. 
    Cecchi G, Bagni M. 1994. Myofilament lattice spacing affects tension in striated muscle. Physiology 9:13–7
    [Google Scholar]
  18. 18. 
    Cecchi G, Bagni M, Griffiths P, Ashley C, Maeda Y 1990. Detection of radial crossbridge force by lattice spacing changes in intact single muscle fibers. Science 250:49861409–11
    [Google Scholar]
  19. 19. 
    Cheng Y, Lindert S, Kekenes-Huskey P. 2014. Computational studies of the effect of the S23D/S24D troponin I mutation on cardiac troponin structural dynamics. Biophys. J. 107:71675–85
    [Google Scholar]
  20. 20. 
    Cooke R. 1997. Actomyosin interaction in striated muscle. Physiol. Rev. 77:3671–97
    [Google Scholar]
  21. 21. 
    Cooke R. 2004. The sliding filament model: 1972–2004. J. Gen. Physiol. 123:6643–56
    [Google Scholar]
  22. 22. 
    da Silva ACR, Reinach FC. 1991. Calcium binding induces conformational changes in muscle regulatory proteins. Trends Biochem. Sci. 16:53–57
    [Google Scholar]
  23. 23. 
    Daniel TL, Trimble AC, Chase PB. 1998. Compliant realignment of binding sites in muscle: transient behavior and mechanical tuning. Biophys. J 74:41611–21
    [Google Scholar]
  24. 24. 
    Davies KE, Nowak KJ. 2006. Molecular mechanisms of muscular dystrophies: old and new players. Nat. Rev. Mol. Cell Biol. 7:10762–73
    [Google Scholar]
  25. 25. 
    de Graaf RA, van Kranenburg A, Nicolay K. 2000. In vivo 31P-NMR diffusion spectroscopy of ATP and phosphocreatine in rat skeletal muscle. Biophys. J. 78:41657–64
    [Google Scholar]
  26. 26. 
    de Tombe P, Mateja R, Tachampa K. 2010. Myofilament length dependent activation. J. Mol. 48:5851–58
    [Google Scholar]
  27. 27. 
    Dobbie IM, Linari M, Piazzesi G, Reconditi M, Koubassova N et al. 1998. Elastic bending and active tilting of myosin heads during muscle contraction. Nature 396:383–87
    [Google Scholar]
  28. 28. 
    Dutta S, Tsiros C, Sundar SL, Athar H, Moore J et al. 2018. Calcium increases titin N2A binding to F-actin and regulated thin filaments. Sci. Rep. 8:114575
    [Google Scholar]
  29. 29. 
    Elhamine F, Radke MH, Pfitzer G, Granzier H, Gotthardt M, Stehle R. 2014. Deletion of the titin N2B region accelerates myofibrillar force development but does not alter relaxation kinetics. J. Cell Sci. 127:Pt. 173666–74
    [Google Scholar]
  30. 30. 
    Elliot GF, Lowy J, Millman BM. 1965. X-ray diffraction from living striated muscle during contraction. Nature 206:49911357–58
    [Google Scholar]
  31. 31. 
    Elliot GF, Rome EM, Spencer M. 1970. A type of contraction hypothesis applicable to all muscles. Nature 226:5244417–20
    [Google Scholar]
  32. 32. 
    Evans CL, Hill AV. 1914. The relation of length to tension development and heat production on contraction in muscle. J. Physiol. 49:1–210–16
    [Google Scholar]
  33. 33. 
    Farman GP, Gore D, Allen E, Schoenfelt K, Irving TC, de Tombe PP 2011. Myosin head orientation: a structural determinant for the Frank-Starling relationship. Am. J. Physiol. Heart Circ. Physiol. 300:6H2155–60
    [Google Scholar]
  34. 34. 
    Fenn WO. 1923. A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J. Physiol. 58:2–3175–203
    [Google Scholar]
  35. 35. 
    Fukuda N, Granzier HL, Ishiwata S, Kurihara S. 2008. Physiological functions of the giant elastic protein titin in mammalian striated muscle. J. Physiol. Sci. 58:3151–59
    [Google Scholar]
  36. 36. 
    Fürst DO, Nave R, Osborn M, Weber K 1989. Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A band striations also identified by major myosin-associated proteins: an immunoelectron-microscopical study on myofibrils. J. Cell Sci. 94:119–26
    [Google Scholar]
  37. 37. 
    Fusi L, Brunello E, Reconditi M, Piazzesi G, Lombardi V. 2014. The non-linear elasticity of the muscle sarcomere and the compliance of myosin motors. J. Physiol. 592:51109–18
    [Google Scholar]
  38. 38. 
    Fusi L, Brunello E, Yan Z, Irving M 2016. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle. Nat. Commun. 7:13281
    [Google Scholar]
  39. 39. 
    Fusi L, Percario V, Brunello E, Caremani M, Bianco P et al. 2017. Minimum number of myosin motors accounting for shortening velocity under zero load in skeletal muscle. J. Physiol. 595:41127–42
    [Google Scholar]
  40. 40. 
    Gautel M. 2011. The sarcomeric cytoskeleton: Who picks up the strain?. Curr. Opin. Cell Biol. 23:139–46
    [Google Scholar]
  41. 41. 
