1932

Abstract

An ideal biosensor material at room temperature, with an extremely large surface area per unit mass combined with the possibility of harnessing quantum mechanical attributes, would be comprised of graphene and other two-dimensional (2D) materials. The sensing of a variety of sizes and types of biomolecules involves modulation of the electrical charge density of (current through) the 2D material and manifests through specific components of the capacitance (resistance). While sensitive detection at the single-molecule level, i.e., at zeptomolar concentrations, may be achieved, specificity in a complex mixture is more demanding. Attention should be paid to the influence of inevitably present defects in the 2D materials on the sensing, as well as calibration of obtained results with acceptable standards. The consequent establishment of a roadmap for the widespread deployment of 2D material–based biosensors in point-of-care platforms has the potential to revolutionize health care.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-111622-091121
2023-05-09
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/biophys/52/1/annurev-biophys-111622-091121.html?itemId=/content/journals/10.1146/annurev-biophys-111622-091121&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Armbruster DA, Pry T. 2008. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 29:Suppl. 1S49–52
    [Google Scholar]
  2. 2.
    Ashcroft NW, Mermin ND. 1976. Solid State Physics Orlando, FL: Saunders Coll.
  3. 3.
    Bacon M, Bradley SB, Nann T. 2013. Graphene quantum dots. Part. Part. Syst. Charact. 31:4415–28
    [Google Scholar]
  4. 4.
    Balamurugan K, Subramanian V. 2022. Interaction of amino acids, peptides, and proteins with two-dimensional carbon materials. Theor. Comput. Chem. 21:191–210
    [Google Scholar]
  5. 5.
    Balderston S, Taulbee JJ, Celaya E, Fung K, Jiao A et al. 2021. Discrimination of single-point mutations in unamplified genomic DNA via Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 5:713–25
    [Google Scholar]
  6. 6.
    Ban DK, Liu Y, Wang Z, Ramachandran S, Sarkar N et al. 2020. Direct DNA methylation profiling with an electric biosensor. ACS Nano 14:66743–51
    [Google Scholar]
  7. 7.
    Bandaru PR. 2007. Electrical properties and applications of carbon nanotube structures. J. Nanosci. Nanotechnol. 7:1239–67
    [Google Scholar]
  8. 8.
    Bandaru PR, Pichanusakorn P. 2010. An outline of the synthesis and properties of silicon nanowires. Semicond. Sci. Technol. 25:024003
    [Google Scholar]
  9. 9.
    Bandaru PR, Yamada H, Narayanan R, Hoefer M. 2015. Charge transfer and storage in nanostructures. Mater. Sci. Eng. R 96:1–69
    [Google Scholar]
  10. 10.
    Bandaru PR, Yamada H, Narayanan R, Hoefer M. 2017. The role of defects and dimensionality in influencing the charge, capacitance, and energy storage of graphene and 2D materials. Nanotechnol. Rev. 6:5421–33
    [Google Scholar]
  11. 11.
    Banhart F, Kotakoski J, Krasheninnikov AV. 2011. Structural defects in graphene. ACS Nano 5:26–41
    [Google Scholar]
  12. 12.
    Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M et al. 2015. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1:6e1500222
    [Google Scholar]
  13. 13.
    Barbieri O, Kötz R. 2005. Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43:1303–10
    [Google Scholar]
  14. 14.
    Bard AJ, Faulkner LR. 2001. Electrochemical Methods: Fundamentals and Applications Hoboken, NJ: Wiley
  15. 15.
    Bergveld P. 2003. Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B 88:1–20
    [Google Scholar]
  16. 16.
    Bisquert J. 2003. Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys. 5:245360–64
    [Google Scholar]
  17. 17.
    Braicu C, Mehterov N, Vladimirov B, Sarafian V, Nabavi SM et al. 2017. Nutrigenomics in cancer: revisiting the effects of natural compounds. Semin. Cancer Biol. 46:84–106
    [Google Scholar]
  18. 18.
