1932

Abstract

Synthetic biology seeks to probe fundamental aspects of biological form and function by construction [i.e., (re)synthesis] rather than deconstruction (analysis). In this sense, biological sciences now follow the lead given by the chemical sciences. Synthesis can complement analytic studies but also allows novel approaches to answering fundamental biological questions and opens up vast opportunities for the exploitation of biological processes to provide solutions for global problems. In this review, we explore aspects of this synthesis paradigm as applied to the chemistry and function of nucleic acids in biological systems and beyond, specifically, in genome resynthesis, synthetic genetics (i.e., the expansion of the genetic alphabet, of the genetic code, and of the chemical make-up of genetic systems), and the elaboration of orthogonal biosystems and components.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-111622-091203
2023-05-09
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/biophys/52/1/annurev-biophys-111622-091203.html?itemId=/content/journals/10.1146/annurev-biophys-111622-091203&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adamala KP, Martin-Alarcon DA, Guthrie-Honea KR, Boyden ES. 2017. Engineering genetic circuit interactions within and between synthetic minimal cells. Nat. Chem. 9:431–39
    [Google Scholar]
  2. 2.
    Al-Madhoun SA, Tjarks W, Eriksson S. 2004. The role of thymidine kinases in the activation of pyrimidine nucleoside analogues. Mini-Rev. Med. Chem. 4:341–50
    [Google Scholar]
  3. 3.
    Alves Ferreira-Bravo I, Cozens C, Holliger P, DeStefano JJ 2015. Selection of 2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity. Nucleic Acids Res 43:9587–99
    [Google Scholar]
  4. 4.
    Alves Ferreira-Bravo I, DeStefano JJ 2021. Xeno-nucleic acid (XNA) 2′-fluoro-arabino nucleic acid (FANA) aptamers to the receptor-binding domain of SARS-CoV-2 S protein block ACE2 binding. Viruses 13:1983
    [Google Scholar]
  5. 5.
    Arangundy-Franklin S, Taylor AI, Porebski BT, Genna V, Peak-Chew S et al. 2019. A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids. Nat. Chem. 11:533–42
    [Google Scholar]
  6. 6.
    Ashley GW. 1992. Modeling, synthesis, and hybridization properties of (L)-ribonucleic acid. J. Am. Chem. Soc. 114:9731–36
    [Google Scholar]
  7. 7.
    Bain JD, Switzer C, Chamberlin R, Benner SA. 1992. Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature 356:537–39
    [Google Scholar]
  8. 8.
    Benner SA, Karalkar NB, Hoshika S, Laos R, Shaw RW et al. 2016. Alternative Watson-Crick synthetic genetic systems. Cold Spring Harb. Perspect. Biol. 8:a023770
    [Google Scholar]
  9. 9.
    Betz K, Malyshev DA, Lavergne T, Welte W, Diederichs K et al. 2012. KlenTaq polymerase replicates unnatural base pairs by inducing a Watson-Crick geometry. Nat. Chem. Biol. 8:612–14
    [Google Scholar]
  10. 10.
    Blount BA, Gowers GF, Ho JCH, Ledesma-Amaro R, Jovicevic D et al. 2018. Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome. Nat. Commun. 9:1932
    [Google Scholar]
  11. 11.
    Boeke JD, Church G, Hessel A, Kelley NJ, Arkin A et al. 2016. The Genome Project-Write. Science 353:126–27
    [Google Scholar]
  12. 12.
    Borggrafe J, Victor J, Rosenbach H, Viegas A, Gertzen CGW et al. 2022. Time-resolved structural analysis of an RNA-cleaving DNA catalyst. Nature 601:144–49
    [Google Scholar]
  13. 13.
    Caruthers MH. 1985. Gene synthesis machines: DNA chemistry and its uses. Science 230:281–85
    [Google Scholar]
  14. 14.
