1932

Abstract

Super-resolution fluorescence microscopy allows the investigation of cellular structures at nanoscale resolution using light. Current developments in super-resolution microscopy have focused on reliable quantification of the underlying biological data. In this review, we first describe the basic principles of super-resolution microscopy techniques such as stimulated emission depletion (STED) microscopy and single-molecule localization microscopy (SMLM), and then give a broad overview of methodological developments to quantify super-resolution data, particularly those geared toward SMLM data. We cover commonly used techniques such as spatial point pattern analysis, colocalization, and protein copy number quantification but also describe more advanced techniques such as structural modeling, single-particle tracking, and biosensing. Finally, we provide an outlook on exciting new research directions to which quantitative super-resolution microscopy might be applied.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-111622-091212
2023-05-09
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/biophys/52/1/annurev-biophys-111622-091212.html?itemId=/content/journals/10.1146/annurev-biophys-111622-091212&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Algar WR, Hildebrandt N, Vogel SS, Medintz IL. 2019. FRET as a biomolecular research tool—understanding its potential while avoiding pitfalls. Nat. Methods 16:815–29
    [Google Scholar]
  2. 2.
    Andrews NL, Lidke KA, Pfeiffer JR, Burns AR, Wilson BS et al. 2008. Actin restricts FcɛRI diffusion and facilitates antigen-induced receptor immobilization. Nat. Cell Biol. 10:955–63
    [Google Scholar]
  3. 3.
    Andronov L, Lutz Y, Vonesch J-L, Klaholz BP. 2016. SharpViSu: integrated analysis and segmentation of super-resolution microscopy data. Bioinformatics 32:2239–41
    [Google Scholar]
  4. 4.
    Andronov L, Orlov I, Lutz Y, Vonesch J-L, Klaholz BP. 2016. ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy. Sci. Rep. 6:24084
    [Google Scholar]
  5. 5.
    Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A. 2011. Identification of clustering artifacts in photoactivated localization microscopy. Nat. Methods 8:527–28
    [Google Scholar]
  6. 6.
    Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A. 2011. Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLOS ONE 6:e22678
    [Google Scholar]
  7. 7.
    Arts M, Smal I, Paul MW, Wyman C, Meijering E. 2019. Particle mobility analysis using deep learning and the moment scaling spectrum. Sci. Rep. 9:17160
    [Google Scholar]
  8. 8.
    Auer A, Strauss MT, Strauss S, Jungmann R. 2020. nanoTRON: a Picasso module for MLP-based classification of super-resolution data. Bioinformatics 36:3620–22
    [Google Scholar]
  9. 9.
    Babcock H, Sigal YM, Zhuang X. 2012. A high-density 3D localization algorithm for stochastic optical reconstruction microscopy. Opt. Nanoscopy 1:6
    [Google Scholar]
  10. 10.
    Balinovic A, Albrecht D, Endesfelder U 2019. Spectrally red-shifted fluorescent fiducial markers for optimal drift correction in localization microscopy. J. Phys. D 52:204002
    [Google Scholar]
  11. 11.
    Balzarotti F, Eilers Y, Gwosch KC, Gynna AH, Westphal V et al. 2017. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355:606–12
    [Google Scholar]
  12. 12.
    Bates M, Huang B, Dempsey GT, Zhuang X. 2007. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–53
    [Google Scholar]
  13. 13.
    Baumgart F, Arnold AM, Leskovar K, Staszek K, Fölser M et al. 2016. Varying label density allows artifact-free analysis of membrane-protein nanoclusters. Nat. Methods 13:661–64
    [Google Scholar]
  14. 14.
    Beheiry ME, Dahan M, Masson J-B. 2015. InferenceMAP: mapping of single-molecule dynamics with Bayesian inference. Nat. Methods 12:594–95
    [Google Scholar]
  15. 15.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–45
    [Google Scholar]
  16. 16.
    Bierbuesse F, Bourges AC, Gielen V, Mönkemöller V, Vandenberg W et al. 2022. Absolute measurement of cellular activities using photochromic single-fluorophore biosensors and intermittent quantification. Nat. Commun. 13:1850
    [Google Scholar]
  17. 17.
    Bohrer CH, Yang X, Thakur S, Weng X, Tenner B et al. 2021. A pairwise distance distribution correction (DDC) algorithm to eliminate blinking-caused artifacts in SMLM. Nat. Methods 18:669–77
    [Google Scholar]
  18. 18.
    Bond C, Santiago-Ruiz AN, Tang Q, Lakadamyali M. 2022. Technological advances in super-resolution microscopy to study cellular processes. Mol. Cell 82:315–32
    [Google Scholar]
  19. 19.
    Boots B, Sugihara K, Chiu SN, Okabe A. 2009. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Hoboken, NJ: Wiley
  20. 20.
    Boyd N, Jonas E, Babcock H, Recht B 2018. DeepLoco: fast 3D localization microscopy using neural networks. bioRxiv 267096. https://doi.org/10.1101/267096
  21. 21.
    Broeken J, Johnson H, Lidke DS, Liu S, Nieuwenhuizen RP et al. 2015. Resolution improvement by 3D particle averaging in localization microscopy. Methods Appl. Fluoresc. 3:014003
    [Google Scholar]
  22. 22.