    Gautel M, Djinović-Carugo K. 2016. The sarcomeric cytoskeleton: from molecules to motion. J. Exp. Biol. 219:2135–45
    [Google Scholar]
  42. 42. 
    George N, Irving T, Williams C, Daniel T. 2013. The cross-bridge spring: Can cool muscles store elastic energy?. Science 340:61371217–20
    [Google Scholar]
  43. 43. 
    Gillis TE, Martyn DA, Rivera AJ, Regnier M. 2007. Investigation of thin filament near-neighbour regulatory unit interactions during force development in skinned cardiac and skeletal muscle. J. Physiol. 580:2561–76
    [Google Scholar]
  44. 44. 
    Goldman YE, Huxley AF. 1994. Actin compliance: Are you pulling my chain?. Biophys. J. 67:62131–33
    [Google Scholar]
  45. 45. 
    Goldstein MA, Schoeter JP, Sass RL. 1990. Two structural states of the vertebrate Z band. Electron Microsc. Rev. 3:2227–48
    [Google Scholar]
  46. 46. 
    Gordon AM, Homsher E, Regnier M. 2000. Regulation of contraction in striated muscle. Physiol. Rev. 80:2853–924
    [Google Scholar]
  47. 47. 
    Gordon AM, Huxley AF, Julian FJ. 1966. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184:1170–92
    [Google Scholar]
  48. 48. 
    Granzier HL, Irving TC. 1995. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys. J. 68:31027–44
    [Google Scholar]
  49. 49. 
    Granzier HL, Labeit S. 2004. The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ. Res. 94:3284–95
    [Google Scholar]
  50. 50. 
    Granzier HL, Labeit S. 2005. Titin and its associated proteins: the third myofilament system of the sarcomere. Adv. Protein Chem. 71:489–119
    [Google Scholar]
  51. 51. 
    Granzier HL, Wang K. 1993. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments. Biophys. J. 65:52141–59
    [Google Scholar]
  52. 52. 
    Gruen M, Gautel M. 1999. Mutations in β-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin-binding protein-C. J. Mol. Biol. 286:3933–49
    [Google Scholar]
  53. 53. 
    Hagopian M. 1966. The myofilament arrangement in the femoral muscle of the cockroach, Leucophaea maderae fabricius. J. Cell Biol. 28:3545–62
    [Google Scholar]
  54. 54. 
    Hamdani N, Herwig M, Linke WA. 2017. Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes. Biophys. Rev 9:225–37
    [Google Scholar]
  55. 55. 
    Hanson J, Huxley HE. 1953. Structural basis of the cross-striations in muscle. Nature 172:4377530–32
    [Google Scholar]
  56. 56. 
    Harris SP, Belknap B, Van Sciver RE, White HD, Galkin VE 2016. C0 and C1 N-terminal Ig domains of myosin binding protein C exert different effects on thin filament activation. PNAS 113:61558–63
    [Google Scholar]
  57. 57. 
    Harris SP, Lyons RG, Bezold KL. 2011. In the thick of it: HCM-causing mutations in myosin binding proteins of the thick filament. Circ. Res. 108:6751–64
    [Google Scholar]
  58. 58. 
    Haselgrove JC. 1975. X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscle. J. Mol. Biol. 92:1113–43
    [Google Scholar]
  59. 59. 
    He Z-H, Bottinelli R, Pellegrino MA, Ferenczi MA, Reggiani C. 2000. ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophys. J. 79:2945–61
    [Google Scholar]
  60. 60. 
    Herman DS, Lam L, Taylor MRG, Wang L, Teekakirikul P et al. 2012. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366:7619–28
    [Google Scholar]
  61. 61. 
    Herwig M, Kolijn D, Lódi M, Hölper S, Kovács Á et al. 2020. Modulation of titin-based stiffness in hypertrophic cardiomyopathy via protein kinase D. Front. Physiol. 11:240
    [Google Scholar]
  62. 62. 
    Herzberg O, James MNG. 1985. Structure of the calcium regulatory muscle protein troponin-C at 2.8 Å resolution. Nature 313:6004653–59
    [Google Scholar]
  63. 63. 
    Hochachka PW. 1999. The metabolic implications of intracellular circulation. PNAS 96:2212233–39
    [Google Scholar]
  64. 64. 
    Homsher E. 1987. Muscle enthalpy production and its relationship to actomyosin ATPase. Annu. Rev. Physiol. 49:673–90
    [Google Scholar]
  65. 65. 
    Hoshijima M. 2006. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am. J. Physiol. Hear. Circ. Physiol. 290:4H1313–25
    [Google Scholar]
  66. 66. 
    Houdusse A, Love ML, Dominguez R, Grabarek Z, Cohen C. 1997. Structures of four Ca2+-bound troponin C at 2.0 Å resolution: further insights into the Ca2+-switch in the calmodulin superfamily. Structure 5:121695–711
    [Google Scholar]
  67. 67. 
    Hoyle G. 1967. Diversity of striated muscle. Am. Zool. 7:3435–49
    [Google Scholar]
  68. 68. 
    Huxley AF. 1957. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7:255–318
    [Google Scholar]
  69. 69. 