    Chaput JC, Herdewijn P, Hollenstein M. 2020. Orthogonal genetic systems. ChemBioChem 21:1408–11
    [Google Scholar]
  15. 15.
    Chen F, Zhang Y, Daugherty AB, Yang Z, Shaw R et al. 2017. Biological phosphorylation of an unnatural base pair (UBP) using a Drosophila melanogaster deoxynucleoside kinase (DmdNK) mutant. PLOS ONE 12:e0174163
    [Google Scholar]
  16. 16.
    Chin JW. 2017. Expanding and reprogramming the genetic code. Nature 550:53–60
    [Google Scholar]
  17. 17.
    Craig JE, Zhang Y, Gallagher MP. 1994. Cloning of the nupC gene of Escherichia coli encoding a nucleoside transport system, and identification of an adjacent insertion element, IS 186. Mol. Microbiol. 11:1159–68
    [Google Scholar]
  18. 18.
    Damha MJ, Wilds CJ, Noronha A, Brukner I, Borkow G et al. 1998. Hybrids of RNA and arabinonucleic acids (ANA and 2′F-ANA) are substrates of ribonuclease H. J. Am. Chem. Soc. 120:12976–77
    [Google Scholar]
  19. 19.
    DeBenedictis EA, Carver GD, Chung CZ, Söll D, Badran AH. 2021. Multiplex suppression of four quadruplet codons via tRNA directed evolution. Nat. Commun. 12:5706
    [Google Scholar]
  20. 20.
    Dimitrova DG, Teysset L, Carre C. 2019. RNA 2′-O-methylation (Nm) modification in human diseases. Genes 10:117
    [Google Scholar]
  21. 21.
    Duffy K, Arangundy-Franklin S, Holliger P. 2020. Modified nucleic acids: replication, evolution, and next-generation therapeutics. BMC Biol 18:112
    [Google Scholar]
  22. 22.
    Dunkelmann DL, Oehm SB, Beattie AT, Chin JW. 2021. A 68-codon genetic code to incorporate four distinct non-canonical amino acids enabled by automated orthogonal mRNA design. Nat. Chem. 13:1110–17
    [Google Scholar]
  23. 23.
    Dunn MR, Chaput JC. 2016. Reverse transcription of threose nucleic acid by a naturally occurring DNA polymerase. ChemBioChem 17:1804–8
    [Google Scholar]
  24. 24.
    Dunn MR, McCloskey CM, Buckley P, Rhea K, Chaput JC 2020. Generating biologically stable TNA aptamers that function with high affinity and thermal stability. J. Am. Chem. Soc. 142:7721–24
    [Google Scholar]
  25. 25.
    Dymond JS, Richardson SM, Coombes CE, Babatz T, Muller H et al. 2011. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477:471–76
    [Google Scholar]
  26. 26.
    Egli M, Pallan PS, Pattanayek R, Wilds CJ, Lubini P et al. 2006. Crystal structure of homo-DNA and nature's choice of pentose over hexose in the genetic system. J. Am. Chem. Soc. 128:10847–56
    [Google Scholar]
  27. 27.
    Eremeeva E, Fikatas A, Margamuljana L, Abramov M, Schols D et al. 2019. Highly stable hexitol based XNA aptamers targeting the vascular endothelial growth factor. Nucleic Acids Res 47:4927–39
    [Google Scholar]
  28. 28.
    Fan CY, Deng Q, Zhu TF. 2021. Bioorthogonal information storage in L-DNA with a high-fidelity mirror-image Pfu DNA polymerase. Nat. Biotechnol. 39:1548–55
    [Google Scholar]
  29. 29.
    Feldman AW, Dien VT, Romesberg FE. 2017. Chemical stabilization of unnatural nucleotide triphosphates for the in vivo expansion of the genetic alphabet. J. Am. Chem. Soc. 139:2464–67
    [Google Scholar]
  30. 30.
