1932

Abstract

Dyneins make up a family of AAA+ motors that move toward the minus end of microtubules. Cytoplasmic dynein is responsible for transporting intracellular cargos in interphase cells and mediating spindle assembly and chromosome positioning during cell division. Other dynein isoforms transport cargos in cilia and power ciliary beating. Dyneins were the least studied of the cytoskeletal motors due to challenges in the reconstitution of active dynein complexes in vitro and the scarcity of high-resolution methods for in-depth structural and biophysical characterization of these motors. These challenges have been recently addressed, and there have been major advances in our understanding of the activation, mechanism, and regulation of dyneins. This review synthesizes the results of structural and biophysical studies for each class of dynein motors. We highlight several outstanding questions about the regulation of bidirectional transport along microtubules and the mechanisms that sustain self-coordinated oscillations within motile cilia.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-111020-101511
2021-05-06
2024-04-17
Loading full text...

Full text loading...

/deliver/fulltext/biophys/50/1/annurev-biophys-111020-101511.html?itemId=/content/journals/10.1146/annurev-biophys-111020-101511&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Absalon S, Blisnick T, Kohl L, Toutirais G, Dore G et al. 2008. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol. Biol. Cell 19:929–44
    [Google Scholar]
  2. 2. 
    Alper JD, Tovar M, Howard J. 2013. Displacement-weighted velocity analysis of gliding assays reveals that Chlamydomonas axonemal dynein preferentially moves conspecific microtubules. Biophys. J. 104:1989–98
    [Google Scholar]
  3. 3. 
    Amos LA. 1989. Brain dynein crossbridges microtubules into bundles. J. Cell Sci. 93:119–28
    [Google Scholar]
  4. 4. 
    Andreasson JO, Milic B, Chen GY, Guydosh NR, Hancock WO, Block SM 2015. Examining kinesin processivity within a general gating framework. eLife 4:e07403
    [Google Scholar]
  5. 5. 
    Barlan K, Lu W, Gelfand VI. 2013. The microtubule-binding protein ensconsin is an essential cofactor of kinesin-1. Curr. Biol. 23:317–22
    [Google Scholar]
  6. 6. 
    Baumbach J, Murthy A, McClintock MA, Dix CI, Zalyte R et al. 2017. Lissencephaly-1 is a context-dependent regulator of the human dynein complex. eLife 6:e21768
    [Google Scholar]
  7. 7. 
    Belyy V, Hendel NL, Chien A, Yildiz A. 2014. Cytoplasmic dynein transports cargos via load-sharing between the heads. Nat. Commun. 5:5544
    [Google Scholar]
  8. 8. 
    Belyy V, Schlager MA, Foster H, Reimer AE, Carter AP, Yildiz A. 2016. The mammalian dynein-dynactin complex is a strong opponent to kinesin in a tug-of-war competition. Nat. Cell Biol. 18:1018–24
    [Google Scholar]
  9. 9. 
    Bhabha G, Cheng HC, Zhang N, Moeller A, Liao M et al. 2014. Allosteric communication in the dynein motor domain. Cell 159:857–68
    [Google Scholar]
  10. 10. 
    Bielska E, Schuster M, Roger Y, Berepiki A, Soanes DM et al. 2014. Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes. J. Cell Biol. 204:989–1007
    [Google Scholar]
  11. 11. 
    Blehm BH, Schroer TA, Trybus KM, Chemla YR, Selvin PR 2013. In vivo optical trapping indicates kinesin's stall force is reduced by dynein during intracellular transport. PNAS 110:3381–86
    [Google Scholar]
  12. 12. 
    Block SM. 2007. Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys. J. 92:2986–95
    [Google Scholar]
  13. 13. 
    Bodakuntla S, Jijumon AS, Villablanca C, Gonzalez-Billault C, Janke C. 2019. Microtubule-associated proteins: structuring the cytoskeleton. Trends Cell Biol 29:804–19
    [Google Scholar]
  14. 14. 
    Brenner S, Berger F, Rao L, Nicholas MP, Gennerich A. 2020. Force production of human cytoplasmic dynein is limited by its processivity. Sci. Adv. 6:eaaz4295
    [Google Scholar]
  15. 15. 
    Brokaw CJ. 2009. Thinking about flagellar oscillation. Cell Motil. Cytoskelet. 66:425–36
    [Google Scholar]
  16. 16. 
    Brokaw CJ, Kamiya R. 1987. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil. Cytoskelet. 8:68–75
    [Google Scholar]
  17. 17. 
    Bui KH, Sakakibara H, Movassagh T, Oiwa K, Ishikawa T. 2008. Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella. J. Cell Biol. 183:923–32
    [Google Scholar]
  18. 18. 
    Burgess SA, Walker ML, Sakakibara H, Knight PJ, Oiwa K. 2003. Dynein structure and power stroke. Nature 421:715–18
    [Google Scholar]
  19. 19. 
    Can S, Lacey S, Gur M, Carter AP, Yildiz A. 2019. Directionality of dynein is controlled by the angle and length of its stalk. Nature 566:407–10
    [Google Scholar]
  20. 20. 
    Canty JT, Yildiz A. 2020. Activation and regulation of cytoplasmic dynein. Trends Biochem. Sci. 45:440–53
    [Google Scholar]
  21. 21. 