    Brett CMA, Brett AMO. 1993. Electrochemistry: Principles, Methods, and Applications Oxford, UK: Oxford Univ. Press
  19. 19.
    Bulska E, Ruszczyńska A. 2017. Analytical techniques for trace element determination. Phys. Sci. Rev. 2:520178002
    [Google Scholar]
  20. 20.
    Burke PJ. 2002. Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1:129–44
    [Google Scholar]
  21. 21.
    Campos R, Borme J, Guerreiro JR, Machado G, Cerqueria MF et al. 2019. Attomolar label-free detection of DNA hybridization with electrolyte-gated graphene field-effect transistors. ACS Sens. 4:286–93
    [Google Scholar]
  22. 22.
    Chae M-S, Yoo YK, Kim J, Kim TG, Hwang KS. 2018. Graphene-based enzyme-modified field-effect transistor biosensor for monitoring drug effects in Alzheimer's disease treatment. Sens. Actuators B 272:448–58
    [Google Scholar]
  23. 23.
    Chanana A, Loftizadeh N, Quispe HOC, Gopalan P, Winger JR et al. 2019. Manifestation of kinetic-inductance in spectrally-narrow terahertz plasmon resonances in thin-film Cd3As2. ACS Nano 13:4091
    [Google Scholar]
  24. 24.
    Chaniotakis N, Fousaki M. 2014. Bio-chem-FETs: field effect transistors for biological sensing. Biological Identification: DNA Amplification and Sequencing, Optical Sensing, Lab-on-Chip and Portable Systems RP Schaudies 194–219. Sawston, UK: Woodhead Publ.
    [Google Scholar]
  25. 25.
    Chen RJ, Zhang Y, Wang DZ, Dai H. 2001. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123:3838–39
    [Google Scholar]
  26. 26.
    Chen X, Liu Y, Fang X, Li Z, Pu H et al. 2019. Ultratrace antibiotic sensing using aptamer/graphene-based field-effect transistors. Biosens. Bioelectron. 126:664–71
    [Google Scholar]
  27. 27.
    Compton OC, Nguyen ST. 2010. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–23
    [Google Scholar]
  28. 28.
    Conway BE, Bockris JO, Ammar IA. 1951. The dielectric constant of the solution in the diffuse and Helmholtz double layers at a charged interface in aqueous solution. Trans. Faraday Soc. 47:756–66
    [Google Scholar]
  29. 29.
    Datta S. 2005. Quantum Transport: Atom to Transistor Cambridge, UK: Cambridge Univ. Press
  30. 30.
    de Gennes P-G, Brochard-Wyart F, Quere D. 2002. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves Berlin: Springer
  31. 31.
    Delahay P. 1965. Double Layer and Electrode Kinetics New York: Interscience
  32. 32.
    Dhanapala L, Jones AL, Czarnecki P, Rusling JF. 2020. Sub-zeptomole detection of biomarker proteins using a microfluidic immunoarray with nanostructured sensors. Anal. Chem. 92:8021–25
    [Google Scholar]
  33. 33.
    Dong Y, Bandaru PR. 2022. Enhanced graphene surface plasmonics through incorporation into metallic nanostructures. Opt. Express 30:30696–704
    [Google Scholar]
  34. 34.
    Dontschuk D, Stacey A, Tadich A, Rietwyk KJ, Schenk A et al. 2015. A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases. Nat. Commun. 6:6563
    [Google Scholar]
  35. 35.
    Drndić M. 2021. 20 years of solid-state nanopores. Nat. Rev. Phys. 3:606
    [Google Scholar]
  36. 36.
    Dundas CM, Demonte D, Park S. 2013. Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Appl. Microbiol. Biotechnol. 97:9343–53
    [Google Scholar]
  37. 37.