    Fischer EC, Hashimoto K, Zhang Y, Feldman AW, Dien VT et al. 2020. New codons for efficient production of unnatural proteins in a semisynthetic organism. Nat. Chem. Biol. 16:570–76
    [Google Scholar]
  31. 31.
    Fredens J, Wang K, de la Torre D, Funke LFH, Robertson WE et al. 2019. Total synthesis of Escherichia coli with a recoded genome. Nature 569:514–18
    [Google Scholar]
  32. 32.
    Freund N, Fürst MJLJ, Holliger P. 2022. New chemistries and enzymes for synthetic genetics. Curr. Opin. Biotechnol. 74:129–36
    [Google Scholar]
  33. 33.
    Freund N, Taylor AI, Arangundy-Franklin S, Subramanian N, Peak-Chew SY et al. 2023. A two-residue nascent-strand steric gate controls synthesis of 2′-O-methyl- and 2′-O-(2-methoxyethyl)-RNA. Nat. Chem. 15:91–100
    [Google Scholar]
  34. 34.
    Georgiadis MM, Singh I, Kellett WF, Hoshika S, Benner SA, Richards NGJ. 2015. Structural basis for a six nucleotide genetic alphabet. J. Am. Chem. Soc. 137:6947–55
    [Google Scholar]
  35. 35.
    Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY et al. 2010. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56
    [Google Scholar]
  36. 36.
    Gold L, Ayers D, Bertino J, Bock C, Bock A et al. 2010. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLOS ONE 5:e15004
    [Google Scholar]
  37. 37.
    Herdewijn P, Marlière P. 2012. Redesigning the leaving group in nucleic acid polymerization. FEBS Lett 586:2049–56
    [Google Scholar]
  38. 38.
    Hervey JRD, Freund N, Houlihan G, Dhaliwal G, Holliger P, Taylor AI. 2022. Efficient synthesis and replication of diverse sequence libraries composed of biostable nucleic acid analogues. RSC Chem. Biol. 3:1209–15
    [Google Scholar]
  39. 39.
    Hirao I, Kimoto M, Mitsui T, Fujiwara T, Kawai R et al. 2006. An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA. Nat. Methods 3:729–35
    [Google Scholar]
  40. 40.
    Hirao I, Kimoto M, Yamashige R. 2012. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies. Acc. Chem. Res. 45:2055–65
    [Google Scholar]
  41. 41.
    Hirao I, Ohtsuki T, Fujiwara T, Mitsui T, Yokogawa T et al. 2002. An unnatural base pair for incorporating amino acid analogs into proteins. Nat. Biotechnol. 20:177–82
    [Google Scholar]
  42. 42.
    Hoshika S, Leal NA, Kim M-J, Kim M-S, Karalkar NB et al. 2019. Hachimoji DNA and RNA: a genetic system with eight building blocks. Science 363:884–87
    [Google Scholar]
  43. 43.
    Hoshika S, Singh I, Switzer C, Molt RW Jr., Leal NA et al. 2018.. “ Skinny” and “fat” DNA: two new double helices. J. Am. Chem. Soc. 140:11655–60
    [Google Scholar]
  44. 44.
    Hoshino H, Kasahara Y, Kuwahara M, Obika S. 2020. DNA polymerase variants with high processivity and accuracy for encoding and decoding locked nucleic acid sequences. J. Am. Chem. Soc. 142:21530–37
    [Google Scholar]
  45. 45.
    Houlihan G, Arangundy-Franklin S, Holliger P. 2017. Engineering and application of polymerases for synthetic genetics. Curr. Opin. Biotechnol. 48:168–79
    [Google Scholar]
  46. 46.
    Houlihan G, Arangundy-Franklin S, Porebski BT, Subramanian N, Taylor AI, Holliger P. 2020. Discovery and evolution of RNA and XNA reverse transcriptase function and fidelity. Nat. Chem. 12:683–90
    [Google Scholar]
  47. 47.