    Broussard GJ, Liang Y, Fridman M, Unger EK, Meng G et al. 2018. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat. Neurosci. 21:1272–80
    [Google Scholar]
  23. 23.
    Butler C, Saraceno GE, Kechkar A, Bénac N, Studer V et al. 2022. Multi-dimensional spectral single molecule localization microscopy. Front. Bioinform. 2:813494
    [Google Scholar]
  24. 24.
    Cebecauer M, Amaro M, Jurkiewicz P, Sarmento MJ, Šachl R et al. 2018. Membrane lipid nanodomains. Chem. Rev. 118:11259–97
    [Google Scholar]
  25. 25.
    Cella Zanacchi F, Manzo C, Magrassi R, Derr ND, Lakadamyali M 2019. Quantifying protein copy number in super resolution using an imaging-invariant calibration. Biophys. J. 116:2195–203
    [Google Scholar]
  26. 26.
    Chenouard N, Bloch I, Olivo-Marin J. 2013. Multiple hypothesis tracking for cluttered biological image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 35:2736–3750
    [Google Scholar]
  27. 27.
    Cnossen J, Cui TJ, Joo C, Smith C. 2021. Drift correction in localization microscopy using entropy minimization. Opt. Express 29:27961
    [Google Scholar]
  28. 28.
    Cnossen J, Hinsdale T, Thorsen , Siemons M, Schueder F et al. 2020. Localization microscopy at doubled precision with patterned illumination. Nat. Methods 17:59–63
    [Google Scholar]
  29. 29.
    Coltharp C, Kessler RP, Xiao J 2012. Accurate construction of photoactivated localization microscopy (PALM) images for quantitative measurements. PLOS ONE 7:e51725
    [Google Scholar]
  30. 30.
    Culley S, Albrecht D, Jacobs C, Pereira PM, Leterrier C et al. 2018. Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat. Methods 15:263–66
    [Google Scholar]
  31. 31.
    Dani A, Huang B, Bergan J, Dulac C, Zhuang X. 2010. Superresolution imaging of chemical synapses in the brain. Neuron 68:843–56
    [Google Scholar]
  32. 32.
    Danial JSH, Garcia-Saez AJ. 2019. Quantitative analysis of super-resolved structures using ASAP. Nat. Methods 16:711–14
    [Google Scholar]
  33. 33.
    De Chaumont F, Dallongeville S, Chenouard N, Hervé N, Pop S et al. 2012. Icy: an open bioimage informatics platform for extended reproducible research. Nat. Methods 9:690–96
    [Google Scholar]
  34. 34.
    De Zitter E, Thédié D, Mönkemöller V, Hugelier S, Beaudouin J et al. 2019. Mechanistic investigation of mEos4b reveals a strategy to reduce track interruptions in sptPALM. Nat. Methods 16:707–10
    [Google Scholar]
  35. 35.
    Dempsey GT 2013. A user's guide to localization-based super-resolution fluorescence imaging. Methods in Cell Biology G Sluder, DE Wolf 561–92. Cambridge, MA: Academic
    [Google Scholar]
  36. 36.
    Deschout H, Neyts K, Braeckmans K. 2012. The influence of movement on the localization precision of sub-resolution particles in fluorescence microscopy. J. Biophotonics 5:97–109
    [Google Scholar]
  37. 37.
    Deschout H, Shivanandan A, Annibale P, Scarselli M, Radenovic A. 2014. Progress in quantitative single-molecule localization microscopy. Histochem. Cell Biol. 142:5–17
    [Google Scholar]
  38. 38.
    Descloux A, Grußmayer KS, Radenovic A. 2019. Parameter-free image resolution estimation based on decorrelation analysis. Nat. Methods 16:918–24
    [Google Scholar]
  39. 39.
    Durisic N, Godin AG, Wever CM, Heyes CD, Lakadamyali M, Dent JA. 2012. Stoichiometry of the human glycine receptor revealed by direct subunit counting. J. Neurosci. 32:12915–20
    [Google Scholar]
  40. 40.
    Durisic N, Laparra-Cuervo L, Sandoval-Álvarez Á, Borbely JS, Lakadamyali M. 2014. Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Nat. Methods 11:156–62
    [Google Scholar]
  41. 41.
    Ehmann N, Van De Linde S, Alon A, Ljaschenko D, Keung XZ et al. 2014. Quantitative super-resolution imaging of Bruchpilot distinguishes active zone states. Nat. Commun. 5:4650
    [Google Scholar]
  42. 42.
    Elson E. 2011. Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101:2855–70
    [Google Scholar]
  43. 43.
    Ershov D, Phan M-S, Pylvänäinen JW, Rigaud SU, Le Blanc L et al. 2021. Bringing TrackMate into the era of machine-learning and deep-learning. bioRxiv 2021.09.03.458852. https://doi.org/10.1101/2021.09.03.458852
  44. 44.
    Finan K, Raulf A, Heilemann M. 2015. A set of homo-oligomeric standards allows accurate protein counting. Angew. Chem. Int. Ed. 54:12049–52
    [Google Scholar]
  45. 45.