    Huxley AF. 1974. Muscular contraction. J. Physiol. 243:11–43
    [Google Scholar]
  70. 70. 
    Huxley AF. 1980. Reflections on Muscle Liverpool, UK: Liverpool Univ. Press
  71. 71. 
    Huxley AF, Niedergerke R. 1954. Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature 173:4412971–73
    [Google Scholar]
  72. 72. 
    Huxley AF, Simmons RM. 1971. Proposed mechanism of force generation in striated muscle. Nature 233:533–38
    [Google Scholar]
  73. 73. 
    Huxley AF, Taylor RE. 1958. Local activation of striated muscle fibres. J. Physiol. 144:3426–41
    [Google Scholar]
  74. 74. 
    Huxley HE. 2004. Fifty years of muscle and the sliding filament hypothesis. Eur. J. Biochem. 271:81403–15
    [Google Scholar]
  75. 75. 
    Huxley HE, Brown W, Holmes KC. 1965. Constancy of axial spacings in frog sartorius muscle during contraction. Nature 206:9911358
    [Google Scholar]
  76. 76. 
    Huxley HE, Faruqi AR, Bordas J, Koch MHJ, Milch JR. 1980. The use of synchrotron radiation in time-resolved X-ray diffraction studies of myosin layer-line reflections during muscle contraction. Nature 284:5752140–43
    [Google Scholar]
  77. 77. 
    Huxley HE, Hanson J. 1954. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:4412973–76
    [Google Scholar]
  78. 78. 
    Huxley HE, Reconditi M, Stewart A, Irving T. 2006. X-ray interference studies of crossbridge action in muscle contraction: evidence from quick releases. J. Mol. Biol. 363:4743–61
    [Google Scholar]
  79. 79. 
    Huxley HE, Stewart A, Sosa H, Irving T. 1994. X-ray diffraction measurements of the extensibility of actin and myosin filaments in contracting muscle. Biophys. J. 67:62411–21
    [Google Scholar]
  80. 80. 
    Irving T, Wu Y, Bekyarova T, Farman GP, Fukuda N, Granzier H. 2011. Thick-filament strain and interfilament spacing in passive muscle: effect of titin-based passive tension. Biophys. J. 100:61499–508
    [Google Scholar]
  81. 81. 
    Irving TC, Maughan DW. 2000. In vivo X-ray diffraction of indirect flight muscle from Drosophila melanogaster. Biophys. J. 78:52511–15
    [Google Scholar]
  82. 82. 
    Iwamoto H. 2019. Synchrotron radiation X-ray diffraction studies on muscle: past, present, and future. Biophys. Rev. 11:4547–58
    [Google Scholar]
  83. 83. 
    Kaya M, Higuchi H. 2010. Nonlinear elasticity and an 8-nm working stroke of single myosin molecules in myofilaments. Science 329:5992686–89
    [Google Scholar]
  84. 84. 
    Kekenes-Huskey PM, Liao T, Gillette AK, Hake JE, Zhang Y et al. 2013. Molecular and subcellular-scale modeling of nucleotide diffusion in the cardiac myofilament lattice. Biophys. J. 105:92130–40
    [Google Scholar]
  85. 85. 
    Kellermayer MSZ, Smith SB, Granzier HL, Bustamante C. 1997. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 276:53151112–16
    [Google Scholar]
  86. 86. 
    Kentish JC, McCloskey DT, Layland J, Palmer S, Leiden JM et al. 2001. Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ. Res. 88:101059–65
    [Google Scholar]
  87. 87. 
    Kinsey ST, Locke BR, Dillaman RM. 2011. Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle. J. Exp. Biol. 214:2263–74
    [Google Scholar]
  88. 88. 
    Konhilas JP, Irving TC, de Tombe PP. 2002. Myofilament calcium sensitivity in skinned rat cardiac trabeculae: role of interfilament spacing. Circ. Res. 90:59–65
    [Google Scholar]
  89. 89. 
    Koser F, Loescher C, Linke WA. 2019. Posttranslational modifications of titin from cardiac muscle: how, where, and what for?. FEBS J 286:122240–60
    [Google Scholar]
  90. 90. 
    Kreutziger KL, Piroddi N, Scellini B, Tesi C, Poggesi C, Regnier M. 2008. Thin filament Ca2+ binding properties and regulatory unit interactions alter kinetics of tension development and relaxation in rabbit skeletal muscle. J. Physiol. 586:Pt. 153683–700
    [Google Scholar]
  91. 91. 
    Kushmerick MJ, Davies RE. 1969. The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscles. Proc. R. Soc. Lond. B 174: 1036.315–47
    [Google Scholar]
  92. 92. 
    Li J, Gresham KS, Mamidi R, Doh CY, Wan X et al. 2018. Sarcomere-based genetic enhancement of systolic cardiac function in a murine model of dilated cardiomyopathy. Int. J. Cardiol. 273:168–76
    [Google Scholar]
  93. 93. 
    Lin BL, Li A, Mun JY, Previs MJ, Previs SB et al. 2018. Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca2+-dependent manner. Sci. Rep. 8:2604
    [Google Scholar]
  94. 94. 
    Linari M, Brunello E, Reconditi M, Fusi L, Caremani M et al. 2015. Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 528:7581276–79
    [Google Scholar]
  95. 95. 