    Hutchison CA 3rd, Chuang RY, Noskov VN, Assad-Garcia N, Deerinck TJ et al. 2016. Design and synthesis of a minimal bacterial genome. Science 351:aad6253
    [Google Scholar]
  48. 48.
    Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Sterling B et al. 2011. Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333:348–53
    [Google Scholar]
  49. 49.
    Kanarskaya MA, Golyshev VM, Pyshnyi DV, Lomzov AA. 2021. Structure and hybridization properties of phosphoryl guanidine oligonucleotides under crowding conditions. Biochem. Biophys. Res. Commun. 577:110–15
    [Google Scholar]
  50. 50.
    Kawaguchi D, Kodama A, Abe N, Takebuchi K, Hashiya F et al. 2020. Phosphorothioate modification of mRNA accelerates the rate of translation initiation to provide more efficient protein synthesis. Angew. Chem. Int. Ed. 59:17403–7
    [Google Scholar]
  51. 51.
    Kimoto M, Kawai R, Mitsui T, Yokoyama S, Hirao I. 2008. An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules. Nucleic Acids Res 37:e14
    [Google Scholar]
  52. 52.
    Kore AR, Charles I 2010. Synthesis and evaluation of 2′-O-allyl substituted dinucleotide cap analog for mRNA translation. Bioorg. Med. Chem. 18:8061–65
    [Google Scholar]
  53. 53.
    Krishnamurthy R, Pitsch S, Minton M, Miculka C, Windhab N, Eschenmoser A. 1996. Pyranosyl-RNA: base pairing between homochiral oligonucleotide strands of opposite sense of chirality. Angew. Chem. Int. Ed. 35:1537–41
    [Google Scholar]
  54. 54.
    Leal NA, Kim H-J, Hoshika S, Kim M-J, Carrigan MA, Benner SA. 2015. Transcription, reverse transcription, and analysis of RNA containing artificial genetic components. ACS Synth. Biol. 4:407–13
    [Google Scholar]
  55. 55.
    Ledbetter MP, Karadeema RJ, Romesberg FE. 2018. Reprogramming the replisome of a semisynthetic organism for the expansion of the genetic alphabet. J. Am. Chem. Soc. 140:758–65
    [Google Scholar]
  56. 56.
    Lee JW, Chan CTY, Slomovic S, Collins JJ. 2018. Next-generation biocontainment systems for engineered organisms. Nat. Chem. Biol. 14:530–37
    [Google Scholar]
  57. 57.
    Li L, Degardin M, Lavergne T, Malyshev DA, Dhami K et al. 2014. Natural-like replication of an unnatural base pair for the expansion of the genetic alphabet and biotechnology applications. J. Am. Chem. Soc. 136:826–29
    [Google Scholar]
  58. 58.
    Li X, Li Z, Yu H 2020. Selection of threose nucleic acid aptamers to block PD-1/PD-L1 interaction for cancer immunotherapy. Chem. Commun. 56:14653–56
    [Google Scholar]
  59. 59.
    Liu CC, Jewett MC, Chin JW, Voigt CA. 2018. Toward an orthogonal central dogma. Nat. Chem. Biol. 14:103–6
    [Google Scholar]
  60. 60.
    Liu HB, Gao JM, Lynch SR, Saito YD, Maynard L, Kool ET. 2003. A four-base paired genetic helix with expanded size. Science 302:868–71
    [Google Scholar]
  61. 61.
    Liu HB, Gao JM, Maynard L, Saito YD, Kool ET. 2004. Toward a new genetic system with expanded dimensions: size-expanded analogues of deoxyadenosine and thymidine. J. Am. Chem. Soc. 126:1102–9
    [Google Scholar]
  62. 62.
    Liu W, Luo Z, Wang Y, Pham NT, Tuck L et al. 2018. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods. Nat. Commun. 9:1936
    [Google Scholar]
  63. 63.