    Fitzgerald JE, Lu J, Schnitzer MJ. 2012. Estimation theoretic measure of resolution for stochastic localization microscopy. Phys. Rev. Lett. 109:048102
    [Google Scholar]
  46. 46.
    Fosque BF, Sun Y, Dana H, Yang C-T, Ohyama T et al. 2015. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347:755–60
    [Google Scholar]
  47. 47.
    Gaire SK, Zhang Y, Li H, Yu R, Zhang HF, Ying L 2020. Accelerating multicolor spectroscopic single-molecule localization microscopy using deep learning. Biomed. Opt. Express 11:2705
    [Google Scholar]
  48. 48.
    Girsault A, Lukes T, Sharipov A, Geissbuehler S, Leutenegger M et al. 2016. SOFI simulation tool: a software package for simulating and testing super-resolution optical fluctuation imaging. PLOS ONE 11:e0161602
    [Google Scholar]
  49. 49.
    Gong Y, Huang C, Li JZ, Grewe BF, Zhang Y et al. 2015. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350:1361–66
    [Google Scholar]
  50. 50.
    Gowrishankar K, Ghosh S, Saha S, Rumamol C, Mayor S, Rao M 2012. Active remodeling of cortical actin regulates spatiotemporal organization of cell surface molecules. Cell 149:1353–67
    [Google Scholar]
  51. 51.
    Granik N, Weiss LE, Nehme E, Levin M, Chein M et al. 2019. Single-particle diffusion characterization by deep learning. Biophys. J. 117:185–92
    [Google Scholar]
  52. 52.
    Greenwald EC, Mehta S, Zhang J. 2018. Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem. Rev. 118:11707–94
    [Google Scholar]
  53. 53.
    Griffié J, Shannon M, Bromley CL, Boelen L, Burn GL et al. 2016. A Bayesian cluster analysis method for single-molecule localization microscopy data. Nat. Protoc. 11:2499–514
    [Google Scholar]
  54. 54.
    Griffié J, Shlomovich L, Williamson DJ, Shannon M, Aaron J et al. 2017. 3D Bayesian cluster analysis of super-resolution data reveals LAT recruitment to the T cell synapse. Sci. Rep. 7:4077
    [Google Scholar]
  55. 55.
    Grover G, Mohrman W, Piestun R. 2015. Real-time adaptive drift correction for super-resolution localization microscopy. Opt. Express 23:23887
    [Google Scholar]
  56. 56.
    Grover G, Pavani SRP, Piestun R. 2010. Performance limits on three-dimensional particle localization in photon-limited microscopy. Opt. Lett. 35:3306–8
    [Google Scholar]
  57. 57.
    Gu L, Li Y, Zhang S, Xue Y, Li W et al. 2019. Molecular resolution imaging by repetitive optical selective exposure. Nat. Methods 16:1114–18
    [Google Scholar]
  58. 58.
    Gu L, Li Y, Zhang S, Zhou M, Xue Y et al. 2021. Molecular-scale axial localization by repetitive optical selective exposure. Nat. Methods 18:369–73
    [Google Scholar]
  59. 59.
    Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J et al. 2020. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17:217–24
    [Google Scholar]
  60. 60.
    Gyparaki MT, Arab A, Sorokina EM, Santiago-Ruiz AN, Bohrer CH et al. 2021. Tau forms oligomeric complexes on microtubules that are distinct from tau aggregates. PNAS 118:e2021461118
    [Google Scholar]
  61. 61.
    Hell SW. 2003. Toward fluorescence nanoscopy. Nat. Biotechnol. 21:1347–55
    [Google Scholar]
  62. 62.
    Heo S-J, Thakur S, Chen X, Loebel C, Xia B et al. 2021. Chemo-mechanical cues modulate nano-scale chromatin organization in healthy and diseased connective tissue cells. bioRxiv 2021.04.27.441596. https://doi.org/10.1101/2021.04.27.441596
  63. 63.
    Hershko E, Weiss LE, Michaeli T, Shechtman Y. 2019. Multicolor localization microscopy and point-spread-function engineering by deep learning. Opt. Express 27:6158
    [Google Scholar]
  64. 64.
    Hess ST, Girirajan TPK, Mason MD. 2006. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91:4258–72
    [Google Scholar]
  65. 65.
    Heydarian H, Joosten M, Przybylski A, Schueder F, Jungmann R et al. 2021. 3D particle averaging and detection of macromolecular symmetry in localization microscopy. Nat. Commun. 12:2847
    [Google Scholar]
  66. 66.
    Heydarian H, Schueder F, Strauss MT, Van Werkhoven B, Fazel M et al. 2018. Template-free 2D particle fusion in localization microscopy. Nat. Methods 15:781–84
    [Google Scholar]
  67. 67.
    Hofmann M, Eggeling C, Jakobs S, Hell SW. 2005. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. PNAS 102:17565–69
    [Google Scholar]
  68. 68.
    Hollandi R, Szkalisity A, Toth T, Tasnadi E, Molnar C et al. 2020. nucleAIzer: a parameter-free deep learning framework for nucleus segmentation using image style transfer. Cell Syst. 10:453–58.e6
    [Google Scholar]
  69. 69.
