1932

Abstract

Embryonic development hinges on effective coordination of molecular events across space and time. Waves have recently emerged as constituting an ubiquitous mechanism that ensures rapid spreading of regulatory signals across embryos, as well as reliable control of their patterning, namely, for the emergence of body plan structures. In this article, we review a selection of recent quantitative work on signaling waves and present an overview of the theory of waves. Our aim is to provide a succinct yet comprehensive guiding reference for the theoretical frameworks by which signaling waves can arise in embryos. We start, then, from reaction–diffusion systems, both static and time dependent; move to excitable dynamics; and conclude with systems of coupled oscillators. We link these theoretical models to molecular mechanisms recently elucidated for the control of mitotic waves in early embryos, patterning of the vertebrate body axis, micropattern cultures, and bone regeneration. Our goal is to inspire experimental work that will advance theory in development and connect its predictions to quantitative biological observations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-111521-102500
2022-05-09
2024-05-14
Loading full text...

Full text loading...

/deliver/fulltext/biophys/51/1/annurev-biophys-111521-102500.html?itemId=/content/journals/10.1146/annurev-biophys-111521-102500&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abrams DM, Strogatz SH. 2006. Chimera states in a ring of nonlocally coupled oscillators. Int. J. Bifurcation Chaos 16:0121–37
    [Google Scholar]
  2. 2.
    Afanzar O, Buss GK, Stearns T, Ferrell JE Jr. 2020. The nucleus serves as the pacemaker for the cell cycle. eLife 9:e59989
    [Google Scholar]
  3. 3.
    Aoki K, Kondo Y, Naoki H, Hiratsuka T, Itoh RE, Matsuda M. 2017. Propagating wave of ERK activation orients collective cell migration. Dev. Cell 43:3305–17.e5
    [Google Scholar]
  4. 4.
    Aranson IS, Kramer L. 2002. The world of the complex Ginzburg-Landau equation. Rev. Mod. Phys. 74:199–143
    [Google Scholar]
  5. 5.
    Aulehla A, Wiegraebe W, Baubet V, Wahl MB, Deng C et al. 2008. A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat. Cell Biol. 10:2186–93
    [Google Scholar]
  6. 6.
    Bailles A, Collinet C, Philippe JM, Lenne PF, Munro E, Lecuit T. 2019. Genetic induction and mechanochemical propagation of a morphogenetic wave. Nature 572:7770467–73
    [Google Scholar]
  7. 7.
    Bailleul R, Curantz C, Desmarquet-Trin Dinh C, Hidalgo M, Touboul J, Manceau M. 2019. Symmetry breaking in the embryonic skin triggers directional and sequential plumage patterning. PLOS Biol. 17:10e3000448
    [Google Scholar]
  8. 8.
    Bender CM, Orszag SA. 1999. Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory Berlin: Springer
  9. 9.
    Bischof J, Brand CA, Somogyi K, Majer I, Thome S et al. 2017. A cdk1 gradient guides surface contraction waves in oocytes. Nat. Commun. 8:849
    [Google Scholar]
  10. 10.
    Blythe SA, Wieschaus EF. 2015. Coordinating cell cycle remodeling with transcriptional activation at the Drosophila MBT. Curr. Top. Dev. Biol. 113:113–48
    [Google Scholar]
  11. 11.
    Boocock D, Hino N, Ruzickova N, Hirashima T, Hannezo E. 2021. Theory of mechanochemical patterning and optimal migration in cell monolayers. Nat. Phys. 17:2267–74
    [Google Scholar]
  12. 12.
    Briscoe J, Small S. 2015. Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142:233996–4009
    [Google Scholar]
  13. 13.
    Brunet E, Derrida B. 2001. Effect of microscopic noise on front propagation. J. Stat. Phys. 103:1269–82
    [Google Scholar]
  14. 14.
    Chang JB, Ferrell JE Jr. 2013. Mitotic trigger waves and the spatial coordination of the Xenopus cell cycle. Nature 500:7464603–7
    [Google Scholar]
  15. 15.
    Cherry EM, Fenton FH. 2008. Visualization of spiral and scroll waves in simulated and experimental cardiac tissue. New J. Phys. 10:12125016
    [Google Scholar]
  16. 16.