    Linari M, Caremani M, Piperio C, Brandt P, Lombardi V. 2007. Stiffness and fraction of myosin motors responsible for active force in permeabilized muscle fibers from rabbit psoas. Biophys. J. 92:72476–90
    [Google Scholar]
  96. 96. 
    Linari M, Piazzesi G, Dobbie I, Koubassova NA, Reconditi M et al. 2000. Interference fine structure and sarcomere length dependence of the axial X-ray pattern from active single muscle fibers. PNAS 97:137226–31
    [Google Scholar]
  97. 97. 
    Lindstedt S, Nishikawa K. 2017. Huxley's missing filament: form and function of titin in vertebrate striated muscle. Annu. Rev. Physiol. 79:145–66
    [Google Scholar]
  98. 98. 
    Linke WA. 2018. Titin gene and protein functions in passive and active muscle. Annu. Rev. Physiol. 80:389–411
    [Google Scholar]
  99. 99. 
    Linke WA, Hamdani N. 2014. Gigantic business: titin properties and function through thick and thin. Circ. Res. 114:61052–68
    [Google Scholar]
  100. 100. 
    Linke WA, Ivemeyer M, Mundel P, Stockmeier MR, Kolmerer B, Franzini-Armstrong C 1998. Nature of PEVK-titin elasticity in skeletal muscle. PNAS 95:148052–57
    [Google Scholar]
  101. 101. 
    Linke WA, Ivemeyer M, Olivieri N, Kolmerer B, Rüegg CJ, Labeit S. 1996. Towards a molecular understanding of the elasticity of titin. J. Mol. Biol. 261:162–71
    [Google Scholar]
  102. 102. 
    Lombardi V, Piazzesi G, Reconditi M, Linari M, Lucii L et al. 2004. X-ray diffraction studies of the contractile mechanism in single muscle fibres. Philos. Trans. R. Soc. Lond. B 359: 1452.1883–93
    [Google Scholar]
  103. 103. 
    Luther PK. 2009. The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling. J. Muscle Res. Cell Motil. 30:5–6171–85
    [Google Scholar]
  104. 104. 
    Luther PK, Padrón R, Ritter S, Craig R, Squire JM 2003. Heterogeneity of Z-band structure within a single muscle sarcomere: implications for sarcomere assembly. J. Mol. Biol. 332:1161–69
    [Google Scholar]
  105. 105. 
    Malingen SA, Asencio AM, Cass JA, Ma W, Irving TC, Daniel TL. 2020. In vivo X-ray diffraction and simultaneous EMG reveal the time course of myofilament lattice dilation and filament stretch. J. Exp. Biol. 223:jeb224188
    [Google Scholar]
  106. 106. 
    Mann CK, Lee LC, Campbell KS, Wenk JF. 2020. Force-dependent recruitment from myosin OFF-state increases end-systolic pressure-volume relationship in left ventricle. Biomech. Model. Mechanobiol. 19:62683–92
    [Google Scholar]
  107. 107. 
    Marcucci L, Washio T, Yanagida T. 2017. Titin-mediated thick filament activation, through a mechanosensing mechanism, introduces sarcomere-length dependencies in mathematical models of rat trabecula and whole ventricle. Sci. Rep. 7:5546
    [Google Scholar]
  108. 108. 
    Marcucci L, Washio T, Yanagida T. 2019. Proposed mechanism for the length dependence of the force developed in maximally activated muscles. Sci. Rep. 9:1317
    [Google Scholar]
  109. 109. 
    Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF et al. 1999. Mechanical unfolding intermediates in titin modules. Nature 402:6757100–3
    [Google Scholar]
  110. 110. 
    Mártonfalvi Z, Bianco P, Linari M, Caremani M, Nagy A et al. 2014. Low-force transitions in single titin molecules reflect a memory of contractile history. J. Cell Sci. 127:4858–70
    [Google Scholar]
  111. 111. 
    Maruyama K, Matsubara S, Natori R, Nonomura Y, Kimura S. 1977. Connectin, an elastic protein of muscle: characterization and function. J. Biochem. 82:2317–37
    [Google Scholar]
  112. 112. 
    Maruyama K, Natori R, Nonomura Y. 1976. New elastic protein from muscle. Nature 262:556358–60
    [Google Scholar]
  113. 113. 
    Matsuda T, Podolsky RJ. 1986. Ordering of the myofilament lattice in muscle fibers. J. Mol. Biol. 189:2361–65
    [Google Scholar]
  114. 114. 
    Maughan DW, Godt RE. 1999. Parvalbumin concentration and diffusion coefficient in frog myoplasm. J. Muscle Res. Cell Motil. 20:2199–209
    [Google Scholar]
  115. 115. 
    McCabe KJ, Aboelkassem Y, Teitgen AE, Huber GA, McCammon JA et al. 2020. Predicting the effects of dATP on cardiac contraction using multiscale modeling of the sarcomere. Arch. Biochem. Biophys. 695:108582
    [Google Scholar]
  116. 116. 
    McKillop D, Geeves M. 1993. Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filamen. Biophys. J. 65:2693–701
    [Google Scholar]
  117. 117. 