    Carter AP, Cho C, Jin L, Vale RD 2011. Crystal structure of the dynein motor domain. Science 331:1159–65
    [Google Scholar]
  22. 22. 
    Carter AP, Garbarino JE, Wilson-Kubalek EM, Shipley WE, Cho C et al. 2008. Structure and functional role of dynein's microtubule-binding domain. Science 322:1691–95
    [Google Scholar]
  23. 23. 
    Chaya T, Omori Y, Kuwahara R, Furukawa T. 2014. ICK is essential for cell type-specific ciliogenesis and the regulation of ciliary transport. EMBO J 33:1227–42
    [Google Scholar]
  24. 24. 
    Chien A, Shih SM, Bower R, Tritschler D, Porter ME, Yildiz A. 2017. Dynamics of the IFT machinery at the ciliary tip. eLife 6:e28606
    [Google Scholar]
  25. 25. 
    Cho C, Reck-Peterson SL, Vale RD 2008. Regulatory ATPase sites of cytoplasmic dynein affect processivity and force generation. J. Biol. Chem. 283:25839–45
    [Google Scholar]
  26. 26. 
    Chowdhury S, Ketcham SA, Schroer TA, Lander GC. 2015. Structural organization of the dynein-dynactin complex bound to microtubules. Nat. Struct. Mol. Biol. 22:345–47
    [Google Scholar]
  27. 27. 
    Cianfrocco MA, DeSantis ME, Leschziner AE, Reck-Peterson SL. 2015. Mechanism and regulation of cytoplasmic dynein. Annu. Rev. Cell Dev. Biol. 31:83–108
    [Google Scholar]
  28. 28. 
    Cleary FB, Dewitt MA, Bilyard T, Htet ZM, Belyy V et al. 2014. Tension on the linker gates the ATP-dependent release of dynein from microtubules. Nat. Commun. 5:4587
    [Google Scholar]
  29. 29. 
    Derr ND, Goodman BS, Jungmann R, Leschziner AE, Shih WM, Reck-Peterson SL. 2012. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338:662–65
    [Google Scholar]
  30. 30. 
    DeSantis ME, Cianfrocco MA, Htet ZM, Tran PT, Reck-Peterson SL, Leschziner AE. 2017. Lis1 has two opposing modes of regulating cytoplasmic dynein. Cell 170:1197–208
    [Google Scholar]
  31. 31. 
    DeWitt MA, Chang AY, Combs PA, Yildiz A. 2012. Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains. Science 335:221–25
    [Google Scholar]
  32. 32. 
    DeWitt MA, Cypranowska CA, Cleary FB, Belyy V, Yildiz A. 2015. The AAA3 domain of cytoplasmic dynein acts as a switch to facilitate microtubule release. Nat. Struct. Mol. Biol. 22:73–80
    [Google Scholar]
  33. 33. 
    Dixit R, Ross JL, Goldman YE, Holzbaur EL. 2008. Differential regulation of dynein and kinesin motor proteins by tau. Science 319:1086–89
    [Google Scholar]
  34. 34. 
    Dogan MY, Can S, Cleary FB, Purde V, Yildiz A. 2015. Kinesin's front head is gated by the backward orientation of its neck linker. Cell Rep 10:1967–73
    [Google Scholar]
  35. 35. 
    Duellberg C, Trokter M, Jha R, Sen I, Steinmetz MO, Surrey T. 2014. Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nat. Cell Biol. 16:804–11
    [Google Scholar]
  36. 36. 
    Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E. 1998. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J. Cell Biol. 143:777–94
    [Google Scholar]
  37. 37. 
    Edamatsu M. 2014. The functional expression and motile properties of recombinant outer arm dynein from Tetrahymena. Biochem. Biophys. Res. Commun. 447:596–601
    [Google Scholar]
  38. 38. 
    El-Kadi AM, Soura V, Hafezparast M. 2007. Defective axonal transport in motor neuron disease. J. Neurosci. Res. 85:2557–66
    [Google Scholar]
  39. 39. 
    Elshenawy MM, Canty JT, Oster L, Ferro LS, Zhou Z et al. 2019. Cargo adaptors regulate stepping and force generation of mammalian dynein-dynactin. Nat. Chem. Biol. 15:1093–101
    [Google Scholar]
  40. 40. 
    Elshenawy MM, Kusakci E, Volz S, Baumbach J, Bullock SL, Yildiz A. 2020. Lis1 activates dynein motility by modulating its pairing with dynactin. Nat. Cell Biol. 22:570–78
    [Google Scholar]
  41. 41. 
    Encalada SE, Szpankowski L, Xia CH, Goldstein LS. 2011. Stable kinesin and dynein assemblies drive the axonal transport of mammalian prion protein vesicles. Cell 144:551–65
    [Google Scholar]
  42. 42. 
    Ezber Y, Belyy V, Can S, Yildiz A. 2020. Dynein harnesses active fluctuations of microtubules for faster movement. Nat. Phys. 16:312–16
    [Google Scholar]
  43. 43. 
    Ferro LS, Can S, Turner MA, Elshenawy MM, Yildiz A. 2019. Kinesin and dynein use distinct mechanisms to bypass obstacles. eLife 8:e48629
    [Google Scholar]
  44. 44. 