    Loakes D, Hill F, Brown DM, Salisbury SA. 1997. Stability and structure of DNA oligonucleotides containing non-specific base analogues. J. Mol. Biol. 270:426–35
    [Google Scholar]
  64. 64.
    Lu HG, He KZ, Kool ET. 2004. yDNA: a new geometry for size-expanded base pairs. Angew. Chem. Int. Ed. 43:5834–36
    [Google Scholar]
  65. 65.
    Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N et al. 2014. A semi-synthetic organism with an expanded genetic alphabet. Nature 509:385–88
    [Google Scholar]
  66. 66.
    Malyshev DA, Dhami K, Quach HT, Lavergne T, Ordoukhanian P et al. 2012. Efficient and sequence-independent replication of DNA containing a third base pair establishes a functional six-letter genetic alphabet. PNAS 109:12005–10
    [Google Scholar]
  67. 67.
    Malyshev DA, Pfaff DA, Ippoliti SI, Hwang GT, Dwyer TJ, Romesberg FE. 2010. Solution structure, mechanism of replication, and optimization of an unnatural base pair. Chemistry 16:12650–59
    [Google Scholar]
  68. 68.
    Malyshev DA, Seo YJ, Ordoukhanian P, Romesberg FE. 2009. PCR with an expanded genetic alphabet. J. Am. Chem. Soc. 131:14620–21
    [Google Scholar]
  69. 69.
    Mandell DJ, Lajoie MJ, Mee MT, Takeuchi R, Kuznetsov G et al. 2015. Biocontainment of genetically modified organisms by synthetic protein design. Nature 518:55–60
    [Google Scholar]
  70. 70.
    Marliere P. 2009. The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. Syst. Synth. Biol. 3:77–84
    [Google Scholar]
  71. 71.
    Marlière P, Patrouix J, Doring V, Herdewijn P, Tricot S et al. 2011. Chemical evolution of a bacterium's genome. Angew. Chem. Int. Ed. 50:7109–14
    [Google Scholar]
  72. 72.
    Marx A, Betz K. 2020. The structural basis for processing of unnatural base pairs by DNA polymerases. Chemistry 26:3446–63
    [Google Scholar]
  73. 73.
    Matsuura MF, Shaw RW, Moses JD, Kim H-J, Kim M-J et al. 2016. Assays to detect the formation of triphosphates of unnatural nucleotides: application to Escherichia coli nucleoside diphosphate kinase. ACS Synth. Biol. 5:234–40
    [Google Scholar]
  74. 74.
    McMinn DL, Ogawa AK, Wu Y, Liu J, Schultz PG, Romesberg FE. 1999. Efforts toward expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self-pairing hydrophobic base. J. Am. Chem. Soc. 121:11585–86
    [Google Scholar]
  75. 75.
    Mei H, Liao J-Y, Jimenez RM, Wang Y, Bala S et al. 2018. Synthesis and evolution of a threose nucleic acid aptamer bearing 7-deaza-7-substituted guanosine residues. J. Am. Chem. Soc. 140:5706–13
    [Google Scholar]
  76. 76.
    Milton RCD, Milton SCF, Kent SBH. 1992. Total chemical synthesis of a D-enzyme: the enantiomers of HIV-1 protease show reciprocal chiral substrate specificity. Science 256:1445–48
    [Google Scholar]
  77. 77.
    Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW. 2010. Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464:441–44
    [Google Scholar]
  78. 78.
    Nikoomanzar A, Vallejo D, Yik EJ, Chaput JC. 2020. Programmed allelic mutagenesis of a DNA polymerase with single amino acid resolution. ACS Synth. Biol. 9:1873–81
    [Google Scholar]
  79. 79.
    Oh J, Shin J, Unarta IC, Wang W, Feldman AW et al. 2021. Transcriptional processing of an unnatural base pair by eukaryotic RNA polymerase II. Nat. Chem. Biol. 17:906–14
    [Google Scholar]
  80. 80.