    McNamara JW, Li A, dos Remedios CG, Cooke R. 2015. The role of super-relaxed myosin in skeletal and cardiac muscle. Biophys. Rev. 7:15–14
    [Google Scholar]
  118. 118. 
    McNamara JW, Sadayappan S. 2018. Skeletal myosin binding protein-C: an increasingly important regulator of striated muscle physiology. Arch. Biochem. Biophys. 660:121–28
    [Google Scholar]
  119. 119. 
    McNamara JW, Singh RR, Sadayappan S 2019. Cardiac myosin binding protein-C phosphorylation regulates the super-relaxed state of myosin. PNAS 116:2411731–36
    [Google Scholar]
  120. 120. 
    Mijailovich SM, Kayser-Herold O, Stojanovic B, Nedic D, Irving TC, Geeves MA. 2016. Three-dimensional stochastic model of actin-myosin binding in the sarcomere lattice. J. Gen. Physiol 148:6459–88
    [Google Scholar]
  121. 121. 
    Millman BM. 1998. The filament lattice of striated muscle. Physiol. Rev. 78:2359–91
    [Google Scholar]
  122. 122. 
    Millman BM, Wakabayashi K, Racey TJ. 1983. Lateral forces in the filament lattice of vertebrate striated muscle in the rigor state. Biophys. J. 41:3259–67
    [Google Scholar]
  123. 123. 
    Moisescu D. 1973. Interfilament forces in striated muscle. Bull. Math. Biol. 35:565–75
    [Google Scholar]
  124. 124. 
    Morel JE, Pinset-Härström I, Gingold MP. 1976. Muscular contraction and cytoplasmic streaming: a new general hypothesis. J. Theor. Biol. 62:117–51
    [Google Scholar]
  125. 125. 
    Moss RL, Fitzsimons DP, Ralphe JC. 2015. Cardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium. Circ. Res. 116:1183–92
    [Google Scholar]
  126. 126. 
    Mun JY, Previs MJ, Yu HY, Gulick J, Tobacman LS et al. 2014. Myosin-binding protein C displaces tropomyosin to activate cardiac thin filaments and governs their speed by an independent mechanism. PNAS 111:62170–75
    [Google Scholar]
  127. 127. 
    Nag S, Sommese RF, Ujfalusi Z, Combs A, Langer S et al. 2015. Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function. Sci. Adv. 1:9e1500511
    [Google Scholar]
  128. 128. 
    Nag S, Trivedi DV, Sarkar SS, Adhikari AS, Sunitha MS et al. 2017. The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nat. Struct. Mol. Biol. 24:6525–33
    [Google Scholar]
  129. 129. 
    Needham DM. 1950. Myosin and adenosinetriphosphate in relation to muscle contraction. Biochim. Biophys. Acta 4:42–49
    [Google Scholar]
  130. 130. 
    Nishikawa KC, Monroy JA, Uyeno TE, Yeo SH, Pai DK, Lindstedt SL. 2012. Is titin a “winding filament”? A new twist on muscle contraction. Proc. R. Soc. B 279: 1730.981–90
    [Google Scholar]
  131. 131. 
    Osborne MP. 1967. Supercontraction in the muscles of the blowfly larva: an ultrastructural study. J. Insect Physiol. 13:101471–82
    [Google Scholar]
  132. 132. 
    Palmer BM, Swank DM, Miller MS, Tanner BCW, Meyer M, LeWinter MM. 2020. Enhancing diastolic function by strain-dependent detachment of cardiac myosin crossbridges. J. Gen. Physiol. 152:4e201912484
    [Google Scholar]
  133. 133. 
    Papadopoulos S, Endeward V, Revesz-Walker B, Jurgens KD, Gros G 2001. Radial and longitudinal diffusion of myoglobin in single living heart and skeletal muscle cells. PNAS 98:105904–9
    [Google Scholar]
  134. 134. 
    Pertici I, Caremani M, Reconditi M. 2019. A mechanical model of the half-sarcomere which includes the contribution of titin. J. Muscle Res. Cell Motil. 40:129–41
    [Google Scholar]
  135. 135. 
    Perz-Edwards RJ, Reedy MK 2011. Electron microscopy and X-ray diffraction evidence for two Z-band structural states. Biophys. J. 101:3709–17
    [Google Scholar]
  136. 136. 
    Piazzesi G, Caremani M, Linari M, Reconditi M, Lombardi V. 2018. Thick filament mechano-sensing in skeletal and cardiac muscles: a common mechanism able to adapt the energetic cost of the contraction to the task. Front. Physiol. 9:736
    [Google Scholar]
  137. 137. 
    Piazzesi G, Lucii L, Lombardi V. 2002. The size and the speed of the working stroke of muscle myosin and its dependence on the force. J. Physiol. 545:1145–51
    [Google Scholar]
  138. 138. 
    Piazzesi G, Reconditi M, Linari M, Lucii L, Bianco P et al. 2007. Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 131:4784–95
    [Google Scholar]
  139. 139. 
    Piazzesi G, Reconditi M, Linari M, Lucii L, Sun Y-B et al. 2002. Mechanism of force generation by myosin heads in skeletal muscle. Nature 415:6872659–62
    [Google Scholar]
  140. 140. 