    Honigmann A, Sadeghi S, Keller J, Hell SW, Eggeling C, Vink R 2014. A lipid bound actin meshwork organizes liquid phase separation in model membranes. eLife 3:e01671
    [Google Scholar]
  70. 70.
    Hoogendoorn E, Crosby KC, Leyton-Puig D, Breedijk RMP, Jalink K et al. 2015. The fidelity of stochastic single-molecule super-resolution reconstructions critically depends upon robust background estimation. Sci. Rep. 4:3854
    [Google Scholar]
  71. 71.
    Hou C, Guan S, Wang R, Zhang W, Meng F et al. 2017. Supramolecular protein assemblies based on DNA templates. J. Phys. Chem. Lett. 8:3970–79
    [Google Scholar]
  72. 72.
    Hou S, Exell J, Welsher K. 2020. Real-time 3D single molecule tracking. Nat. Commun. 11:3607
    [Google Scholar]
  73. 73.
    Huang B, Wang W, Bates M, Zhuang X. 2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–13
    [Google Scholar]
  74. 74.
    Hugelier S, Sliwa M, Ruckebusch C. 2018. A perspective on data processing in super-resolution fluorescence microscopy imaging. J. Anal. Test. 2:193–209
    [Google Scholar]
  75. 75.
    Hugelier S, Vandenberg W, Lukeš T, Grußmayer KS, Eilers PHC et al. 2021. Smoothness correction for better SOFI imaging. Sci. Rep. 11:7569
    [Google Scholar]
  76. 76.
    Huse M. 2009. The T-cell-receptor signaling network. J. Cell Sci. 122:1269–73
    [Google Scholar]
  77. 77.
    Iwata-Otsubo A, Dawicki-McKenna JM, Akera T, Falk SJ, Chmátal L et al. 2017. Expanded satellite repeats amplify a discrete CENP-A nucleosome assembly site on chromosomes that drive in female meiosis. Curr. Biol. 27:2365–73.e8
    [Google Scholar]
  78. 78.
    Izeddin I, Récamier V, Bosanac L, Cissé II, Boudarene L et al. 2014. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 3:e02230
    [Google Scholar]
  79. 79.
    Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S et al. 2008. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5:695–702
    [Google Scholar]
  80. 80.
    Jouchet P, Cabriel C, Bourg N, Bardou M, Poüs C et al. 2021. Nanometric axial localization of single fluorescent molecules with modulated excitation. Nat. Photonics 15:297–304
    [Google Scholar]
  81. 81.
    Jungmann R, Avendaño MS, Dai M, Woehrstein JB, Agasti SS et al. 2016. Quantitative super-resolution imaging with qPAINT. Nat. Methods 13:439–42
    [Google Scholar]
  82. 82.
    Jungmann R, Avendaño MS, Woehrstein JB, Dai M, Shih WM, Yin P. 2014. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11:313–18
    [Google Scholar]
  83. 83.
    Kannan M, Vasan G, Huang C, Haziza S, Li JZ et al. 2018. Fast, in vivo voltage imaging using a red fluorescent indicator. Nat. Methods 15:1108–16
    [Google Scholar]
  84. 84.
    Karslake JD, Donarski ED, Shelby SA, Demey LM, Dirita VJ et al. 2021. SMAUG: analyzing single-molecule tracks with nonparametric Bayesian statistics. Methods 193:16–26
    [Google Scholar]
  85. 85.
    Kastrup L, Blom H, Eggeling C, Hell SW. 2005. Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys. Rev. Lett. 94:178104
    [Google Scholar]
  86. 86.
    Kiskowski MA, Hancock JF, Kenworthy AK. 2009. On the use of Ripley's K-function and its derivatives to analyze domain size. Biophys. J. 97:1095–103
    [Google Scholar]
  87. 87.
    Klar TA, Hell SW. 1999. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24:954–56
    [Google Scholar]
  88. 88.
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW. 2000. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. PNAS 97:8206–10
    [Google Scholar]
  89. 89.
    Koho S, Tortarolo G, Castello M, Deguchi T, Diaspro A, Vicidomini G. 2019. Fourier ring correlation simplifies image restoration in fluorescence microscopy. Nat. Commun. 10:3103
    [Google Scholar]
  90. 90.
    Krull A, Buchholz T-O, Jug F. 2019. Noise2Void—learning denoising from single noisy images. arXiv:1811.10980 [cs.CV]
  91. 91.
    Lagache T, Grassart A, Dallongeville S, Faklaris O, Sauvonnet N et al. 2018. Mapping molecular assemblies with fluorescence microscopy and object-based spatial statistics. Nat. Commun. 9:698
    [Google Scholar]
  92. 92.
    Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J et al. 2021. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1:39
    [Google Scholar]
  93. 93.
    Lerner J, Gomez-Garcia PA, McCarthy RL, Liu Z, Lakadamyali M, Zaret KS. 2020. Two-parameter mobility assessments discriminate diverse regulatory factor behaviors in chromatin. Mol. Cell 79:677–88.e6
    [Google Scholar]
  94. 94.