    Faraby HM, Rao AM, Bandaru PR. 2013. Modeling high energy density electrical inductors operating at THz frequencies based on coiled carbon nanotubes. IEEE Electron. Device Lett. 34:6807–9
    [Google Scholar]
  38. 38.
    Feynman RP, Leighton RB, Sands M. 1964. The Feynman Lectures in Physics New York: Addison Wesley
  39. 39.
    Firme CP III, Bandaru PR 2010. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomed. Nanotechnol. Biol. Med. 6:2245–56
    [Google Scholar]
  40. 40.
    Gao J, Wang C, Wang C, Chu Y, Wang S et al. 2022. Poly-l-lysine-modified graphene field-effect transistor biosensors for ultrasensitive breast cancer miRNAs and SARS-CoV-2 RNA detection. Anal. Chem. 94:1626–36
    [Google Scholar]
  41. 41.
    Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA 2010. Graphene as a subnanometre trans-electrode membrane. Nature 467:7312190–93
    [Google Scholar]
  42. 42.
    Gargini P, Balestra F, Hayashi Y. 2022. Roadmapping of nanoelectronics for the new electronics industry. Appl. Sci. 12:308
    [Google Scholar]
  43. 43.
    Gerischer H 1997. Principles of electrochemistry. The CRC Handbook of Solid State Electrochemistry PJ Gellings, HJM Bouwmeester 9–74. Boca Raton, FL: CRC Press
    [Google Scholar]
  44. 44.
    Graf M, Lihter M, Altus D, Marion S, Radenovic A 2019. Transverse detection of DNA using a MoS2 nanopore. Nanoletters 19:129075–83
    [Google Scholar]
  45. 45.
    Graham SA, Boyko E, Salama R, Segal E. 2020. Mass transfer limitations of porous silicon-based biosensors for protein detection. ACS Sens. 5:3058–69
    [Google Scholar]
  46. 46.
    Grahame DC. 1947. The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41:3441–501
    [Google Scholar]
  47. 47.
    Guyot-Sionnest P. 2012. Electrical transport in colloidal quantum dot films. J. Phys. Chem. Lett. 3:1169–75
    [Google Scholar]
  48. 48.
    Halperin BI. 2019. On the Hohenberg-Mermin-Wagner theorem and its limitations. J. Stat. Phys. 175:521–29
    [Google Scholar]
  49. 49.
    Hoefer MA, Bandaru PR. 2010. Defect engineering of the electrochemical characteristics of carbon nanotube varieties. J. Appl. Phys. 108:3034308
    [Google Scholar]
  50. 50.
    Hossain MF, Hassan A, Rana MS. 2014. Theoretical investigation of quantum capacitance in armchair-edge graphene nanoribbons. Proceedings of the 2013 International Conference on Electrical Information and Communication Technology (EICT), Khulna, Bangladesh, Feb. 13–15 art. 14197054 Piscataway, NJ: IEEE
    [Google Scholar]
  51. 51.
    Hughes ZE, Walsh TR. 2015. What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces. J. Mater. Chem. B 3:3211–21
    [Google Scholar]
  52. 52.
    Hummers WS, Offemann RE. 1958. Preparation of graphitic oxide. J. Am. Chem. Soc. 80:1339
    [Google Scholar]
  53. 53.
    Hwang MT, Heiranian M, Kim Y, You S, Leem J et al. 2020. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 11:11543
    [Google Scholar]
  54. 54.
    Hwang MT, Landon PB, Lee J, Choi D, Mo AH et al. 2016. Highly specific SNP detection using 2D graphene electronics and DNA strand displacement. PNAS 113:267088–93
    [Google Scholar]
  55. 55.
    Hwang MT, Wang Z, Ping J, Ban DK, Shiah ZC et al. 2018. DNA nanotweezers and graphene transistor enable label-free genotyping. Adv. Mater. 30:1802440
    [Google Scholar]
  56. 56.