    Pinzauti F, Pertici I, Reconditi M, Narayanan T, Stienen GJM et al. 2018. The force and stiffness of myosin motors in the isometric twitch of a cardiac trabecula and the effect of the extracellular calcium concentration. J. Physiol. 596:132581–96
    [Google Scholar]
  141. 141. 
    Powers JD, Bianco P, Pertici I, Reconditi M, Lombardi V, Piazzesi G. 2020. Contracting striated muscle has a dynamic I-band spring with an undamped stiffness 100 times larger than the passive stiffness. J. Physiol. 598:2331–45
    [Google Scholar]
  142. 142. 
    Powers JD, Williams CD, Regnier M, Daniel TL. 2018. A spatially explicit model shows how titin stiffness modulates muscle mechanics and energetics. Integr. Comp. Biol. 58:2186–93
    [Google Scholar]
  143. 143. 
    Powers JD, Yuan C-C, McCabe KJ, Murray JD, Childers MC et al. 2019. Cardiac myosin activation with 2-deoxy-ATP via increased electrostatic interactions with actin. PNAS 116:2311502–7
    [Google Scholar]
  144. 144. 
    Previs MJ, Prosser BL, Mun JY, Previs SB, Gulick J et al. 2015. Myosin-binding protein C corrects an intrinsic inhomogeneity in cardiac excitation-contraction coupling. Sci. Adv. 1:1e1400205
    [Google Scholar]
  145. 145. 
    Pyle WG, Solaro RJ. 2004. At the crossroads of myocardial signaling. Circ. Res. 94:3296–305
    [Google Scholar]
  146. 146. 
    Razumova MV, Bezold KL, Tu A-Y, Regnier M, Harris SP. 2008. Contribution of the myosin binding protein C motif to functional effects in permeabilized rat trabeculae. J. Gen. Physiol. 132:5575–85
    [Google Scholar]
  147. 147. 
    Razumova MV, Bukatina AE, Campbell KB. 2000. Different myofilament nearest-neighbor interactions have distinctive effects on contractile behavior. Biophys. J 78:63120–37
    [Google Scholar]
  148. 148. 
    Razumova MV, Shaffer JF, Tu AY, Flint GV, Regnier M, Harris SP. 2006. Effects of the N-terminal domains of myosin binding protein-C in an in vitro motility assay: evidence for long-lived cross-bridges. J. Biol. Chem. 281:4735846–54
    [Google Scholar]
  149. 149. 
    Reconditi M. 2006. Recent improvements in small angle X-ray diffraction for the study of muscle physiology. Rep. Prog. Phys. 69:102709–59
    [Google Scholar]
  150. 150. 
    Reconditi M, Brunello E, Linari M, Bianco P, Narayanan T et al. 2011. Motion of myosin head domains during activation and force development in skeletal muscle. PNAS 108:177236–40
    [Google Scholar]
  151. 151. 
    Reconditi M, Caremani M, Pinzauti F, Powers JD, Narayanan T et al. 2017. Myosin filament activation in the heart is tuned to the mechanical task. PNAS 114:123240–45
    [Google Scholar]
  152. 152. 
    Reconditi M, Koubassova N, Linari M, Dobbie I, Narayanan T et al. 2003. The conformation of myosin head domains in rigor muscle determined by X-ray interference. Biophys. J. 85:21098–110
    [Google Scholar]
  153. 153. 
    Reconditi M, Linari M, Lucii L, Stewart A, Sun Y-B et al. 2004. The myosin motor in muscle generates a smaller and slower working stroke at higher load. Nature 428:6982578–81
    [Google Scholar]
  154. 154. 
    Regnier M, Homsher E. 1998. The effect of ATP analogs on posthydrolytic and force development steps in skinned skeletal muscle fibers. Biophys. J. 74:63059–71
    [Google Scholar]
  155. 155. 
    Regnier M, Lee DM, Homsher E. 1998. ATP analogs and muscle contraction: mechanics and kinetics of nucleoside triphosphate binding and hydrolysis. Biophys. J. 74:63044–58
    [Google Scholar]
  156. 156. 
    Regnier M, Rivera AJ, Wang C-K, Bates MA, Chase PB, Gordon AM. 2002. Thin filament near-neighbour regulatory unit interactions affect rabbit skeletal muscle steady-state force-Ca2+ relations. J. Physiol. 540:2485–97
    [Google Scholar]
  157. 157. 
    Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. 1997. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:53151109–12
    [Google Scholar]
  158. 158. 
    Risi C, Belknap B, Forgacs-Lonart E, Harris SP, Schröder GF et al. 2018. N-terminal domains of cardiac myosin binding protein C cooperatively activate the thin filament. Structure 26:121604–11.e4
    [Google Scholar]
  159. 159. 
    Rivas-Pardo JA, Eckels EC, Popa I, Kosuri P, Linke WA, Fernández JM. 2016. Work done by titin protein folding assists muscle contraction. Cell Rep 14:61339–47
    [Google Scholar]
  160. 160. 
    Rome E. 1968. X-ray diffraction studies of the filament lattice of striated muscle in various bathing media. J. Mol. Biol. 37:2331–44
    [Google Scholar]
  161. 161. 
    Rose HH. 2008. Optics of high-performance electron microscopes. Sci. Technol. Adv. Mater. 9:1014107
    [Google Scholar]
  162. 162. 