    Ong J, Evans JTC, Tanner N. 2013. Compositions and methods relating to variant DNA polymerases and synthetic DNA polymerases WO Patent 2013/033528 A1
  81. 81.
    Pezo V, Hassan C, Louis D, Sargueil B, Herdewijn P, Marlière P. 2018. Metabolic recruitment and directed evolution of nucleoside triphosphate uptake in Escherichia coli. ACS Synth. Biol. 7:1565–72
    [Google Scholar]
  82. 82.
    Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M et al. 2012. Synthetic genetic polymers capable of heredity and evolution. Science 336:341–44
    [Google Scholar]
  83. 83.
    Rackham O, Chin JW. 2005. A network of orthogonal ribosome x mRNA pairs. Nat. Chem. Biol. 1:159–66
    [Google Scholar]
  84. 84.
    Rangel AE, Chen Z, Ayele TM, Heemstra JM. 2018. In vitro selection of an XNA aptamer capable of small-molecule recognition. Nucleic Acids Res 46:8057–68
    [Google Scholar]
  85. 85.
    Ravikumar A, Arzumanyan GA, Obadi MKA, Javanpour AA, Liu CC. 2018. Scalable, continuous evolution of genes at mutation rates above genetic error thresholds. Cell 175:1946–57.e13
    [Google Scholar]
  86. 86.
    Ravikumar A, Liu CC. 2015. Biocontainment through reengineered genetic codes. ChemBioChem 16:1149–51
    [Google Scholar]
  87. 87.
    Reinkemeier CD, Girona GE, Lemke EA. 2019. Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes. Science 363:eaaw2644
    [Google Scholar]
  88. 88.
    Richardson SM, Mitchell LA, Stracquadanio G, Yang K, Dymond JS et al. 2017. Design of a synthetic yeast genome. Science 355:1040–44
    [Google Scholar]
  89. 89.
    Robertson WE, Funke LFH, de la Torre D, Fredens J, Elliott TS et al. 2021. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372:1057–62
    [Google Scholar]
  90. 90.
    Robinson AO, Venero OM, Adamala KP. 2021. Toward synthetic life: biomimetic synthetic cell communication. Curr. Opin. Chem. Biol. 64:165–73
    [Google Scholar]
  91. 91.
    Rose KM, Alves Ferreira-Bravo I, Li M, Craigie R, Ditzler MA et al. 2019. Selection of 2′-deoxy-2′-fluoroarabino nucleic acid (FANA) aptamers that bind HIV-1 integrase with picomolar affinity. ACS Chem. Biol. 14:2166–75
    [Google Scholar]
  92. 92.
    Rovner AJ, Haimovich AD, Katz SR, Li Z, Grome MW et al. 2015. Recoded organisms engineered to depend on synthetic amino acids. Nature 518:89–93
    [Google Scholar]
  93. 93.
    Rubini R, Mayer C. 2020. Addicting Escherichia coli to new-to-nature reactions. ACS Chem. Biol. 15:3093–98
    [Google Scholar]
  94. 94.
    Santoro SW, Joyce GF. 1997. A general purpose RNA-cleaving DNA enzyme. PNAS 94:4262–66
    [Google Scholar]
  95. 95.
    Schmidt M. 2019. A metric space for semantic containment: towards the implementation of genetic firewalls. Biosystems 185:104015
    [Google Scholar]
  96. 96.
    Schmied WH, Elsässer SJ, Uttamapinant C, Chin JW. 2014. Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA synthetase/tRNA expression and engineered eRF1. J. Am. Chem. Soc. 136:15577–83
    [Google Scholar]
  97. 97.
    Sczepanski JT, Joyce GF. 2013. Binding of a structured D-RNA molecule by an L-RNA aptamer. J. Am. Chem. Soc. 135:13290–93
    [Google Scholar]
  98. 98.