    Chu LF, Mamott D, Ni Z, Bacher R, Liu C et al. 2019. An in vitro human segmentation clock model derived from embryonic stem cells. Cell Rep. 28:92247–55.e5
    [Google Scholar]
  17. 17.
    Cooke J, Zeeman EC. 1976. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58:2455–76
    [Google Scholar]
  18. 18.
    Davidenko JM, Pertsov AV, Salomonsz R, Baxter W, Jalife J. 1992. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355:6358349–51
    [Google Scholar]
  19. 19.
    De Simone A, Evanitsky MN, Hayden L, Cox BD, Wang J et al. 2021. Control of osteoblast regeneration by a train of ERK activity waves. Nature 590:7844129–33
    [Google Scholar]
  20. 20.
    Deneke VE, Di Talia S. 2018. Chemical waves in cell and developmental biology. J. Cell Biol. 217:41193–204
    [Google Scholar]
  21. 21.
    Deneke VE, Melbinger A, Vergassola M, Di Talia S. 2016. Waves of Cdk1 activity in S phase synchronize the cell cycle in Drosophila embryos. Dev. Cell 38:4399–412
    [Google Scholar]
  22. 22.
    Deneke VE, Puliafito A, Krueger D, Narla AV, De Simone A et al. 2019. Self-organized nuclear positioning synchronizes the cell cycle in Drosophila embryos. Cell 177:4925–41.e17
    [Google Scholar]
  23. 23.
    Diaz-Cuadros M, Wagner DE, Budjan C, Hubaud A, Tarazona OA et al. 2020. In vitro characterization of the human segmentation clock. Nature 580:7801113–18
    [Google Scholar]
  24. 24.
    Dufourt J, Bellec M, Trullo A, Dejean M, De Rossi S et al. 2021. Imaging translation dynamics in live embryos reveals spatial heterogeneities. Science 372:6544840–44
    [Google Scholar]
  25. 25.
    Edgar BA, Kiehle CP, Schubiger G. 1986. Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44:2365–72
    [Google Scholar]
  26. 26.
    El-Sherif E, Zhu X, Fu J, Brown SJ. 2014. Caudal regulates the spatiotemporal dynamics of pair-rule waves in Tribolium. PLOS Genet. 10:10e1004677
    [Google Scholar]
  27. 27.
    Ermentrout B, Terman DH. 2010. Mathematical Foundations of Neuroscience Berlin: Springer
  28. 28.
    Farahani PE, Reed EH, Underhill EJ, Aoki K, Toettcher JE. 2021. Signaling, deconstructed: using optogenetics to dissect and direct information flow in biological systems. Annu. Rev. Biomed. Eng. 23:61–87
    [Google Scholar]
  29. 29.
    Farrell JA, O'Farrell PH. 2014. From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition. Annu. Rev. Genet. 48:269–94
    [Google Scholar]
  30. 30.
    Fasulo B, Koyama C, Yu KR, Homola EM, Hsieh TS et al. 2012. Chk1 and Wee1 kinases coordinate DNA replication, chromosome condensation, and anaphase entry. Mol. Biol. Cell 23:61047–57
    [Google Scholar]
  31. 31.
    Fife PC 1984. Propagator-controller systems and chemical patterns. Non-Equilibrium Dynamics in Chemical Systems C Vidal, A Pacault 76–88 Berlin: Springer
    [Google Scholar]
  32. 32.
    FitzHugh R. 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1:6445–66
    [Google Scholar]
  33. 33.
    Foe VE, Alberts BM. 1983. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci. 61:31–70
    [Google Scholar]
  34. 34.
    Gagliardi PA, Dobrzynski M, Jacques MA, Dessauges C, Ender P et al. 2021. Collective ERK/AKT activity waves orchestrate epithelial homeostasis by driving apoptosis-induced survival. Dev. Cell 56:1712–26.e6
    [Google Scholar]
  35. 35.
    Gallagher KD, Mani M, Carthew RW. 2022. Emergence of a geometric pattern of cell fates from tissue-scale mechanics in the Drosophila eye. eLife 11:e72806
    [Google Scholar]
  36. 36.
    Garcia-Ojalvo J, Sancho JM. 2012. Noise in Spatially Extended Systems Berlin: Springer
  37. 37.