    Royuela M, Fraile B, Arenas MI, Paniagua R. 2000. Characterization of several invertebrate muscle cell types: a comparison with vertebrate muscles. Microsc. Res. Tech. 48:2107–15
    [Google Scholar]
  163. 163. 
    Schoenberg M. 1980. Geometrical factors influencing muscle force development. I. The effect of filament spacing upon axial forces. Biophys. J. 30:151–67
    [Google Scholar]
  164. 164. 
    Sellers JR. 2004. Fifty years of contractility research post sliding filament hypothesis. J. Muscle Res. Cell Motil. 25:6475–82
    [Google Scholar]
  165. 165. 
    Shaffer JF, Kensler RW, Harris SP. 2009. The myosin-binding protein C motif binds to F-actin in a phosphorylation-sensitive manner. J. Biol. Chem. 284:1812318–27
    [Google Scholar]
  166. 166. 
    Shear DB. 1970. Electrostatic forces in muscle contraction. J. Theor. Biol. 28:3531–46
    [Google Scholar]
  167. 167. 
    Shih Y-H, Dvornikov AV, Zhu P, Ma X, Kim M et al. 2016. Exon- and contraction-dependent functions of titin in sarcomere assembly. Development 143:244713–22
    [Google Scholar]
  168. 168. 
    Shimomura T, Iwamoto H, Vo Doan TT, Ishiwata S, Sato H, Suzuki M. 2016. A beetle flight muscle displays leg muscle microstructure. Biophys. J. 111:61295–303
    [Google Scholar]
  169. 169. 
    Shorten PR, Sneyd J. 2009. A mathematical analysis of obstructed diffusion within skeletal muscle. Biophys. J. 96:124764–78
    [Google Scholar]
  170. 170. 
    Sia SK, Li MX, Spyracopoulos L, Gagné SM, Liu W et al. 1997. Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J. Biol. Chem. 272:2918216–21
    [Google Scholar]
  171. 171. 
    Smith DA. 2014. Electrostatic forces or structural scaffolding: What stabilizes the lattice spacing of relaxed skinned muscle fibers?. J. Theor. Biol. 355:53–60
    [Google Scholar]
  172. 172. 
    Smith L, Tainter C, Regnier M, Martyn DA 2009. Cooperative cross-bridge activation of thin filaments contributes to the Frank-Starling mechanism in cardiac muscle. Biophys. J 96:93692–702
    [Google Scholar]
  173. 173. 
    Smith NP, Barclay CJ, Loiselle DS. 2005. The efficiency of muscle contraction. Prog. Biophys. Mol. Biol. 88:11–58
    [Google Scholar]
  174. 174. 
    Solaro RJ, Rosevear P, Kobayashi T. 2008. The unique functions of cardiac troponin I in the control of cardiac muscle contraction and relaxation. Biochem. Biophys. Res. Commun. 369:182–87
    [Google Scholar]
  175. 175. 
    Spudich JA. 2001. The myosin swinging cross-bridge model. Nat. Rev. Mol. Cell Biol. 2:5387–92
    [Google Scholar]
  176. 176. 
    Spudich JA. 2014. Hypertrophic and dilated cardiomyopathy: Four decades of basic research on muscle lead to potential therapeutic approaches to these devastating genetic diseases. Biophys. J. 106:61236–49
    [Google Scholar]
  177. 177. 
    Spudich JA. 2015. The myosin mesa and a possible unifying hypothesis for the molecular basis of human hypertrophic cardiomyopathy. Biochem. Soc. Trans. 43:164–72
    [Google Scholar]
  178. 178. 
    Squire J. 1981. The Structural Basis of Muscular Contraction New York: Plenum Press
  179. 179. 
    Squire JM. 2016. Muscle contraction: sliding filament history, sarcomere dynamics and the two Huxleys. Glob. Cardiol. Sci. Pract. 2016:2e201611
    [Google Scholar]
  180. 180. 
    Squire JM, Knupp C. 2005. X-ray diffraction studies of muscle and the crossbridge cycle. Adv. Protein Chem. 71:4195–255
    [Google Scholar]
  181. 181. 
    Stelzer JE, Dunning SB, Moss RL. 2006. Ablation of cardiac myosin-binding protein-C accelerates stretch activation in murine skinned myocardium. Circ. Res. 98:91212–18
    [Google Scholar]
  182. 182. 
    Sugi H, Iwamoto H, Akimoto T, Kishi H. 2003. High mechanical efficiency of the cross-bridge powerstroke in skeletal muscle. J. Exp. Biol. 206:71201–6
    [Google Scholar]
  183. 183. 
    Takada F, Woude DLV, Tong H-Q, Thompson TG, Watkins SC et al. 2001. Myozenin: an α-actinin- and γ-filamin-binding protein of skeletal muscle Z lines. PNAS 98:41595–600
    [Google Scholar]
  184. 184. 
    Tanner BCW, Daniel TL, Regnier M. 2007. Sarcomere lattice geometry influences cooperative myosin binding in muscle. PLOS Comput. Biol. 3:7e115
    [Google Scholar]
  185. 185. 