    Levet F, Hosy E, Kechkar A, Butler C, Beghin A et al. 2015. SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat. Methods 12:1065–71
    [Google Scholar]
  95. 95.
    Levet F, Julien G, Galland R, Butler C, Beghin A et al. 2019. A tessellation-based colocalization analysis approach for single-molecule localization microscopy. Nat. Commun. 10:2379
    [Google Scholar]
  96. 96.
    Li Y, Tsien RW. 2012. pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat. Neurosci. 15:1047–53
    [Google Scholar]
  97. 97.
    Lillemeier BF, Mörtelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM. 2010. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11:90–96
    [Google Scholar]
  98. 98.
    Liu S, Hoess P, Ries J. 2022. Super-resolution microscopy for structural cell biology. Annu. Rev. Biophys. 51:301–26
    [Google Scholar]
  99. 99.
    Long RKM, Moriarty KP, Cardoen B, Gao G, Vogl AW et al. 2020. Super resolution microscopy and deep learning identify Zika virus reorganization of the endoplasmic reticulum. Sci. Rep. 10:20937
    [Google Scholar]
  100. 100.
    Loschberger A, van de Linde S, Dabauvalle MC, Rieger B, Heilemann M et al. 2012. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci. 125:570–75
    [Google Scholar]
  101. 101.
    Malkusch S, Endesfelder U, Mondry J, Gelléri M, Verveer PJ, Heilemann M. 2012. Coordinate-based colocalization analysis of single-molecule localization microscopy data. Histochem. Cell Biol. 137:1–10
    [Google Scholar]
  102. 102.
    Malkusch S, Heilemann M. 2016. Extracting quantitative information from single-molecule super-resolution imaging data with LAMA—LocAlization Microscopy Analyzer. Sci. Rep. 6:34486
    [Google Scholar]
  103. 103.
    Mancebo A, Mehra D, Banerjee C, Kim D-H, Puchner EM. 2021. Efficient cross-correlation filtering of one- and two-color single molecule localization microscopy data. Front. Bioinform. 1:739769
    [Google Scholar]
  104. 104.
    Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF et al. 2008. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5:155–57
    [Google Scholar]
  105. 105.
    Manzo C, Garcia-Parajo MF. 2015. A review of progress in single particle tracking: from methods to biophysical insights. Rep. Prog. Phys. 78:124601
    [Google Scholar]
  106. 106.
    Marsh RJ, Costello I, Gorey M-A, Ma D, Huang F et al. 2021. Sub-diffraction error mapping for localisation microscopy images. Nat. Commun. 12:5611
    [Google Scholar]
  107. 107.
    Martens KJA, Turkowyd B, Endesfelder U. 2022. Raw data to results: a hands-on introduction and overview of computational analysis for single-molecule localization microscopy. Front. Bioinform. 1:817254
    [Google Scholar]
  108. 108.
    Masson J-B, Dionne P, Salvatico C, Renner M, Specht CG et al. 2014. Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and Bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. Biophys. J. 106:74–83
    [Google Scholar]
  109. 109.
    Masucci EM, Relich PK, Ostap EM, Holzbaur ELF, Lakadamyali M. 2021. Cega: a single particle segmentation algorithm to identify moving particles in a noisy system. Mol. Biol. Cell 32:931–41
    [Google Scholar]
  110. 110.
    Mazidi H, Ding T, Nehorai A, Lew MD. 2020. Quantifying accuracy and heterogeneity in single-molecule super-resolution microscopy. Nat. Commun. 11:6353
    [Google Scholar]
  111. 111.
    Mazouchi A, Milstein JN. 2016. Fast Optimized Cluster Algorithm for Localizations (FOCAL): a spatial cluster analysis for super-resolved microscopy. Bioinformatics 32:747–54
    [Google Scholar]
  112. 112.
    Mlodzianoski MJ, Schreiner JM, Callahan SP, Smolková K, Dlasková A et al. 2011. Sample drift correction in 3D fluorescence photoactivation localization microscopy. Opt. Express 19:15009
    [Google Scholar]
  113. 113.
    Möckl L, Roy AR, Petrov PN, Moerner WE. 2020. Accurate and rapid background estimation in single-molecule localization microscopy using the deep neural network BGnet. PNAS 117:60–67
    [Google Scholar]
  114. 114.
    Moeyaert B, Vandenberg W, Dedecker P. 2020. SOFIevaluator: a strategy for the quantitative quality assessment of SOFI data. Biomed. Opt. Express 11:636
    [Google Scholar]
  115. 115.
    Müller M, Mönkemöller V, Hennig S, Hübner W, Huser T. 2016. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun. 7:10980
    [Google Scholar]
  116. 116.
    Mund M, van der Beek JA, Deschamps J, Dmitrieff S, Hoess P et al. 2018. Systematic nanoscale analysis of endocytosis links efficient vesicle formation to patterned actin nucleation. Cell 174:884–96.e17
    [Google Scholar]
  117. 117.
    Nehme E, Freedman D, Gordon R, Ferdman B, Weiss LE et al. 2020. DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning. Nat. Methods 17:734–40
    [Google Scholar]
  118. 118.