    Fu MM, Holzbaur EL. 2013. JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J. Cell Biol. 202:495–508
    [Google Scholar]
  45. 45. 
    Furuta A, Yagi T, Yanagisawa HA, Higuchi H, Kamiya R. 2009. Systematic comparison of in vitro motile properties between Chlamydomonas wild-type and mutant outer arm dyneins each lacking one of the three heavy chains. J. Biol. Chem. 284:5927–35
    [Google Scholar]
  46. 46. 
    Furuta K, Furuta A, Toyoshima YY, Amino M, Oiwa K, Kojima H 2013. Measuring collective transport by defined numbers of processive and nonprocessive kinesin motors. PNAS 110:501–6
    [Google Scholar]
  47. 47. 
    Gee MA, Heuser JE, Vallee RB. 1997. An extended microtubule-binding structure within the dynein motor domain. Nature 390:636–39
    [Google Scholar]
  48. 48. 
    Gennerich A, Carter AP, Reck-Peterson SL, Vale RD 2007. Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131:952–65
    [Google Scholar]
  49. 49. 
    Gibbons BH, Gibbons IR. 1972. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J. Cell Biol. 54:75–97
    [Google Scholar]
  50. 50. 
    Gibbons IR, Garbarino JE, Tan CE, Reck-Peterson SL, Vale RD, Carter AP 2005. The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J. Biol. Chem. 280:23960–65
    [Google Scholar]
  51. 51. 
    Gill SR, Schroer TA, Szilak I, Steuer ER, Sheetz MP, Cleveland DW. 1991. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J. Cell Biol. 115:1639–50
    [Google Scholar]
  52. 52. 
    Grotjahn DA, Chowdhury S, Xu Y, McKenney RJ, Schroer TA, Lander GC. 2018. Cryo-electron tomography reveals that dynactin recruits a team of dyneins for processive motility. Nat. Struct. Mol. Biol. 25:203–7
    [Google Scholar]
  53. 53. 
    Guedes-Dias P, Holzbaur ELF. 2019. Axonal transport: driving synaptic function. Science 366:eaaw9997
    [Google Scholar]
  54. 54. 
    Gui L, Song K, Tritschler D, Bower R, Yan S et al. 2019. Scaffold subunits support associated subunit assembly in the Chlamydomonas ciliary nexin-dynein regulatory complex. PNAS 116:23152–62
    [Google Scholar]
  55. 55. 
    Gumy LF, Katrukha EA, Grigoriev I, Jaarsma D, Kapitein LC et al. 2017. MAP2 defines a pre-axonal filtering zone to regulate KIF1- versus KIF5-dependent cargo transport in sensory neurons. Neuron 94:347–62
    [Google Scholar]
  56. 56. 
    Guydosh NR, Block SM. 2009. Direct observation of the binding state of the kinesin head to the microtubule. Nature 461:125–28
    [Google Scholar]
  57. 57. 
    Hancock WO. 2014. Bidirectional cargo transport: moving beyond tug of war. Nat. Rev. Mol. Cell Biol. 15:615–28
    [Google Scholar]
  58. 58. 
    Hendricks AG, Perlson E, Ross JL, Schroeder HW 3rd, Tokito M, Holzbaur EL 2010. Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr. Biol. 20:697–702
    [Google Scholar]
  59. 59. 
    Hirakawa E, Higuchi H, Toyoshima YY 2000. Processive movement of single 22S dynein molecules occurs only at low ATP concentrations. PNAS 97:2533–37
    [Google Scholar]
  60. 60. 
    Hirokawa N, Noda Y, Tanaka Y, Niwa S. 2009. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10:682–96
    [Google Scholar]
  61. 61. 
    Holzbaur EL, Johnson KA. 1989. ADP release is rate limiting in steady-state turnover by the dynein adenosinetriphosphatase. Biochemistry 28:5577–85
    [Google Scholar]
  62. 62. 
    Hooikaas PJ, Martin M, Muhlethaler T, Kuijntjes GJ, Peeters CAE et al. 2019. MAP7 family proteins regulate kinesin-1 recruitment and activation. J. Cell Biol. 218:1298–318
    [Google Scholar]
  63. 63. 
    Hook P, Vallee RB. 2006. The dynein family at a glance. J. Cell Sci. 119:4369–71
    [Google Scholar]
  64. 64. 
    Htet ZM, Gillies JP, Baker RW, Leschziner AE, DeSantis ME, Reck-Peterson SL. 2020. LIS1 promotes the formation of activated cytoplasmic dynein-1 complexes. Nat. Cell Biol. 22:518–25
    [Google Scholar]
  65. 65. 
    Huang J, Roberts AJ, Leschziner AE, Reck-Peterson SL. 2012. Lis1 acts as a “clutch” between the ATPase and microtubule-binding domains of the dynein motor. Cell 150:975–86
    [Google Scholar]
  66. 66. 
    Imamula K, Kon T, Ohkura R, Sutoh K 2007. The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. PNAS 104:16134–39
    [Google Scholar]
  67. 67. 
    Inoue Y, Shingyoji C. 2007. The roles of noncatalytic ATP binding and ADP binding in the regulation of dynein motile activity in flagella. Cell Motil. Cytoskelet. 64:690–704
    [Google Scholar]
  68. 68. 