    Ibach H, Luth H. 1991. Solid-State Physics: An Introduction to Theory and Experiment Berlin: Springer
  57. 57.
    Israelachvili JN. 2011. Intermolecular and Surface Forces San Diego: Academic. , 3rd ed..
  58. 58.
    Ivanenko NB, Ganeev AA, Solovyev ND, Moskvin LN. 2011. Determination of trace elements in biological fluids. J. Anal. Chem. 66:9784
    [Google Scholar]
  59. 59.
    Jarmoskaite I, AlSadhan I, Vaidyanathan PP, Herschlag D. 2020. How to measure and evaluate binding affinities. eLife 9:e57264
    [Google Scholar]
  60. 60.
    Kagan VE, Bayir H, Shvedova AA. 2005. Nanomedicine and nanotoxicology: two sides of the same coin. Biol. Med. 4:313–16
    [Google Scholar]
  61. 61.
    Kaisti M. 2017. Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 98:437–48
    [Google Scholar]
  62. 62.
    Katsnelson MI. 2012. Graphene: Carbon in Two Dimensions Cambridge, UK: Cambridge Univ. Press
  63. 63.
    Khomyakov PA, Giovannetti G, Rusu PC, Brocks G, van den Brink J, Kelly PJ. 2009. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 79:19195425
    [Google Scholar]
  64. 64.
    Kim J, Park S-J, Min D-H. 2017. Emerging approaches for graphene oxide biosensor. Anal. Chem. 89:1232–48
    [Google Scholar]
  65. 65.
    Kopp T, Mannhart J. 2009. Calculation of the capacitances of conductors: perspectives for the optimization of electronic devices. J. Appl. Phys. 106:064504
    [Google Scholar]
  66. 66.
    Kulkarni GS, Zhong Z. 2012. Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor. Nano Lett 12:2719–23
    [Google Scholar]
  67. 67.
    Kumar N, Rana M, Geiwitz M, Khan NI, Catalano M et al. 2022. Rapid, multianalyte detection of opioid metabolites in wastewater. ACS Nano 16:3704–14
    [Google Scholar]
  68. 68.
    Kuroda MA, Tersoff J, Martyna GJ. 2011. Nonlinear screening in multilayer graphene systems. Phys. Rev. Lett. 106:11116804
    [Google Scholar]
  69. 69.
    Kyte J, Doolittle RF. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–32
    [Google Scholar]
  70. 70.
    Laur N, Kinscherf R, Pomytkin K, Kaiser L, Knes O, Deigner H-P. 2020. ICP-MS trace element analysis in serum and whole blood. PLOS ONE 15:e0233357
    [Google Scholar]
  71. 71.
    Lee J, Kim J, Kim S, Min D-H. 2016. Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv. Rev. 105:275–87
    [Google Scholar]
  72. 72.
    Lewerenz HJ. 2013. On the structure of the Helmholtz layer and its implications on electrode kinetics. ECS Trans. 50:3–20
    [Google Scholar]
  73. 73.
    Li D, Zhang W, Yu X, Wang Z, Su Z, Wei G. 2016. When biomolecules meet graphene: from molecular level interactions to material design and applications. Nanoscale 8:19491–509
    [Google Scholar]
  74. 74.
    Li H, Yang J, Wu G, Weng Z, Song Y et al. 2022. Amplification-free detection of SARS-CoV-2 and respiratory syncytial virus using CRISPR Cas13a and graphene field-effect transistors. Angew. Chem. 61:e202203826
    [Google Scholar]
  75. 75.
    Li Q, Song J, Besenbacher F, Dong M. 2015. Two-dimensional material confined water. Acc. Chem. Res. 48:1119–27
    [Google Scholar]
  76. 76.
    Li Y, Wang C, Zhu Y, Zhou X, Xiang Y et al. 2017. Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching. Biosens. Bioelectron. 89:758–63
    [Google Scholar]
  77. 77.