    Nieuwenhuizen RPJ, Lidke KA, Bates M, Puig DL, Grünwald D et al. 2013. Measuring image resolution in optical nanoscopy. Nat. Methods 10:557–62
    [Google Scholar]
  119. 119.
    Novák T, Gajdos T, Sinkó J, Szabó G, Erdélyi M. 2017. TestSTORM: versatile simulator software for multimodal super-resolution localization fluorescence microscopy. Sci. Rep. 7:951
    [Google Scholar]
  120. 120.
    Nyquist H. 1928. Certain topics in telegraph transmission theory. Trans. Am. Inst. Electr. Eng. 47:617–44
    [Google Scholar]
  121. 121.
    Ober RJ, Ram S, Ward ES 2004. Localization accuracy in single-molecule microscopy. Biophys. J. 86:1185–200
    [Google Scholar]
  122. 122.
    Otterstrom J, Castells-Garcia A, Vicario C, Gomez-Garcia PA, Cosma MP, Lakadamyali M. 2019. Super-resolution microscopy reveals how histone tail acetylation affects DNA compaction within nucleosomes in vivo. Nucleic Acids Res. 47:8470–84
    [Google Scholar]
  123. 123.
    Ounkomol C, Seshamani S, Maleckar MM, Collman F, Johnson GR. 2018. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat. Methods 15:917–20
    [Google Scholar]
  124. 124.
    Ouyang W, Aristov A, Lelek M, Hao X, Zimmer C. 2018. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol. 36:460–68
    [Google Scholar]
  125. 125.
    Ovesný M, Křížek P, Borkovec J, Švindrych Z, Hagen GM. 2014. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–90
    [Google Scholar]
  126. 126.
    Pageon SV, Nicovich PR, Mollazade M, Tabarin T, Gaus K. 2016. Clus-DoC: a combined cluster detection and colocalization analysis for single-molecule localization microscopy data. Mol. Biol. Cell 27:3627–36
    [Google Scholar]
  127. 127.
    Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N et al. 2009. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. PNAS 106:2995–99
    [Google Scholar]
  128. 128.
    Peeters Y, Vandenberg W, Duwé S, Bouwens A, Lukeš T et al. 2017. Correcting for photodestruction in super-resolution optical fluctuation imaging. Sci. Rep. 7:10470
    [Google Scholar]
  129. 129.
    Persson F, Lindén M, Unoson C, Elf J. 2013. Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10:265–69
    [Google Scholar]
  130. 130.
    Peters R, Griffié J, Burn GL, Williamson DJ, Owen DM. 2018. Quantitative fibre analysis of single-molecule localization microscopy data. Sci. Rep. 8:10418
    [Google Scholar]
  131. 131.
    Peters R, Griffié J, Williamson DJ, Aaron J, Khuon S, Owen DM. 2019. Development of 2-colour and 3D SMLM data analysis methods for fibrous spatial point patterns. J. Phys. D 52:014005
    [Google Scholar]
  132. 132.
    Redmon J, Farhadi A. 2017. YOLO9000: better, faster, stronger. arXiv:1612.08242 [cs.CV]
  133. 133.
    Richardson DS, Gregor C, Winter FR, Urban NT, Sahl SJ et al. 2017. SRpHi ratiometric pH biosensors for super-resolution microscopy. Nat. Commun. 8:577
    [Google Scholar]
  134. 134.
    Ries J. 2020. SMAP: a modular super-resolution microscopy analysis platform for SMLM data. Nat. Methods 17:870–72
    [Google Scholar]
  135. 135.
    Ries J, Chiantia S, Schwille P. 2009. Accurate determination of membrane dynamics with line-scan FCS. Biophys. J. 96:1999–2008
    [Google Scholar]
  136. 136.
    Ripley BD. 1977. Modelling spatial patterns. J. R. Stat. Soc. B 39:172–92
    [Google Scholar]
  137. 137.
    Rollins GC, Shin JY, Bustamante C, Pressé S. 2015. Stochastic approach to the molecular counting problem in superresolution microscopy. PNAS 112:E110–18
    [Google Scholar]
  138. 138.
    Rossy J, Cohen E, Gaus K, Owen DM. 2014. Method for co-cluster analysis in multichannel single-molecule localisation data. Histochem. Cell Biol. 141:605–12
    [Google Scholar]
  139. 139.
    Rothemund PWK. 2006. Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302
    [Google Scholar]
  140. 140.
    Rust MJ, Bates M, Zhuang X. 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:793–96
    [Google Scholar]
  141. 141.
    Sabinina VJ, Hossain MJ, Heriche JK, Hoess P, Nijmeijer B et al. 2021. Three-dimensional superresolution fluorescence microscopy maps the variable molecular architecture of the nuclear pore complex. Mol. Biol. Cell 32:1523–33
    [Google Scholar]
  142. 142.
    Sage D, Kirshner H, Pengo T, Stuurman N, Min J et al. 2015. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods 12:717–24
    [Google Scholar]
  143. 143.