    Gavet O, Pines J. 2010. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev. Cell 18:4533–43
    [Google Scholar]
  38. 38.
    Gelens L, Anderson GA, Ferrell JE Jr. 2014. Spatial trigger waves: Positive feedback gets you a long way. Mol. Biol. Cell 25:223486–93
    [Google Scholar]
  39. 39.
    Gomez C, Ozbudak EM, Wunderlich J, Baumann D, Lewis J, Pourquie O. 2008. Control of segment number in vertebrate embryos. Nature 454:7202335–39
    [Google Scholar]
  40. 40.
    Greenwald EC, Mehta S, Zhang J. 2018. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem. Rev. 118:2411707–94
    [Google Scholar]
  41. 41.
    Gregor T, Garcia HG, Little SC. 2014. The embryo as a laboratory: quantifying transcription in Drosophila. Trends Genet. 30:8364–75
    [Google Scholar]
  42. 42.
    Grimm O, Wieschaus E. 2010. The bicoid gradient is shaped independently of nuclei. Development 137:172857–62
    [Google Scholar]
  43. 43.
    Guckenheimer J. 1975. Isochrons and phaseless sets. J. Math. Biol. 1:3259–73
    [Google Scholar]
  44. 44.
    Guckenheimer J, Holmes P. 1983. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields Berlin: Springer
  45. 45.
    Hayden LD, Poss KD, De Simone A, Di Talia S. 2021. Mathematical modeling of Erk activity waves in regenerating zebrafish scales. Biophys. J. 120:194287–97
    [Google Scholar]
  46. 46.
    Heim A, Rymarczyk B, Mayer TU. 2017. Regulation of cell division. Adv. Exp. Med. Biol. 953:83–116
    [Google Scholar]
  47. 47.
    Hino N, Rossetti L, Marin-Llaurado A, Aoki K, Trepat X et al. 2020. ERK-mediated mechanochemical waves direct collective cell polarization. Dev. Cell 53:6646–60.e8
    [Google Scholar]
  48. 48.
    Hiratsuka T, Fujita Y, Naoki H, Aoki K, Kamioka Y, Matsuda M. 2015. Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin. eLife 4:e05178
    [Google Scholar]
  49. 49.
    Ho WKW, Freem L, Zhao D, Painter KJ, Woolley TE et al. 2019. Feather arrays are patterned by interacting signalling and cell density waves. PLOS Biol. 17:2e3000132
    [Google Scholar]
  50. 50.
    Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:4500–44
    [Google Scholar]
  51. 51.
    Hoppensteadt FC, Izhikevich EM. 1997. Weakly Connected Neural Networks Berlin: Springer
  52. 52.
    Hubaud A, Pourquie O. 2014. Signalling dynamics in vertebrate segmentation. Nat. Rev. Mol. Cell Biol. 15:11709–21
    [Google Scholar]
  53. 53.
    Hubaud A, Regev I, Mahadevan L, Pourquie O. 2017. Excitable dynamics and Yap-dependent mechanical cues drive the segmentation clock. Cell 171:3668–82.e11
    [Google Scholar]
  54. 54.
    Idema T, Dubuis JO, Kang L, Manning ML, Nelson PC et al. 2013. The syncytial Drosophila embryo as a mechanically excitable medium. PLOS ONE 8:10e77216
    [Google Scholar]
  55. 55.
    Ishii M, Tateya T, Matsuda M, Hirashima T. 2021. Retrograde ERK activation waves drive base-to-apex multicellular flow in murine cochlear duct morphogenesis. eLife 10:e61092
    [Google Scholar]
  56. 56.
    Izhikevich EM. 2014. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting Cambridge, MA: MIT Press
  57. 57.
    Jutras-Dube L, El-Sherif E, Francois P. 2020. Geometric models for robust encoding of dynamical information into embryonic patterns. eLife 9:e55778
    [Google Scholar]
  58. 58.
    Kamenz J, Gelens L, Ferrell JE Jr. 2021. Bistable, biphasic regulation of PP2A-B55 accounts for the dynamics of mitotic substrate phosphorylation. Curr. Biol. 31:4794–808.e6
    [Google Scholar]
  59. 59.
    Karma A. 2013. Physics of cardiac arrhythmogenesis. Annu. Rev. Condensed Matter Phys. 4:1313–37
    [Google Scholar]
  60. 60.