    Tanner BCW, Daniel TL, Regnier M. 2012. Filament compliance influences cooperative activation of thin filaments and the dynamics of force production in skeletal muscle. PLOS Comput. Biol. 8:5e1002506
    [Google Scholar]
  186. 186. 
    Tanner BCW, Regnier M, Daniel TL. 2008. A spatially explicit model of muscle contraction explains a relationship between activation phase, power and ATP utilization in insect flight. J. Exp. Biol. 211:Pt. 2180–86
    [Google Scholar]
  187. 187. 
    Tidball JG, Daniel TL. 1986. Myotendinous junctions of tonic muscle cells: structure and loading. Cell Tissue Res 245:2315–22
    [Google Scholar]
  188. 188. 
    Tobacman LS. 1996. Thin filament-mediated regulation of cardiac contraction. Annu. Rev. Physiol. 58:447–81
    [Google Scholar]
  189. 189. 
    Tonino P, Kiss B, Strom J, Methawasin M, Smith JE et al. 2017. The giant protein titin regulates the length of the striated muscle thick filament. Nat. Commun. 8:1041
    [Google Scholar]
  190. 190. 
    Tregear RT, Squire JM. 1973. Myosin content and filament structure in smooth and striated muscle. J. Mol. Biol. 77:2279–90
    [Google Scholar]
  191. 191. 
    Tskhovrebova L, Trinick J. 2012. Making muscle elastic: the structural basis of myomesin stretching. PLOS Biol 10:2e1001264
    [Google Scholar]
  192. 192. 
    Tune TC, Ma W, Irving T, Sponberg S. 2020. Nanometer-scale structure differences in the myofilament lattice spacing of two cockroach leg muscles correspond to their different functions. J. Exp. Biol. 223:9jeb212829
    [Google Scholar]
  193. 193. 
    Tyska MJ, Hayes E, Giewat M, Seidman CE, Seidman JG, Warshaw DM. 2000. Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circ. Res. 86:7737–44
    [Google Scholar]
  194. 194. 
    Wakabayashi K, Sugimoto Y, Tanaka H, Ueno Y, Takezawa Y, Amemiya Y. 1994. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys. J. 67:62422–35
    [Google Scholar]
  195. 195. 
    Wang K, McClure J, Tu A 1979. Titin: major myofibrillar components of striated muscle. PNAS 76:83698–702
    [Google Scholar]
  196. 196. 
    Wang YP, Fuchs F. 1994. Length, force, and Ca(2+)-troponin C affinity in cardiac and slow skeletal muscle. Am. J. Physiol. 266:4C1077–82
    [Google Scholar]
  197. 197. 
    Warren CM, Kobayashi T, Solaro RJ. 2009. Sites of intra- and intermolecular cross-linking of the N-terminal extension of troponin I in human cardiac whole troponin complex. J. Biol. Chem. 284:2114258–66
    [Google Scholar]
  198. 198. 
    Williams CD, Regnier M, Daniel TL. 2010. Axial and radial forces of cross-bridges depend on lattice spacing. PLOS Comput. Biol. 6:12e1001018
    [Google Scholar]
  199. 199. 
    Williams CD, Regnier M, Daniel TL. 2012. Elastic energy storage and radial forces in the myofilament lattice depend on sarcomere length. PLOS Comput. Biol. 8:11e1002770
    [Google Scholar]
  200. 200. 
    Williams CD, Salcedo MK, Irving TC, Regnier M, Daniel TL. 2013. The length-tension curve in muscle depends on lattice spacing. Proc. R. Soc. B. 280: 1766.20130697
    [Google Scholar]
  201. 201. 
    Winkelmann DA, Forgacs E, Miller MT, Stock AM. 2015. Structural basis for drug-induced allosteric changes to human β-cardiac myosin motor activity. Nat. Commun. 6:7974
    [Google Scholar]
  202. 202. 
    Woodhead JL, Zhao FQ, Craig R, Egelman EH, Alamo L, Padrón R. 2005. Atomic model of a myosin filament in the relaxed state. Nature 436:70541195–99
    [Google Scholar]
  203. 203. 
    Xu C, Craig R, Tobacman L, Horowitz R, Lehman W. 1999. Tropomyosin positions in regulated thin filaments revealed by cryoelectron microscopy. Biophys. J. 77:2985–92
    [Google Scholar]
  204. 204. 
    Yotti R, Seidman CE, Seidman JG. 2019. Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Annu. Rev. Genomics Hum. Genet. 20:129–53
    [Google Scholar]
  205. 205. 
    Young P. 1998. Molecular structure of the sarcomeric Z-disk: two types of titin interactions lead to an asymmetrical sorting of alpha-actinin. EMBO J 17:61614–24
    [Google Scholar]
  206. 206. 
    Zaunbrecher RJ, Abel AN, Beussman K, Leonard A, von Frieling-Salewsky M et al. 2019. Cronos titin is expressed in human cardiomyocytes and necessary for normal sarcomere function. Circulation 140:201647–60
    [Google Scholar]
  207. 207. 
    Zou J, Tran D, Baalbaki M, Tang LF, Poon A et al. 2015. An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of titin in zebrafish.. eLife 4:e09406
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-110320-062613
Loading
/content/journals/10.1146/annurev-biophys-110320-062613
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error