    Seo YJ, Hwang GT, Ordoukhanian P, Romesberg FE. 2009. Optimization of an unnatural base pair toward natural-like replication. J. Am. Chem. Soc. 131:3246–52
    [Google Scholar]
  99. 99.
    Seo YJ, Matsuda S, Romesberg FE. 2009. Transcription of an expanded genetic alphabet. J. Am. Chem. Soc. 131:5046–47
    [Google Scholar]
  100. 100.
    Shao Y, Lu N, Wu Z, Cai C, Wang S et al. 2018. Creating a functional single-chromosome yeast. Nature 560:331–35
    [Google Scholar]
  101. 101.
    Sismour AM, Benner SA. 2005. The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nucleic Acids Res 33:5640–46
    [Google Scholar]
  102. 102.
    Skakuj K, Bujold KE, Mirkin CA. 2019. Mercury-free automated synthesis of guanidinium backbone oligonucleotides. J. Am. Chem. Soc. 141:20171–76
    [Google Scholar]
  103. 103.
    Takahashi M, Li HT, Zhou JH, Chomchan P, Aishwarya V et al. 2019. Dual mechanisms of action of self-delivering, anti-HIV-1 FANA oligonucleotides as a potential new approach to HIV therapy. Mol. Ther. Nucleic Acids 17:615–25
    [Google Scholar]
  104. 104.
    Takegawa-Araki T, Kumagai S, Yasukawa K, Kuroda M, Sasaki T, Obika S. 2022. Structure-activity relationships of anti-microRNA oligonucleotides containing cationic guanidine-modified nucleic acids. J. Med. Chem. 65:2139–48
    [Google Scholar]
  105. 105.
    Taylor AI, Beuron F, Peak-Chew SY, Morris EP, Herdewijn P, Holliger P. 2016. Nanostructures from synthetic genetic polymers. ChemBioChem 17:1107–10
    [Google Scholar]
  106. 106.
    Taylor AI, Holliger P. 2015. Directed evolution of artificial enzymes (XNAzymes) from diverse repertoires of synthetic genetic polymers. Nat. Protoc. 10:1625–42
    [Google Scholar]
  107. 107.
    Taylor AI, Holliger P. 2022. On gene silencing by the X10-23 DNAzyme. Nat. Chem. 14:855–58
    [Google Scholar]
  108. 108.
    Taylor AI, Houlihan G, Holliger P. 2019. Beyond DNA and RNA: the expanding toolbox of synthetic genetics. Cold Spring Harb. Perspect. Biol. 11:a032490
    [Google Scholar]
  109. 109.
    Taylor AI, Pinheiro VB, Smola MJ, Morgunov AS, Peak-Chew S et al. 2015. Catalysts from synthetic genetic polymers. Nature 518:427–30
    [Google Scholar]
  110. 110.
    Taylor AI, Wan CJK, Donde MJ, Peak-Chew S-Y, Holliger P. 2022. A modular XNAzyme cleaves long, structured RNAs under physiological conditions and enables allele-specific gene silencing. Nat. Chem. 14:1295–305
    [Google Scholar]
  111. 111.
    Thao TTN, Labroussaa F, Ebert N, V'kovski P, Stalder H et al. 2020. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 582:561–65
    [Google Scholar]
  112. 112.
    Torres L, Kruger A, Csibra E, Gianni E, Pinheiro VB. 2016. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem 60:393–410
    [Google Scholar]
  113. 113.
    Traut TW. 1994. Physiological concentrations of purines and pyrimidines. Mol. Cell. Biochem. 140:1–22
    [Google Scholar]
  114. 114.
    Wan WB, Seth PP. 2016. The medicinal chemistry of therapeutic oligonucleotides. J. Med. Chem. 59:9645–67
    [Google Scholar]
  115. 115.
    Wang K, Fredens J, Brunner SF, Kim SH, Chia T, Chin JW 2016. Defining synonymous codon compression schemes by genome recoding. Nature 539:59–64
    [Google Scholar]
  116. 116.