    Keener JP, Sneyd J. 2009. Mathematical Physiology Berlin: Springer
  61. 61.
    Kessin RH. 2001. Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity Cambridge, UK: Cambridge Univ. Press
  62. 62.
    Kopell N, Howard LN. 1973. Horizontal bands in the Belousov reaction. Science 180:40911171–73
    [Google Scholar]
  63. 63.
    Kopell N, Howard LN. 1973. Plane wave solutions to reaction-diffusion equations. Stud. Appl. Math. 52:4291–328
    [Google Scholar]
  64. 64.
    Krueger D, Izquierdo E, Viswanathan R, Hartmann J, Pallares Cartes C, De Renzis S. 2019. Principles and applications of optogenetics in developmental biology. Development 146:20dev175067
    [Google Scholar]
  65. 65.
    Kuramoto Y. 1984. Chemical Oscillations, Waves, and Turbulence Berlin: Springer
  66. 66.
    Kuramoto Y, Battogtokh D. 2002. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlin. Phenom. Compl. Syst. 5:380–85
    [Google Scholar]
  67. 67.
    Lauschke VM, Tsiairis CD, Francois P, Aulehla A. 2013. Scaling of embryonic patterning based on phase-gradient encoding. Nature 493:7430101–5
    [Google Scholar]
  68. 68.
    Lavoie H, Gagnon J, Therrien M. 2020. ERK signalling: a master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol. 21:10607–32
    [Google Scholar]
  69. 69.
    Lee MT, Bonneau AR, Giraldez AJ. 2014. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 30:581–613
    [Google Scholar]
  70. 70.
    Leptin M. 1999. Gastrulation in Drosophila: the logic and the cellular mechanisms. EMBO J. 18:123187–92
    [Google Scholar]
  71. 71.
    Levine H, Rappel WJ. 2013. The physics of eukaryotic chemotaxis. Phys. Today 66:2)
    [Google Scholar]
  72. 72.
    Lewis J. 2003. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13:161398–408
    [Google Scholar]
  73. 73.
    Li P, Elowitz MB. 2019. Communication codes in developmental signaling pathways. Development 146:12dev170977
    [Google Scholar]
  74. 74.
    Lindner B, Garcia-Ojalvo J, Neiman A, Schimansky-Geier L. 2004. Effects of noise in excitable systems. Phys. Rep. 392:6321–424
    [Google Scholar]
  75. 75.
    Lord ND, Carte AN, Abitua PB, Schier AF. 2021. The pattern of nodal morphogen signaling is shaped by co-receptor expression. eLife 10:e54894
    [Google Scholar]
  76. 76.
    Luther R. 1987. Propagation of chemical reactions in space. J. Chem. Educ. 64:740
    [Google Scholar]
  77. 77.
    Maini PK, Baker RE, Schnell S. 2015. Rethinking models of pattern formation in somitogenesis. Cell Syst. 1:4248–49
    [Google Scholar]
  78. 78.
    Maroto M, Dale JK, Dequeant ML, Petit AC, Pourquie O. 2005. Synchronised cycling gene oscillations in presomitic mesoderm cells require cell-cell contact. Int. J. Dev. Biol. 49:2–3309–15
    [Google Scholar]
  79. 79.
    Martin AC. 2020. The physical mechanisms of Drosophila gastrulation: mesoderm and endoderm invagination. Genetics 214:3543–60
    [Google Scholar]
  80. 80.
    Martyn I, Brivanlou AH, Siggia ED. 2019. A wave of WNT signaling balanced by secreted inhibitors controls primitive streak formation in micropattern colonies of human embryonic stem cells. Development 146:6dev172791
    [Google Scholar]
  81. 81.
    Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y et al. 2006. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. PNAS 103:51313–18
    [Google Scholar]
  82. 82.
    Matsuda M, Hayashi H, Garcia-Ojalvo J, Yoshioka-Kobayashi K, Kageyama R et al. 2020. Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science 369:65101450–55
    [Google Scholar]
  83. 83.
    Matsuda M, Yamanaka Y, Uemura M, Osawa M, Saito MK et al. 2020. Recapitulating the human segmentation clock with pluripotent stem cells. Nature 580:7801124–29
    [Google Scholar]
  84. 84.