    Lin K, Xie L, Tian Y, Liu D. 2016. Au-modified monolayer MoS2 sensor for DNA detection. J. Phys. Chem. C 120:11204–9
    [Google Scholar]
  78. 78.
    Liu B, Pappas CG, Ottelé J, Schaeffer G, Jurissek C et al. 2020. Spontaneous emergence of self-replicating molecules containing nucleobases and amino acids. J. Am. Chem. Soc. 142:4184–92
    [Google Scholar]
  79. 79.
    Liu D, Lipponen K, Quan P, Wan X, Zhang H et al. 2018. Impact of pore size and surface chemistry of porous silicon particles and structure of phospholipids on their interactions. ACS Biomater. Sci. Eng. 4:2308–13
    [Google Scholar]
  80. 80.
    Liu Y. 2016. Modeling of Transport Phenomena in Two-Dimensional Semiconductors Minneapolis: Univ. Minnesota
  81. 81.
    Liu Z, Jiang L, Galli F, Nederlof I, Olsthoorn RC et al. 2010. A graphene oxide˙streptavidin complex for biorecognition—towards affinity purification. Adv. Funct. Mater. 20:2857–65
    [Google Scholar]
  82. 82.
    Lu C, Liu Y, Ying Y, Liu J 2017. Comparison of MoS2, WS2, and graphene oxide for DNA adsorption and sensing. Langmuir 33:630–37
    [Google Scholar]
  83. 83.
    Lu C-H, Yang H-H, Zhi C-L, Chen X, Chen G-N 2009. A graphene platform for sensing biomolecules. Angew. Chem. 48:4785–87
    [Google Scholar]
  84. 84.
    Lu H-W, Kane AA, Parkinson J, Gao Y, Hajian R et al. 2022. The promise of graphene-based transistors for democratizing multiomics studies. Biosens. Bioelectron. 195:113605
    [Google Scholar]
  85. 85.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z et al. 2010. Improved synthesis of graphene oxide. ACS Nano 4:84806–14
    [Google Scholar]
  86. 86.
    Marcus RA. 1968. Theoretical relations among rate constants, barriers, and Broensted slopes of chemical reactions. J. Phys. Chem. 72:3891–99
    [Google Scholar]
  87. 87.
    Mauro A. 1962. Space charge regions in fixed charge membranes and the associated property of capacitance. Biophys. J. 2:179–98
    [Google Scholar]
  88. 88.
    Meng Z, Stolz RM, Mendeckki L, Mirica KA. 2019. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119:478–598
    [Google Scholar]
  89. 89.
    Merchant CA, Healy K, Wanunu M, Ray V, Pterman N et al. 2010. NA translocation through graphene nanopores. Nanoletters 10:2915–21
    [Google Scholar]
  90. 90.
    Muller RS, Kamins TI. 1986. Device Electronics for Integrated Circuits New York: Wiley. , 2nd ed..
  91. 91.
    Munief W-M, Lu X, Teucke T, Wilhelm J, Britz A et al. 2019. Reduced graphene oxide biosensor platform for the detection of NT-proBNP biomarker in its clinical range. Biosens. Bioelectron. 126:136–42
    [Google Scholar]
  92. 92.
    Nakada K, Fujita M, Dresselhaus G, Dresselhaus M. 1996. Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54:2417954–61
    [Google Scholar]
  93. 93.
    Nakatsuka N, Yang KA, Abendroth JM, Cheung KM, Xu X et al. 2018. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362:319–24
    [Google Scholar]
  94. 94.
    Narayanan R, Yamada H, Karakaya M, Podila R, Rao AM, Bandaru PR. 2015. Modulation of the electrostatic and quantum capacitances of few layered graphenes through plasma processing. Nano Lett 15:53067–72
    [Google Scholar]
  95. 95.