    Wang K, Neumann H, Peak-Chew SY, Chin JW 2007. Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat. Biotechnol. 25:770–77
    [Google Scholar]
  117. 117.
    Wang L, Brock A, Herberich B, Schultz PG. 2001. Expanding the genetic code of Escherichia coli. . Science 292:498–500
    [Google Scholar]
  118. 118.
    Wang L, Jiang S, Deng Z, Dedon PC, Chen S 2019. DNA phosphorothioate modification—a new multi-functional epigenetic system in bacteria. FEMS Microbiol. Rev. 43:109–22
    [Google Scholar]
  119. 119.
    Wang Y, Ngor AK, Nikoomanzar A, Chaput JC. 2018. Evolution of a general RNA-cleaving FANA enzyme. Nat. Commun. 9:5067
    [Google Scholar]
  120. 120.
    Wang Y, Nguyen K, Spitale RC, Chaput JC. 2021. A biologically stable DNAzyme that efficiently silences gene expression in cells. Nat. Chem. 13:319–26
    [Google Scholar]
  121. 121.
    Wang Y, Wang Y, Song D, Sun X, Li Z et al. 2022. An RNA-cleaving threose nucleic acid enzyme capable of single point mutation discrimination. Nat. Chem. 14:350–59
    [Google Scholar]
  122. 122.
    Wilson DS, Szostak JW. 1999. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 68:611–47
    [Google Scholar]
  123. 123.
    Wu Y, Fa M, Tae EL, Schultz PG, Romesberg FE. 2002. Enzymatic phosphorylation of unnatural nucleosides. J. Am. Chem. Soc. 124:14626–30
    [Google Scholar]
  124. 124.
    Yamashige R, Kimoto M, Takezawa Y, Sato A, Mitsui T et al. 2012. Highly specific unnatural base pair systems as a third base pair for PCR amplification. Nucleic Acids Res 40:2793–806
    [Google Scholar]
  125. 125.
    Yang Z, Chen F, Alvarado JB, Benner SA. 2011. Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J. Am. Chem. Soc. 133:15105–12
    [Google Scholar]
  126. 126.
    Yang Z, Chen F, Chamberlin SG, Benner SA. 2010. Expanded genetic alphabets in the polymerase chain reaction. Angew. Chem. Int. Ed. 49:177–80
    [Google Scholar]
  127. 127.
    Yang Z, Hutter D, Sheng P, Sismour AM, Benner SA. 2006. Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. Nucleic Acids Res 34:6095–101
    [Google Scholar]
  128. 128.
    Yang Z, Sismour AM, Sheng P, Puskar NL, Benner SA. 2007. Enzymatic incorporation of a third nucleobase pair. Nucleic Acids Res 35:4238–49
    [Google Scholar]
  129. 129.
    Ye J, van den Berg B. 2004. Crystal structure of the bacterial nucleoside transporter Tsx. EMBO J 23:3187–95
    [Google Scholar]
  130. 130.
    Zhang L, Chaput JC. 2020. In vitro selection of an ATP-binding TNA aptamer. Molecules 25:4194
    [Google Scholar]
  131. 131.
    Zhang Y, Lamb BM, Feldman AW, Zhou AX, Lavergne T et al. 2017. A semisynthetic organism engineered for the stable expansion of the genetic alphabet. PNAS 114:1317–22
    [Google Scholar]
  132. 132.
    Zhang Y, Ptacin JL, Fischer EC, Aerni HR, Caffaro CE et al. 2017. A semi-synthetic organism that stores and retrieves increased genetic information. Nature 551:644–47
    [Google Scholar]
  133. 133.
    Zhou ZX, Williams JS, Lujan SA, Kunkel TA. 2021. Ribonucleotide incorporation into DNA during DNA replication and its consequences. Crit. Rev. Biochem. Mol. Biol. 56:109–24
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-111622-091203
Loading
/content/journals/10.1146/annurev-biophys-111622-091203
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error