    McCleland ML, Shermoen AW, O'Farrell PH. 2009. DNA replication times the cell cycle and contributes to the mid-blastula transition in Drosophila embryos. J. Cell Biol. 187:17–14
    [Google Scholar]
  85. 85.
    Mittasch M, Gross P, Nestler M, Fritsch AW, Iserman C et al. 2018. Non-invasive perturbations of intracellular flow reveal physical principles of cell organization. Nat. Cell Biol. 20:3344–51
    [Google Scholar]
  86. 86.
    Mochida S, Hunt T. 2012. Protein phosphatases and their regulation in the control of mitosis. EMBO Rep. 13:3197–203
    [Google Scholar]
  87. 87.
    Mochida S, Maslen SL, Skehel M, Hunt T. 2010. Greatwall phosphorylates an inhibitor of protein phosphatase 2a that is essential for mitosis. Science 330:60111670–73
    [Google Scholar]
  88. 88.
    Morgan DO. 2007. The Cell Cycle: Principles of Control London: New Sci. Press
  89. 89.
    Muller P, Rogers KW, Jordan BM, Lee JS, Robson D et al. 2012. Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science 336:6082721–24
    [Google Scholar]
  90. 90.
    Muller P, Rogers KW, Yu SR, Brand M, Schier AF. 2013. Morphogen transport. Development 140:81621–38
    [Google Scholar]
  91. 91.
    Murray AW, Kirschner MW. 1989. Cyclin synthesis drives the early embryonic cell cycle. Nature 339:6222275–80
    [Google Scholar]
  92. 92.
    Murray JD. 2013. Mathematical Biology, Vol. 1: Berlin: Springer
  93. 93.
    Nagumo J, Arimoto S, Yoshizawa S. 1962. An active pulse transmission line simulating nerve axon. Proc. IRE 50:102061–70
    [Google Scholar]
  94. 94.
    Narayan SM, Krummen DE, Shivkumar K, Clopton P, Rappel WJ, Miller JM. 2012. Treatment of atrial fibrillation by the ablation of localized sources. J. Am. Coll. Cardiol. 60:7628–36
    [Google Scholar]
  95. 95.
    Negrete J, Lengyel IM, Rohde L, Desai RA, Oates AC, Jülicher F. 2021. Theory of time delayed genetic oscillations with external noisy regulation. New J. Phys. 23:3033030
    [Google Scholar]
  96. 96.
    Negrete JJ, Oates AC. 2021. Towards a physical understanding of developmental patterning. Nat. Rev. Genet. 22:8518–31
    [Google Scholar]
  97. 97.
    Nolet FE, Vandervelde A, Vanderbeke A, Pineros L, Chang JB, Gelens L. 2020. Nuclei determine the spatial origin of mitotic waves. eLife 9:e52868
    [Google Scholar]
  98. 98.
    Novak B, Tyson JJ. 1993. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 106:Pt 41153–68
    [Google Scholar]
  99. 99.
    Oates AC, Morelli LG, Ares S. 2012. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139:4625–39
    [Google Scholar]
  100. 100.
    O'Farrell PH. 2015. Growing an embryo from a single cell: a hurdle in animal life. Cold Spring Harb. Perspect. Biol. 7:11a019042
    [Google Scholar]
  101. 101.
    O'Farrell PH, Stumpff J, Su TT. 2004. Embryonic cleavage cycles: How is a mouse like a fly?. Curr. Biol. 14:1R35–45
    [Google Scholar]
  102. 102.
    Ogura Y, Wen FL, Sami MM, Shibata T, Hayashi S. 2018. A switch-like activation relay of EGFR-ERK signaling regulates a wave of cellular contractility for epithelial invagination. Dev. Cell 46:2162–72.e5
    [Google Scholar]
  103. 103.
    Patel AL, Shvartsman SY. 2018. Outstanding questions in developmental ERK signaling. Development 145:14dev143818
    [Google Scholar]
  104. 104.
    Pietras B, Daffertshofer A. 2019. Network dynamics of coupled oscillators and phase reduction techniques. Phys. Rep. 819:1–105
    [Google Scholar]
  105. 105.
    Pikovsky A, Rosenblum M, Kurths J. 2003. Synchronization: A Universal Concept in Nonlinear Sciences Cambridge, UK: Cambridge Univ. Press
  106. 106.