    Sage D, Pham T-A, Babcock H, Lukes T, Pengo T et al. 2019. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nat. Methods 16:387–95
    [Google Scholar]
  144. 144.
    Sahl SJ, Hell SW. 2019. High-resolution 3D light microscopy with STED and RESOLFT. High Resolution Imaging in Microscopy and Ophthalmology JF Bille 3–32. Berlin: Springer
    [Google Scholar]
  145. 145.
    Salaita K, Nair PM, Petit RS, Neve RM, Das D et al. 2010. Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327:1380–85
    [Google Scholar]
  146. 146.
    Sauer M, Heilemann M. 2017. Single-molecule localization microscopy in eukaryotes. Chem. Rev. 117:7478–509
    [Google Scholar]
  147. 147.
    Saxton MJ. 2008. Single-particle tracking: connecting the dots. Nat. Methods 5:671–72
    [Google Scholar]
  148. 148.
    Schmidt R, Weihs T, Wurm CA, Jansen I, Rehman J et al. 2021. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12:1478
    [Google Scholar]
  149. 149.
    Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW. 2008. Spherical nanosized focal spot unravels the interior of cells. Nat. Methods 5:539–44
    [Google Scholar]
  150. 150.
    Schmied JJ, Raab M, Forthmann C, Pibiri E, Wünsch B et al. 2014. DNA origami–based standards for quantitative fluorescence microscopy. Nat. Protoc. 9:1367–91
    [Google Scholar]
  151. 151.
    Schneider F, Waithe D, Galiani S, Bernardino de la Serna J, Sezgin E, Eggeling C 2018. Nanoscale spatiotemporal diffusion modes measured by simultaneous confocal and stimulated emission depletion nanoscopy imaging. Nano Lett. 18:4233–40
    [Google Scholar]
  152. 152.
    Schnitzbauer J, Strauss MT, Schlichthaerle T, Schueder F, Jungmann R. 2017. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12:1198–228
    [Google Scholar]
  153. 153.
    Schnitzbauer J, Wang Y, Zhao S, Bakalar M, Nuwal T et al. 2018. Correlation analysis framework for localization-based superresolution microscopy. PNAS 115:3219–24
    [Google Scholar]
  154. 154.
    Seminario M-C, Bunnell SC. 2008. Signal initiation in T-cell receptor microclusters. Immunol. Rev. 221:90–106
    [Google Scholar]
  155. 155.
    Sengupta P, Jovanovic-Talisman T, Lippincott-Schwartz J. 2013. Quantifying spatial organization in point-localization superresolution images using pair correlation analysis. Nat. Protoc. 8:345–54
    [Google Scholar]
  156. 156.
    Sergé A, Bertaux N, Rigneault H, Marguet D. 2008. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods 5:687–94
    [Google Scholar]
  157. 157.
    Sezgin E, Schneider F, Galiani S, Urbančič I, Waithe D et al. 2019. Measuring nanoscale diffusion dynamics in cellular membranes with super-resolution STED–FCS. Nat. Protoc. 14:1054–83
    [Google Scholar]
  158. 158.
    Shannon CE. 1949. Communication in the presence of noise. Proc. IRE 37:10–21
    [Google Scholar]
  159. 159.
    Sharonov A, Hochstrasser RM. 2006. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. PNAS 103:18911–16
    [Google Scholar]
  160. 160.
    Sieben C, Banterle N, Douglass KM, Gönczy P, Manley S. 2018. Multicolor single-particle reconstruction of protein complexes. Nat. Methods 15:777–80
    [Google Scholar]
  161. 161.
    Sigal YM, Zhou R, Zhuang X. 2018. Visualizing and discovering cellular structures with super-resolution microscopy. Science 361:880–87
    [Google Scholar]
  162. 162.
    Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387:569–72
    [Google Scholar]
  163. 163.
    Speiser A, Müller L-R, Hoess P, Matti U, Obara CJ et al. 2021. Deep learning enables fast and dense single-molecule localization with high accuracy. Nat. Methods 18:1082–90
    [Google Scholar]
  164. 164.
    Spiess M, Hernandez-Varas P, Oddone A, Olofsson H, Blom H et al. 2018. Active and inactive β1 integrins segregate into distinct nanoclusters in focal adhesions. J. Cell Biol. 217:1929–40
    [Google Scholar]
  165. 165.
    Stallinga S, Rieger B. 2012. The effect of background on localization uncertainty in single emitter imaging. Proceedings of the 9th IEEE International Symposium on Biomedical Imaging (ISBI), May 2–5, Barcelona, Spain988–91. Piscataway, NJ: IEEE
    [Google Scholar]
  166. 166.
    Stone MB, Veatch SL. 2015. Steady-state cross-correlations for live two-colour super-resolution localization data sets. Nat. Commun. 6:7347
    [Google Scholar]
  167. 167.
    Stracy M, Lesterlin C, Garza de Leon F, Uphoff S, Zawadzki P, Kapanidis AN. 2015. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. PNAS 112:E4390–99
    [Google Scholar]
  168. 168.
    Stringer C, Wang T, Michaelos M, Pachitariu M. 2021. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18:100–6
    [Google Scholar]
  169. 169.