    Ishihara T, Hong M, Zhang B, Nakagawa Y, Lee MK et al. 1999. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24:751–62
    [Google Scholar]
  69. 69. 
    Ishikawa H, Marshall WF. 2011. Ciliogenesis: building the cell's antenna. Nat. Rev. Mol. Cell Biol. 12:222–34
    [Google Scholar]
  70. 70. 
    Ishikawa T. 2017. Axoneme structure from motile cilia. Cold Spring Harb. Perspect. Biol. 9:1a028076
    [Google Scholar]
  71. 71. 
    Janke C, Magiera MM. 2020. The tubulin code and its role in controlling microtubule properties and functions. Nat. Rev. Mol. Cell Biol. 21:307–26
    [Google Scholar]
  72. 72. 
    Jha R, Surrey T. 2015. Regulation of processive motion and microtubule localization of cytoplasmic dynein. Biochem. Soc. Trans. 43:48–57
    [Google Scholar]
  73. 73. 
    Johnson KA. 1998. The axonemal microtubules of the Chlamydomonas flagellum differ in tubulin isoform content. J. Cell Sci. 111:3313–20
    [Google Scholar]
  74. 74. 
    Johnson KA, Wall JS. 1983. Structure and molecular weight of the dynein ATPase. J. Cell Biol. 96:669–78
    [Google Scholar]
  75. 75. 
    Jonsson E, Yamada M, Vale RD, Goshima G. 2015. Clustering of a kinesin-14 motor enables processive retrograde microtubule-based transport in plants. Nat. Plants 1:715087
    [Google Scholar]
  76. 76. 
    Jordan MA, Diener DR, Stepanek L, Pigino G. 2018. The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat. Cell Biol. 20:1250–55
    [Google Scholar]
  77. 77. 
    Kardon JR, Reck-Peterson SL, Vale RD 2009. Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin. PNAS 106:5669–74
    [Google Scholar]
  78. 78. 
    Kaul N, Soppina V, Verhey KJ. 2014. Effects of alpha-tubulin K40 acetylation and detyrosination on kinesin-1 motility in a purified system. Biophys. J. 106:2636–43
    [Google Scholar]
  79. 79. 
    Kellogg EH, Hejab NMA, Poepsel S, Downing KH, DiMaio F, Nogales E. 2018. Near-atomic model of microtubule-tau interactions. Science 360:1242–46
    [Google Scholar]
  80. 80. 
    Kendrick AA, Dickey AM, Redwine WB, Tran PT, Vaites LP et al. 2019. Hook3 is a scaffold for the opposite-polarity microtubule-based motors cytoplasmic dynein-1 and KIF1C. J. Cell Biol. 218:2982–3001
    [Google Scholar]
  81. 81. 
    Khataee H, Howard J. 2019. Force generated by two kinesin motors depends on the load direction and intermolecular coupling. Phys. Rev. Lett. 122:188101
    [Google Scholar]
  82. 82. 
    King SJ, Brown CL, Maier KC, Quintyne NJ, Schroer TA. 2003. Analysis of the dynein-dynactin interaction in vitro and in vivo. Mol. Biol. Cell 14:5089–97
    [Google Scholar]
  83. 83. 
    Kon T, Imamula K, Roberts AJ, Ohkura R, Knight PJ et al. 2009. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat. Struct. Mol. Biol. 16:325–33
    [Google Scholar]
  84. 84. 
    Kon T, Mogami T, Ohkura R, Nishiura M, Sutoh K. 2005. ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nat. Struct. Mol. Biol. 12:513–19
    [Google Scholar]
  85. 85. 
    Kon T, Nishiura M, Ohkura R, Toyoshima YY, Sutoh K. 2004. Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43:11266–74
    [Google Scholar]
  86. 86. 
    Kon T, Oyama T, Shimo-Kon R, Imamula K, Shima T et al. 2012. The 2.8 Å crystal structure of the dynein motor domain. Nature 484:345–50
    [Google Scholar]
  87. 87. 
    Kon T, Sutoh K, Kurisu G. 2011. X-ray structure of a functional full-length dynein motor domain. Nat. Struct. Mol. Biol. 18:638–42
    [Google Scholar]
  88. 88. 
    Konishi Y, Setou M. 2009. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 12:559–67
    [Google Scholar]
  89. 89. 
    Kozminski KG, Johnson KA, Forscher P, Rosenbaum JL 1993. A motility in the eukaryotic flagellum unrelated to flagellar beating. PNAS 90:5519–23
    [Google Scholar]
  90. 90. 
    Kunwar A, Tripathy SK, Xu J, Mattson MK, Anand P et al. 2011. Mechanical stochastic tug-of-war models cannot explain bidirectional lipid-droplet transport. PNAS 108:18960–65
    [Google Scholar]
  91. 91. 
    Lacey SE, He S, Scheres SH, Carter AP. 2019. Cryo-EM of dynein microtubule-binding domains shows how an axonemal dynein distorts the microtubule. eLife 8:e47145
    [Google Scholar]
  92. 92. 
    Leduc C, Padberg-Gehle K, Varga V, Helbing D, Diez S, Howard J 2012. Molecular crowding creates traffic jams of kinesin motors on microtubules. PNAS 109:6100–5
    [Google Scholar]
  93. 93. 