    Narayanan R, Yamada H, Marin BC, Zaretski A, Bandaru PR. 2017. Dimensionality-dependent electrochemical kinetics at the single-layer graphene-electrolyte interface. J. Phys. Chem. Lett. 8:174004–8
    [Google Scholar]
  96. 96.
    Nelson DL, Cox MM. 2012. Lehninger Principles of Biochemistry New York: W.H. Freeman Co. , 6th ed..
  97. 97.
    Ni C, Chattopadhyay J, Billups WE, Bandaru PR. 2008. Modification of the electrical characteristics of single wall carbon nanotubes through selective functionalization. Appl. Phys. Lett. 93:24243113
    [Google Scholar]
  98. 98.
    O'Regan B, Grätzel M. 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:6346737–40
    [Google Scholar]
  99. 99.
    Palazzo G, De Tullio D, Magliulo M, Mallardi A, Intranuovo F et al. 2015. Detection beyond Debye's length with an electrolyte-gated organic field-effect transistor. Adv. Mater. 27:911–16
    [Google Scholar]
  100. 100.
    Panigrahi S, Bhattacharya A, Banerjee S, Bhattacharya D. 2012. Interaction of nucleobases with wrinkled graphene surface: dispersion corrected DFT and AFM studies. J. Phys. Chem. C 116:4374–79
    [Google Scholar]
  101. 101.
    Pei H, Lu N, Wen Y, Song S, Liu Y et al. 2010. A DNA nanostructure-based biomolecular probe carrier platform for electrochemical biosensing. Adv. Mater. 22:424754–58
    [Google Scholar]
  102. 102.
    Peigney A, Laurent C, Flahaut E, Basca RR, Rousset A. 2001. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–14
    [Google Scholar]
  103. 103.
    Pérez E, Martín N. 2015. π-π interactions in carbon nanostructures. Chem. Soc. Rev. 44:6425–33
    [Google Scholar]
  104. 104.
    Ping J, Vishnubhotla R, Vrudhula A, Johnson ATC. 2016. Scalable production of high-sensitivity, label-free DNA biosensors based on back-gated graphene field effect transistors. ACS Nano 10:8700–4
    [Google Scholar]
  105. 105.
    Pop E, Varshney V, Roy AK. Thermal properties of graphene: fundamentals and applications. MRS Bull 37:1273–81
    [Google Scholar]
  106. 106.
    Pu F, Ren J, Qu X. 2017. Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials. Chem. Soc. Rev. 47:1285–306
    [Google Scholar]
  107. 107.
    Radovic LR 2010. Surface chemical and electrochemical properties of carbons. Carbons for Electrochemical Energy Storage and Conversion Systems F Beguin, E Frackowiak 163–220. Boca Raton, FL: CRC Press
    [Google Scholar]
  108. 108.
    Raether H. 1988. Surface Plasmons Berlin: Springer
  109. 109.
    Rieger PH. 1994. Electrochemistry London: Chapman & Hall. , 2nd ed..
  110. 110.
    Roth E, Azaria AG, Girshevitz O, Bitler A, Garini Y. 2018. Measuring the conformation and persistence length of single-stranded DNA using a DNA origami structure. Nanoletters 18:6703–9
    [Google Scholar]
  111. 111.
    Rutherglen C, Burke P. 2009. Nanoelectromagnetics: circuit and electromagnetic properties of carbon nanotubes. Small 5:884–96
    [Google Scholar]
  112. 112.
    Sakata T. 2019. Biologically coupled gate field-effect transistors meet in vitro diagnostics. ACS Omega 4:11852–62
    [Google Scholar]
  113. 113.
    Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW et al. 2010. DNA translocation through graphene nanopores. Nanoletters 10:3163–67
    [Google Scholar]
  114. 114.
    Seabra AB, Paula AJ, de Lima R, Alves OL, Durán N. 2014. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 27:159–68
    [Google Scholar]
  115. 115.