    Szymborska A, de Marco A, Daigle N, Cordes VC, Briggs JA, Ellenberg J. 2013. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341:655–58
    [Google Scholar]
  170. 170.
    Thevathasan JV, Kahnwald M, Cieśliński K, Hoess P, Peneti SK et al. 2019. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat. Methods 16:1045–53
    [Google Scholar]
  171. 171.
    Tinevez J-Y, Perry N, Schindelin J, Hoopes GM, Reynolds GD et al. 2017. TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90
    [Google Scholar]
  172. 172.
    Turcotte B, Bilodeau A, Lavoie-Cardinal F, Durand A 2021. pySTED: a STED microscopy simulation tool for machine learning training Paper presented at the 35th AAAI Conference on Artificial Intelligence, Feb. 2–9
  173. 173.
    Valli J, Garcia-Burgos A, Rooney LM, Vale de Melo e Oliveira B, Duncan RR, Rickman C 2021. Seeing beyond the limit: a guide to choosing the right super-resolution microscopy technique. J. Biol. Chem. 297:100791
    [Google Scholar]
  174. 174.
    Veatch SL, Machta BB, Shelby SA, Chiang EN, Holowka DA, Baird BA. 2012. Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting. PLOS ONE 7:e31457
    [Google Scholar]
  175. 175.
    Venkataramani V, Herrmannsdörfer F, Heilemann M, Kuner T. 2016. SuReSim: simulating localization microscopy experiments from ground truth models. Nat. Methods 13:319–21
    [Google Scholar]
  176. 176.
    Vicente NB, Zamboni JED, Adur JF, Paravani EV, Casco VH. 2007. Photobleaching correction in fluorescence microscopy images. J. Phys. Conf. Ser. 90:012068
    [Google Scholar]
  177. 177.
    Vicidomini G, Bianchini P, Diaspro A. 2018. STED super-resolved microscopy. Nat. Methods 15:173–82
    [Google Scholar]
  178. 178.
    Von Appen A, Kosinski J, Sparks L, Ori A, Diguilio AL et al. 2015. In situ structural analysis of the human nuclear pore complex.. Nature 526:140–43
    [Google Scholar]
  179. 179.
    Von Chamier L, Laine RF, Jukkala J, Spahn C, Krentzel D et al. 2021. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat. Commun. 12:2276
    [Google Scholar]
  180. 180.
    Wang H, Rivenson Y, Jin Y, Wei Z, Gao R et al. 2019. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 16:103–10
    [Google Scholar]
  181. 181.
    Wang L-Y, Augustine GJ. 2015. Presynaptic nanodomains: a tale of two synapses. Front. Cell. Neurosci. 8:455
    [Google Scholar]
  182. 182.
    Wang Z, Xie Y, Ji S 2021. Global voxel transformer networks for augmented microscopy. Nat. Mach. Intell. 3:161–71
    [Google Scholar]
  183. 183.
    Weber M, Leutenegger M, Stoldt S, Jakobs S, Mihaila TS et al. 2021. MINSTED fluorescence localization and nanoscopy. Nat. Photonics 15:361–66
    [Google Scholar]
  184. 184.
    Weber M, von der Emde H, Leutenegger M, Gunkel P, Cordes VC et al. 2022. MINSTED nanoscopy enters the Ångström localization range. bioRxiv 2022.03.18.484906. https://doi.org/10.1101/2022.03.18.484906
  185. 185.
    Weigert M, Schmidt U, Boothe T, Müller A, Dibrov A et al. 2018. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15:1090–97
    [Google Scholar]
  186. 186.
    Wester MJ, Schodt DJ, Mazloom-Farsibaf H, Fazel M, Pallikkuth S, Lidke KA. 2021. Robust, fiducial-free drift correction for super-resolution imaging. Sci. Rep. 11:23672
    [Google Scholar]
  187. 187.
    Willems J, MacGillavry HD. 2022. A coordinate-based co-localization index to quantify and visualize spatial associations in single-molecule localization microscopy. Sci. Rep. 12:4676
    [Google Scholar]
  188. 188.
    Wollman AJM, Hedlund EG, Shashkova S, Leake MC. 2020. Towards mapping the 3D genome through high speed single-molecule tracking of functional transcription factors in single living cells. Methods 170:82–89
    [Google Scholar]
  189. 189.
    Yu C, Wang Z-G, Ma A-X, Liu S-L, Pang D-W. 2022. Uncovering the F-actin-based nuclear egress mechanism of newly synthesized influenza A virus ribonucleoprotein complexes by single-particle tracking. Anal. Chem. 94:5624–33
    [Google Scholar]
  190. 190.
    Zhang H, Fang C, Xie X, Yang Y, Mei W et al. 2019. High-throughput, high-resolution deep learning microscopy based on registration-free generative adversarial network. Biomed. Opt. Express 10:1044–63
    [Google Scholar]
  191. 191.
    Zhang M-L, Ti H-Y, Wang P-Y, Li H. 2021. Intracellular transport dynamics revealed by single-particle tracking. Biophys. Rep. 7:413
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-111622-091212
Loading
/content/journals/10.1146/annurev-biophys-111622-091212
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error