    Lee WL, Oberle JR, Cooper JA. 2003. The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast. J. Cell Biol. 160:355–64
    [Google Scholar]
  94. 94. 
    Leidel C, Longoria RA, Gutierrez FM, Shubeita GT. 2012. Measuring molecular motor forces in vivo: implications for tug-of-war models of bidirectional transport. Biophys. J. 103:492–500
    [Google Scholar]
  95. 95. 
    Lin J, Nicastro D. 2018. Asymmetric distribution and spatial switching of dynein activity generates ciliary motility. Science 360:6387eaar1968
    [Google Scholar]
  96. 96. 
    Lin J, Okada K, Raytchev M, Smith MC, Nicastro D. 2014. Structural mechanism of the dynein power stroke. Nat. Cell Biol. 16:479–85
    [Google Scholar]
  97. 97. 
    Lindemann CB, Lesich KA. 2015. The geometric clutch at 20: stripping gears or gaining traction?. Reproduction 150:R45–53
    [Google Scholar]
  98. 98. 
    Lipka J, Kuijpers M, Jaworski J, Hoogenraad CC. 2013. Mutations in cytoplasmic dynein and its regulators cause malformations of cortical development and neurodegenerative diseases. Biochem. Soc. Trans. 41:1605–12
    [Google Scholar]
  99. 99. 
    Liu JS, Schubert CR, Fu X, Fourniol FJ, Jaiswal JK et al. 2012. Molecular basis for specific regulation of neuronal kinesin-3 motors by doublecortin family proteins. Mol. Cell 47:707–21
    [Google Scholar]
  100. 100. 
    Liu X, Rao L, Gennerich A. 2020. The regulatory function of the AAA4 ATPase domain of cytoplasmic dynein. Nat. Commun. 11:5952
    [Google Scholar]
  101. 101. 
    Mali GR, Ali FA, Lau CK, Begum F, Skehel M, Carter AP. 2021. Shulin packages axonemal outer dynein arms for ciliary targeting. Science 37191016
  102. 102. 
    Mallik R, Carter BC, Lex SA, King SJ, Gross SP. 2004. Cytoplasmic dynein functions as a gear in response to load. Nature 427:649–52
    [Google Scholar]
  103. 103. 
    Manka SW, Moores CA. 2020. Pseudo-repeats in doublecortin make distinct mechanistic contributions to microtubule regulation. EMBO Rep 21:e51534
    [Google Scholar]
  104. 104. 
    Markus SM, Marzo MG, McKenney RJ. 2020. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 9:e59737
    [Google Scholar]
  105. 105. 
    Marzo MG, Griswold JM, Markus SM. 2020. Pac1/LIS1 stabilizes an uninhibited conformation of dynein to coordinate its localization and activity. Nat. Cell Biol. 22:559–69
    [Google Scholar]
  106. 106. 
    McKenney RJ, Huynh W, Tanenbaum ME, Bhabha G, Vale RD. 2014. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345:337–41
    [Google Scholar]
  107. 107. 
    McKenney RJ, Huynh W, Vale RD, Sirajuddin M. 2016. Tyrosination of alpha-tubulin controls the initiation of processive dynein-dynactin motility. EMBO J 35:1175–85
    [Google Scholar]
  108. 108. 
    Mijalkovic J, van Krugten J, Oswald F, Acar S, Peterman EJG. 2018. Single-molecule turnarounds of intraflagellar transport at the C. elegans ciliary tip. Cell Rep 25:1701–7.e2
    [Google Scholar]
  109. 109. 
    Mitchison HM, Valente EM. 2017. Motile and non-motile cilia in human pathology: from function to phenotypes. J. Pathol. 241:294–309
    [Google Scholar]
  110. 110. 
    Mitchison TJ, Mitchison HM. 2010. Cell biology: how cilia beat. Nature 463:308–9
    [Google Scholar]
  111. 111. 
    Mogami T, Kon T, Ito K, Sutoh K. 2007. Kinetic characterization of tail swing steps in the ATPase cycle of Dictyostelium cytoplasmic dynein. J. Biol. Chem. 282:21639–44
    [Google Scholar]
  112. 112. 
    Monroy BY, Sawyer DL, Ackermann BE, Borden MM, Tan TC, Ori-McKenney KM. 2018. Competition between microtubule-associated proteins directs motor transport. Nat. Commun. 9:1487
    [Google Scholar]
  113. 113. 
    Monroy BY, Tan TC, Oclaman JM, Han JS, Simo S et al. 2020. A combinatorial MAP code dictates polarized microtubule transport. Dev. Cell 53:60–72
    [Google Scholar]
  114. 114. 
    Movassagh T, Bui KH, Sakakibara H, Oiwa K, Ishikawa T. 2010. Nucleotide-induced global conformational changes of flagellar dynein arms revealed by in situ analysis. Nat. Struct. Mol. Biol. 17:761–67
    [Google Scholar]
  115. 115. 
    Mukundan V, Sartori P, Geyer VF, Julicher F, Howard J. 2014. Motor regulation results in distal forces that bend partially disintegrated Chlamydomonas axonemes into circular arcs. Biophys. J. 106:2434–42
    [Google Scholar]
  116. 116. 