    Shaban SM, Kim D-H. 2021. Recent advances in aptamer sensors. Sensors 21:979
    [Google Scholar]
  116. 116.
    Shi H. 1996. Activated carbons and double layer capacitance. Electrochim. Acta 41:101633–39
    [Google Scholar]
  117. 117.
    Shoorideh K. 2016. Understanding and optimization of field-effect transistor-based biological and chemical sensors PhD Diss., Univ. Calif. Los Angeles:
  118. 118.
    Shoorideh K, Chui CO. 2014. On the origin of enhanced sensitivity in nanoscale FET-based biosensors. PNAS 111:5111–16
    [Google Scholar]
  119. 119.
    So CR, Hayamizu Y, Yazici H, Gresswell C, Khatayevich D et al. 2012. Controlling self-assembly of engineered peptides on graphite by rational mutation. Nanoletters 6:1648–56
    [Google Scholar]
  120. 120.
    Song Y, Huang Y-Y, Lu X, Zhang X, Ferrari M, Qin L. 2014. Point-of-care technologies for molecular diagnostics using a drop of blood. Trends Biotechnol 32:3132–39
    [Google Scholar]
  121. 121.
    Su TA, Neupane M, Steigerwald ML, Venkataraman L, Nuckolls C. 2016. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 1:16002
    [Google Scholar]
  122. 122.
    Swaminathan VV, Dak P, Reddy B, Salm E, Duarte-Guevara C et al. 2015. Electronic desalting for controlling the ionic environment in droplet-based biosensing platforms. Appl. Phys. Lett. 106:5300–78
    [Google Scholar]
  123. 123.
    Sze SM. 2003. Semiconductor Devices: Physics and Technology New York: Wiley. , 2nd ed..
  124. 124.
    Tholen DW, Linnet K, Kondratovich M, Armbruster DA, Garrett PE et al. 2004. Protocols for determination of limits of detection and limits of quantitation; approved guideline NCCLS Doc. EP17-A, Natl. Comm Clin. Lab. Stand. Wayne, PA: https://webstore.ansi.org/preview-pages/CLSI/preview_EP17-A.pdf
  125. 125.
    Tian M, Qiao M, Shen C, Meng F, Frank LA et al. 2020. Highly-sensitive graphene field effect transistor biosensor using PNA and DNA probes for RNA detection. Appl. Surf. Sci. 527:146839
    [Google Scholar]
  126. 126.
    Tian P, Tang L, Teng KS, Lau SP. 2018. Graphene quantum dots from chemistry to applications. Mater. Today 10:221–58
    [Google Scholar]
  127. 127.
    Tkachev SV, Buslaeva RY, Naumkin AV, Kotova SL, Laure IV, Gubin SP. 2012. Reduced graphene oxide. Inorg. Mater. 48:8796–802
    [Google Scholar]
  128. 128.
    Vadlamani SK. 2021. Sharp switching in tunnel transistors and physics-based machines for optimization PhD Diss., Univ. Calif. Berkeley:
  129. 129.
    van Hal REG, Eijkel JCT, Bergveld P. 1995. A novel description of ISFET sensitivity with the buffer capacity and double layer capacitance as key parameters. Sens. Actuators B 24:201–5
    [Google Scholar]
  130. 130.
    Varghese N, Mogera U, Govindaraj A, Das A, Maiti PK et al. 2009. Binding of DNA nucleobases and nucleosides with graphene. Chem. Phys. Chem. 10:206–10
    [Google Scholar]
  131. 131.
    Varghese SS, Lonkar S, Singh K, Swaminathan S, Abdala A. 2015. Recent advances in graphene based gas sensors. Sens. Actuators B 218:160–83
    [Google Scholar]
  132. 132.
    Vishnubhotla R, Ping J, Gao Z, Lee A, Saouaf O et al. 2017. Scalable graphene aptasensors for drug quantification. AIP Adv 7:115111
    [Google Scholar]
  133. 133.