    Pomerening JR, Sontag ED, Ferrell JE Jr. 2003. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol. 5:4346–51
    [Google Scholar]
  107. 107.
    Puls O, Yang Q 2018. The rise of ultrafast waves. Dev. Cell 47:5532–34
    [Google Scholar]
  108. 108.
    Rankin S, Kirschner MW. 1997. The surface contraction waves of Xenopus eggs reflect the metachronous cell-cycle state of the cytoplasm. Curr. Biol. 7:6451–54
    [Google Scholar]
  109. 109.
    Rata S, Suarez Peredo Rodriguez MF, Joseph S, Peter N, Echegaray Iturra F et al. 2018. Two interlinked bistable switches govern mitotic control in mammalian cells. Curr. Biol. 28:233824–32.e6
    [Google Scholar]
  110. 110.
    Regot S, Hughey JJ, Bajar BT, Carrasco S, Covert MW. 2014. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157:71724–34
    [Google Scholar]
  111. 111.
    Rogers KW, Muller P. 2020. Optogenetic approaches to investigate spatiotemporal signaling during development. Curr. Top. Dev. Biol. 137:37–77
    [Google Scholar]
  112. 112.
    Rohde LA, Bercowsky-Rama A, Negrete J, Valentin G, Naganathan SR et al. 2021. Cell-autonomous generation of the wave pattern within the vertebrate segmentation clock. bioRxiv 2021.05.29.446196 . https://doi.org/10.1101/2021.05.29.446196
    [Crossref]
  113. 113.
    Roignant JY, Treisman JE. 2009. Pattern formation in the Drosophila eye disc. Int. J. Dev. Biol. 53:5–6795–804
    [Google Scholar]
  114. 114.
    Sanchez PGL, Mochulska V, Denis CM, Mönke G, Tomita T et al. 2021. Arnold tongue entrainment reveals dynamical principles of the embryonic segmentation clock. bioRxiv 2021.10.20.465101 . https://doi.org/10.1101/2021.10.20.465101
    [Crossref]
  115. 115.
    Sander K. 1971. Pattern formation in longitudinal halves of leaf hopper eggs (Homoptera) and some remarks on the definition of “embryonic regulation”. . Wilhelm Roux Arch. Entwickl. Mech. Org. 167:4336–52
    [Google Scholar]
  116. 116.
    Sanders JA, Verhulst F, Murdock JA. 2007. Averaging Methods in Nonlinear Dynamical Systems Berlin: Springer
  117. 117.
    Sarrazin AF, Peel AD, Averof M. 2012. A segmentation clock with two-segment periodicity in insects. Science 336:6079338–41
    [Google Scholar]
  118. 118.
    Sha W, Moore J, Chen K, Lassaletta AD, Yi CS et al. 2003. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. PNAS 100:3975–80
    [Google Scholar]
  119. 119.
    Shamipour S, Caballero-Mancebo S, Heisenberg CP. 2021. Cytoplasm's got moves. Dev. Cell 56:2213–26
    [Google Scholar]
  120. 120.
    Shih NP, Francois P, Delaune EA, Amacher SL. 2015. Dynamics of the slowing segmentation clock reveal alternating two-segment periodicity. Development 142:101785–93
    [Google Scholar]
  121. 121.
    Shimojo H, Kageyama R. 2016. Making waves toward the shore by synchronicity. Dev. Cell 36:4358–59
    [Google Scholar]
  122. 122.
    Shimojo H, Kageyama R. 2016. Oscillatory control of Delta-like1 in somitogenesis and neurogenesis: a unified model for different oscillatory dynamics. Semin. Cell Dev. Biol. 49:76–82
    [Google Scholar]
  123. 123.
    Sibon OC, Laurencon A, Hawley R, Theurkauf WE. 1999. The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition. Curr. Biol. 9:6302–12
    [Google Scholar]
  124. 124.
    Sibon OC, Stevenson VA, Theurkauf WE. 1997. DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388:663793–97
    [Google Scholar]
  125. 125.
    Sonnen KF, Aulehla A. 2014. Dynamic signal encoding—from cells to organisms. Semin. Cell Dev. Biol. 34:91–98
    [Google Scholar]
  126. 126.