    Nachury MV, Mick DU. 2019. Establishing and regulating the composition of cilia for signal transduction. Nat. Rev. Mol. Cell Biol. 20:389–405
    [Google Scholar]
  117. 117. 
    Nicastro D, Schwartz C, Pierson J, Gaudette R, Porter ME, McIntosh JR. 2006. The molecular architecture of axonemes revealed by cryoelectron tomography. Science 313:944–48
    [Google Scholar]
  118. 118. 
    Nicholas MP, Berger F, Rao L, Brenner S, Cho C, Gennerich A 2015. Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains. PNAS 112:6371–76
    [Google Scholar]
  119. 119. 
    Nicholas MP, Hook P, Brenner S, Wynne CL, Vallee RB, Gennerich A. 2015. Control of cytoplasmic dynein force production and processivity by its C-terminal domain. Nat. Commun. 6:6206
    [Google Scholar]
  120. 120. 
    Niekamp S, Coudray N, Zhang N, Vale RD, Bhabha G. 2019. Coupling of ATPase activity, microtubule binding, and mechanics in the dynein motor domain. EMBO J 38:e101414
    [Google Scholar]
  121. 121. 
    Nishida N, Komori Y, Takarada O, Watanabe A, Tamura S et al. 2020. Structural basis for two-way communication between dynein and microtubules. Nat. Commun. 11:1038
    [Google Scholar]
  122. 122. 
    Numata N, Shima T, Ohkura R, Kon T, Sutoh K. 2011. C-sequence of the Dictyostelium cytoplasmic dynein participates in processivity modulation. FEBS Lett 585:1185–90
    [Google Scholar]
  123. 123. 
    Ori-McKenney KM, Xu J, Gross SP, Vallee RB. 2010. A cytoplasmic dynein tail mutation impairs motor processivity. Nat. Cell Biol. 12:1228–34
    [Google Scholar]
  124. 124. 
    Owa M, Furuta A, Usukura J, Arisaka F, King SM et al. 2014. Cooperative binding of the outer arm-docking complex underlies the regular arrangement of outer arm dynein in the axoneme. PNAS 111:9461–66
    [Google Scholar]
  125. 125. 
    Paschal BM, Shpetner HS, Vallee RB. 1987. MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J. Cell Biol. 105:1273–82
    [Google Scholar]
  126. 126. 
    Paschal BM, Vallee RB. 1987. Retrograde transport by the microtubule-associated protein Map-1c. Nature 330:181–83
    [Google Scholar]
  127. 127. 
    Pazour GJ, Dickert BL, Witman GB. 1999. The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol. 144:473–81
    [Google Scholar]
  128. 128. 
    Pazour GJ, Wilkerson CG, Witman GB. 1998. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J. Cell Biol. 141:979–92
    [Google Scholar]
  129. 129. 
    Pedersen LB, Miller MS, Geimer S, Leitch JM, Rosenbaum JL, Cole DG. 2005. Chlamydomonas IFT172 is encoded by FLA11, interacts with CrEB1, and regulates IFT at the flagellar tip. Curr. Biol. 15:262–66
    [Google Scholar]
  130. 130. 
    Pfister KK, Fisher EM, Gibbons IR, Hays TS, Holzbaur EL et al. 2005. Cytoplasmic dynein nomenclature. J. Cell Biol. 171:411–13
    [Google Scholar]
  131. 131. 
    Prevo B, Mangeol P, Oswald F, Scholey JM, Peterman EJ. 2015. Functional differentiation of cooperating kinesin-2 motors orchestrates cargo import and transport in C. elegans cilia. Nat. Cell Biol. 17:1536–45
    [Google Scholar]
  132. 132. 
    Pyrpassopoulos S, Shuman H, Ostap EM. 2020. Modulation of kinesin's load-bearing capacity by force geometry and the microtubule track. Biophys. J. 118:243–53
    [Google Scholar]
  133. 133. 
    Qin H, Diener DR, Geimer S, Cole DG, Rosenbaum JL. 2004. Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body. J. Cell Biol. 164:255–66
    [Google Scholar]
  134. 134. 
    Qiu W, Derr ND, Goodman BS, Villa E, Wu D et al. 2012. Dynein achieves processive motion using both stochastic and coordinated stepping. Nat. Struct. Mol. Biol. 19:193–200
    [Google Scholar]
  135. 135. 
    Rai A, Pathak D, Thakur S, Singh S, Dubey AK, Mallik R. 2016. Dynein clusters into lipid microdomains on phagosomes to drive rapid transport toward lysosomes. Cell 164:722–34
    [Google Scholar]
  136. 136. 
    Rao L, Berger F, Nicholas MP, Gennerich A. 2019. Molecular mechanism of cytoplasmic dynein tension sensing. Nat. Commun. 10:3332
    [Google Scholar]
  137. 137. 
    Reck-Peterson SL, Redwine WB, Vale RD, Carter AP. 2018. The cytoplasmic dynein transport machinery and its many cargoes. Nat. Rev. Mol. Cell Biol. 19:382–98
    [Google Scholar]
  138. 138. 
    Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N, Vale RD. 2006. Single-molecule analysis of dynein processivity and stepping behavior. Cell 126:335–48
    [Google Scholar]
  139. 139. 
    Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA. 2013. Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 14:713–26
    [Google Scholar]
  140. 140. 