    Vu C-A, Chen W-Y. 2019. Field-effect transistor biosensors for biomedical applications: recent advances and future prospects. Sensors 19:4214
    [Google Scholar]
  134. 134.
    Walpole RE, Myers RH, Myers SL. 1998. Probability and Statistics for Engineers and Scientists Upper Saddle River, NJ: Prentice-Hall Inc. , 6th ed..
  135. 135.
    Wang C, Cui X, Li Y, Li H, Haung L et al. 2016. A label-free and portable graphene FET aptasensor for children blood lead detection. Sci. Rep. 6:21711
    [Google Scholar]
  136. 136.
    Wang R, Cao Y, Qu H, Wang Y, Zheng L. 2022. Label-free detection of Cu(II) in fish using a graphene field-effect transistor gated by structure-switching aptamer probes. Talanta 237:122965
    [Google Scholar]
  137. 137.
    Wang Y, Chen Y, Lacey SD, Xu L, Xie H et al. 2018. Reduced graphene oxide film with record-high conductivity and mobility. Mater. Today 21:186–92
    [Google Scholar]
  138. 138.
    Wasfi A, Awwad F, Ayesh AI. 2018. Graphene-based nanopore approaches for DNA sequencing: a literature review. Biosens. Bioelectron. 119:191–203
    [Google Scholar]
  139. 139.
    Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R. 2013. Molecular Biology of the Gene London: Pearson. , 7th ed..
  140. 140.
    Webb TJ. 1926. The free energy of hydration of ions and the electrostriction of the solvent. J. Am. Chem. Soc. 48:102589–603
    [Google Scholar]
  141. 141.
    Wen Y, Li FY, Dong X, Zhang J, Xiong Q, Chen P. 2013. The electrical detection of lead ions using gold-nanoparticle- and DNAzyme-functionalized graphene device. Adv. Healthc. Mater. 2:271–74
    [Google Scholar]
  142. 142.
    Xu H, Zhu J, Ma Q, Ma J, Bai H et al. 2021. Two-dimensional MoS2: structural properties, synthesis methods, and regulation strategies toward oxygen reduction. Micromachines 12:240
    [Google Scholar]
  143. 143.
    Xu K, Meshik X, Nichols BM, Zakar E, Dutta M, Stroscio MA. 2014. Graphene- and aptamer-based electrochemical biosensor. Nanotechnology 25:205501
    [Google Scholar]
  144. 144.
    Xue L, Yamazaki H, Ren R, Wanunu M, Ivanov AP, Edel JB. 2020. Solid-state nanopore sensors. Nat. Rev. Mater. 5:931–51
    [Google Scholar]
  145. 145.
    Yamada H, Bandaru PR. 2016. Electrochemical kinetics and dimensional considerations, at the nanoscale. AIP Adv 6:6065325
    [Google Scholar]
  146. 146.
    Yang D, Liu X, Zhou Y, Luo L, Zhang J et al. 2017. Aptamer-based biosensors for detection of lead(II) ion: a review. Anal. Methhods 9:1976–90
    [Google Scholar]
  147. 147.
    Yucesoy DT, Khatayevich D, Tamerler C, Sarikaya M. 2020. Rationally designed chimeric solid-binding peptides for tailoring solid interfaces. Med. Devices Sens. 3:e10065
    [Google Scholar]
  148. 148.
    Zhang Y, Ma R, Zhen XV, Kudva YC, Bühlmann P, Koester SJ. 2017. Capacitive sensing of glucose in electrolytes using graphene quantum capacitance varactors. ACS Appl. Mater. Interfaces 9:38863–69
    [Google Scholar]
  149. 149.
    Zhu Y, Guo F. 2013. Preparation and characterization of an unsupported nano-MoS2 catalyst. Asian J. Chem. 25:8057–60
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-111622-091121
Loading
/content/journals/10.1146/annurev-biophys-111622-091121
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error