    Sonnen KF, Lauschke VM, Uraji J, Falk HJ, Petersen Y et al. 2018. Modulation of phase shift between Wnt and Notch signaling oscillations controls mesoderm segmentation. Cell 172:51079–90.e12
    [Google Scholar]
  127. 127.
    Soroldoni D, Jorg DJ, Morelli LG, Richmond DL, Schindelin J et al. 2014. Genetic oscillations: a Doppler effect in embryonic pattern formation. Science 345:6193222–25
    [Google Scholar]
  128. 128.
    Stapornwongkul KS, Vincent JP. 2021. Generation of extracellular morphogen gradients: the case for diffusion. Nat. Rev. Genet. 22:6393–411
    [Google Scholar]
  129. 129.
    Strogatz SH. 1994. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Cambridge, MA: Westview Press
  130. 130.
    Strogatz SH. 2003. Sync: The Emerging Science of Spontaneous Order New York: Theia
  131. 131.
    Stumpff J, Duncan T, Homola E, Campbell SD, Su TT. 2004. Drosophila Wee1 kinase regulates Cdk1 and mitotic entry during embryogenesis. Curr. Biol. 14:232143–48
    [Google Scholar]
  132. 132.
    Takada S, Kwak S, Koppetsch BS, Theurkauf WE. 2007. Grp (chk1) replication-checkpoint mutations and DNA damage trigger a Chk2-dependent block at the Drosophila midblastula transition. Development 134:91737–44
    [Google Scholar]
  133. 133.
    Tam PPL. 1981. The control of somitogenesis in mouse embryos. Development 65:Suppl.103–28
    [Google Scholar]
  134. 134.
    Tsiairis CD, Aulehla A. 2016. Self-organization of embryonic genetic oscillators into spatiotemporal wave patterns. Cell 164:4656–67
    [Google Scholar]
  135. 135.
    Valon L, Davidovic A, Levillayer F, Villars A, Chouly M et al. 2021. Robustness of epithelial sealing is an emerging property of local ERK feedback driven by cell elimination. Dev. Cell 56:121700–11.e8
    [Google Scholar]
  136. 136.
    van Saarloos W. 1998. Three basic issues concerning interface dynamics in nonequilibrium pattern formation. Phys. Rep. 301:19–43
    [Google Scholar]
  137. 137.
    van Saarloos W, Hohenberg PC. 1992. Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations. Phys. D 56:4303–67
    [Google Scholar]
  138. 138.
    Vergassola M, Deneke VE, Di Talia S. 2018. Mitotic waves in the early embryogenesis of Drosophila: bistability traded for speed. PNAS 115:10E2165–74
    [Google Scholar]
  139. 139.
    Wigbers MC, Tan TH, Brauns F, Liu J, Swartz SZ et al. 2021. A hierarchy of protein patterns robustly decodes cell shape information. Nat. Phys. 17:5578–84
    [Google Scholar]
  140. 140.
    Wiley DA, Strogatz SH, Girvan M. 2006. The size of the sync basin. Chaos 16:1015103
    [Google Scholar]
  141. 141.
    Winfree AT. 1967. Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16:115–42
    [Google Scholar]
  142. 142.
    Winfree AT. 1987. The Timing of Biological Clocks New York: Sci. Am. Libr.
  143. 143.
    Winfree AT. 2001. The Geometry of Biological Time Berlin: Springer
  144. 144.
    Wolpert L. 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25:11–47
    [Google Scholar]
  145. 145.
    Wu JQ, Guo JY, Tang W, Yang CS, Freel CD et al. 2009. PP1-mediated dephosphorylation of phosphoproteins at mitotic exit is controlled by inhibitor-1 and PP1 phosphorylation. Nat. Cell Biol. 11:5644–51
    [Google Scholar]
  146. 146.
    Yu SR, Burkhardt M, Nowak M, Ries J, Petrasek Z et al. 2009. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461:7263533–36
    [Google Scholar]
  147. 147.
    Zinner M, Lukonin I, Liberali P. 2020. Design principles of tissue organisation: how single cells coordinate across scales. Curr. Opin. Cell Biol. 67:37–45
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-111521-102500
Loading
/content/journals/10.1146/annurev-biophys-111521-102500
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error