    Roberts AJ, Malkova B, Walker ML, Sakakibara H, Numata N et al. 2012. ATP-driven remodeling of the linker domain in the dynein motor. Structure 20:1670–80
    [Google Scholar]
  141. 141. 
    Roberts AJ, Numata N, Walker ML, Kato YS, Malkova B et al. 2009. AAA+ ring and linker swing mechanism in the dynein motor. Cell 136:485–95
    [Google Scholar]
  142. 142. 
    Roll-Mecak A. 2020. The tubulin code in microtubule dynamics and information encoding. Dev. Cell 54:7–20
    [Google Scholar]
  143. 143. 
    Rosenbaum JL, Witman GB. 2002. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3:813–25
    [Google Scholar]
  144. 144. 
    Sakakibara H, Kojima H, Sakai Y, Katayama E, Oiwa K. 1999. Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Nature 400:586–90
    [Google Scholar]
  145. 145. 
    Schlager MA, Hoang HT, Urnavicius L, Bullock SL, Carter AP. 2014. In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J 33:1855–68
    [Google Scholar]
  146. 146. 
    Schlager MA, Kapitein LC, Grigoriev I, Burzynski GM, Wulf PS et al. 2010. Pericentrosomal targeting of Rab6 secretory vesicles by Bicaudal-D-related protein 1 (BICDR-1) regulates neuritogenesis. EMBO J 29:1637–51
    [Google Scholar]
  147. 147. 
    Schmidt H, Gleave ES, Carter AP. 2012. Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat. Struct. Mol. Biol. 19:492–97
    [Google Scholar]
  148. 148. 
    Schmidt H, Zalyte R, Urnavicius L, Carter AP. 2015. Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518:435–38
    [Google Scholar]
  149. 149. 
    Schnapp BJ, Reese TS 1989. Dynein is the motor for retrograde axonal transport of organelles. PNAS 86:1548–52
    [Google Scholar]
  150. 150. 
    Schroer TA, Sheetz MP. 1991. Two activators of microtubule-based vesicle transport. J. Cell Biol. 115:1309–18
    [Google Scholar]
  151. 151. 
    Schroer TA, Steuer ER, Sheetz MP. 1989. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell 56:937–46
    [Google Scholar]
  152. 152. 
    Schuster M, Lipowsky R, Assmann MA, Lenz P, Steinberg G 2011. Transient binding of dynein controls bidirectional long-range motility of early endosomes. PNAS 108:3618–23
    [Google Scholar]
  153. 153. 
    Sharp DJ, Rogers GC, Scholey JM. 2000. Microtubule motors in mitosis. Nature 407:41–47
    [Google Scholar]
  154. 154. 
    Shih SM, Engel BD, Kocabas F, Bilyard T, Gennerich A et al. 2013. Intraflagellar transport drives flagellar surface motility. eLife 2:e00744
    [Google Scholar]
  155. 155. 
    Shimizu Y, Sakakibara H, Kojima H, Oiwa K. 2014. Slow axonemal dynein e facilitates the motility of faster dynein c. Biophys. J. 106:2157–65
    [Google Scholar]
  156. 156. 
    Shingyoji C, Murakami A, Takahashi K. 1977. Local reactivation of Triton-extracted flagella by iontophoretic application of ATP. Nature 265:269–70
    [Google Scholar]
  157. 157. 
    Siddiqui N, Zwetsloot AJ, Bachmann A, Roth D, Hussain H et al. 2019. PTPN21 and Hook3 relieve KIF1C autoinhibition and activate intracellular transport. Nat. Commun. 10:2693
    [Google Scholar]
  158. 158. 
    Sirajuddin M, Rice LM, Vale RD. 2014. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16:335–44
    [Google Scholar]
  159. 159. 
    Soppina V, Rai AK, Ramaiya AJ, Barak P, Mallik R 2009. Tug-of-war between dissimilar teams of microtubule motors regulates transport and fission of endosomes. PNAS 106:19381–86
    [Google Scholar]
  160. 160. 
    Splinter D, Razafsky DS, Schlager MA, Serra-Marques A, Grigoriev I et al. 2012. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Mol. Biol. Cell 23:4226–41
    [Google Scholar]
  161. 161. 
    Stepanek L, Pigino G. 2016. Microtubule doublets are double-track railways for intraflagellar transport trains. Science 352:721–24
    [Google Scholar]
  162. 162. 
    Summers KE, Gibbons IR 1971. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. PNAS 68:3092–96
    [Google Scholar]
  163. 163. 
    Svoboda K, Block SM. 1994. Force and velocity measured for single kinesin molecules. Cell 77:773–84
    [Google Scholar]
  164. 164. 
    Tan R, Lam AJ, Tan T, Han J, Nowakowski DW et al. 2019. Microtubules gate tau condensation to spatially regulate microtubule functions. Nat. Cell Biol. 21:1078–85
    [Google Scholar]
  165. 165. 
    Tas RP, Chazeau A, Cloin BMC, Lambers MLA, Hoogenraad CC, Kapitein LC. 2017. Differentiation between oppositely oriented microtubules controls polarized neuronal transport. Neuron 96:1264–71.e5
    [Google Scholar]
  166. 166. 
    Toba S, Fox LA, Sakakibara H, Porter ME, Oiwa K, Sale WS. 2011. Distinct roles of 1alpha and 1beta heavy chains of the inner arm dynein I1 of Chlamydomonas flagella. Mol. Biol. Cell 22:342–53
    [Google Scholar]
  167. 167. 
    Torisawa T, Ichikawa M, Furuta A, Saito K, Oiwa K et al. 2014. Autoinhibition and cooperative activation mechanisms of cytoplasmic dynein. Nat. Cell Biol. 16:1118–24
    [Google Scholar]
  168. 168. 
    Toropova K, Mladenov M, Roberts AJ. 2017. Intraflagellar transport dynein is autoinhibited by trapping of its mechanical and track-binding elements. Nat. Struct. Mol. Biol. 24:461–68
    [Google Scholar]
  169. 169. 
    Toropova K, Zalyte R, Mukhopadhyay AG, Mladenov M, Carter AP, Roberts AJ. 2019. Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat. Struct. Mol. Biol. 26:823–29
    [Google Scholar]
  170. 170. 
    Toropova K, Zou S, Roberts AJ, Redwine WB, Goodman BS et al. 2014. Lis1 regulates dynein by sterically blocking its mechanochemical cycle. eLife 3:e03372
    [Google Scholar]
  171. 171. 
    Trokter M, Mucke N, Surrey T 2012. Reconstitution of the human cytoplasmic dynein complex. PNAS 109:20895–900
    [Google Scholar]
  172. 172. 
    Uchimura S, Fujii T, Takazaki H, Ayukawa R, Nishikawa Y et al. 2015. A flipped ion pair at the dynein-microtubule interface is critical for dynein motility and ATPase activation. J. Cell Biol. 208:211–22
    [Google Scholar]
  173. 173. 
    Urnavicius L, Lau CK, Elshenawy MM, Morales-Rios E, Motz C et al. 2018. Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature 554:202–6
    [Google Scholar]
  174. 174. 
    Urnavicius L, Zhang K, Diamant AG, Motz C, Schlager MA et al. 2015. The structure of the dynactin complex and its interaction with dynein. Science 347:1441–46
    [Google Scholar]
  175. 175. 
    Vale RD, Toyoshima YY. 1988. Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell 52:459–69
    [Google Scholar]
  176. 176. 
    Verhey KJ, Gaertig J. 2007. The tubulin code. Cell Cycle 6:2152–60
    [Google Scholar]
  177. 177. 
    Viswanadha R, Sale WS, Porter ME. 2017. Ciliary motility: regulation of axonemal dynein motors. Cold Spring Harb. Perspect. Biol. 9:8a018325
    [Google Scholar]
  178. 178. 
    Vuolo L, Stevenson NL, Mukhopadhyay AG, Roberts AJ, Stephens DJ. 2020. Cytoplasmic dynein-2 at a glance. J. Cell Sci. 133:6jcs240614
    [Google Scholar]
  179. 179. 
    Walter WJ, Machens I, Rafieian F, Diez S. 2015. The non-processive rice kinesin-14 OsKCH1 transports actin filaments along microtubules with two distinct velocities. Nat. Plants 1:15111
    [Google Scholar]
  180. 180. 
    Wang S, Ketcham SA, Schon A, Goodman B, Wang Y et al. 2013. Nudel/NudE and Lis1 promote dynein and dynactin interaction in the context of spindle morphogenesis. Mol. Biol. Cell 24:3522–33
    [Google Scholar]
  181. 181. 
    Wren KN, Craft JM, Tritschler D, Schauer A, Patel DK et al. 2013. A differential cargo-loading model of ciliary length regulation by IFT. Curr. Biol. 23:2463–71
    [Google Scholar]
  182. 182. 
    Yagi T, Minoura I, Fujiwara A, Saito R, Yasunaga T et al. 2005. An axonemal dynein particularly important for flagellar movement at high viscosity: implications from a new Chlamydomonas mutant deficient in the dynein heavy chain gene DHC9. J. Biol. Chem. 280:41412–20
    [Google Scholar]
  183. 183. 
    Yamada M, Tanaka-Takiguchi Y, Hayashi M, Nishina M, Goshima G. 2017. Multiple kinesin-14 family members drive microtubule minus end-directed transport in plant cells. J. Cell Biol. 216:1705–14
    [Google Scholar]
  184. 184. 
    Yang S, Bahl K, Chou HT, Woodsmith J, Stelzl U et al. 2020. Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes. eLife 9:e55954
    [Google Scholar]
  185. 185. 
    Yildiz A, Tomishige M, Vale RD, Selvin PR. 2004. Kinesin walks hand-over-hand. Science 303:676–78
    [Google Scholar]
  186. 186. 
    Zariwala MA, Knowles MR, Omran H. 2007. Genetic defects in ciliary structure and function. Annu. Rev. Physiol. 69:423–50
    [Google Scholar]
  187. 187. 
    Zhang K, Foster HE, Rondelet A, Lacey SE, Bahi-Buisson N et al. 2017. Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. Cell 169:1303–14
    [Google Scholar]
  188. 188. 
    Zylkiewicz E, Kijanska M, Choi WC, Derewenda U, Derewenda ZS, Stukenberg PT. 2011. The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein. J. Cell Biol. 192:433–45
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-111020-101511
Loading
/content/journals/10.1146/annurev-biophys-111020-101511
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error