1932

Abstract

ABC transporters are essential for cellular physiology. Humans have 48 ABC genes organized into seven distinct families. Of these genes, 44 (in five distinct families) encode for membrane transporters, of which several are involved in drug resistance and disease pathways resulting from transporter dysfunction. Over the last decade, advances in structural biology have vastly expanded our mechanistic understanding of human ABC transporter function, revealing details of their molecular arrangement, regulation, and interactions, facilitated in large part by advances in cryo-EM that have rendered hitherto inaccessible targets amenable to high-resolution structural analysis. As a result, experimentally determined structures of multiple members of each of the five families of ABC transporters in humans are now available. Here we review this recent progress, highlighting the physiological relevance of human ABC transporters and mechanistic insights gleaned from their direct structure determination. We also discuss the impact and limitations of model systems and structure prediction methods in understanding human ABC transporters and discuss current challenges and future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-111622-091232
2023-05-09
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/biophys/52/1/annurev-biophys-111622-091232.html?itemId=/content/journals/10.1146/annurev-biophys-111622-091232&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aguilar-Bryan L, Bryan J. 1999. Molecular biology of adenosine triphosphate–sensitive potassium channels. Endocr. Rev. 20:101–35
    [Google Scholar]
  2. 2.
    Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J. 1998. Toward understanding the assembly and structure of KATP channels. Physiol. Rev. 78:227–45
    [Google Scholar]
  3. 3.
    Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP, Boyd AE 3rd et al. 1995. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–26
    [Google Scholar]
  4. 4.
    Alam A, Kowal J, Broude E, Roninson I, Locher KP. 2019. Structural insight into substrate and inhibitor discrimination by human P-glycoprotein. Science 363:753–76
    [Google Scholar]
  5. 5.
    Aller SG, Yu J, Ward A, Weng Y, Chittaboina S et al. 2009. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323:1718–22
    [Google Scholar]
  6. 6.
    Allikmets R, Raskind WH, Hutchinson A, Schueck ND, Dean M, Koeller DM. 1999. Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum. Mol. Genet. 8:743–49
    [Google Scholar]
  7. 7.
    Allikmets R, Shroyer NF, Singh N, Seddon JM, Lewis RA et al. 1997. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277:1805–7
    [Google Scholar]
  8. 8.
    Almeida JFF, Dos Santos LR, Trancozo M, de Paula F 2018. Updated meta-analysis of BIN1, CR1, MS4A6A, CLU, and ABCA7 variants in Alzheimer's disease. J. Mol. Neurosci. 64:471–77
    [Google Scholar]
  9. 9.
    Annese V, Valvano MR, Palmieri O, Latiano A, Bossa F, Andriulli A. 2006. Multidrug resistance 1 gene in inflammatory bowel disease: a meta-analysis. World J. Gastroenterol. 12:3636–44
    [Google Scholar]
  10. 10.
    Ardehali H, O'Rourke B, Marban E. 2005. Cardioprotective role of the mitochondrial ATP-binding cassette protein 1. Circ. Res. 97:740–42
    [Google Scholar]
  11. 11.
    Bekri S, Kispal G, Lange H, Fitzsimons E, Tolmie J et al. 2000. Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood 96:3256–64
    [Google Scholar]
  12. 12.
    Bellenguez C, Charbonnier C, Grenier-Boley B, Quenez O, Le Guennec K et al. 2017. Contribution to Alzheimer's disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls. Neurobiol. Aging 59:220.e1–9
    [Google Scholar]
  13. 13.
    Bergen AA, Plomp AS, Schuurman EJ, Terry S, Breuning M et al. 2000. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat. Genet. 25:228–31
    [Google Scholar]
  14. 14.
    Biemans-Oldehinkel E, Doeven MK, Poolman B. 2006. ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 580:1023–35
    [Google Scholar]
  15. 15.
    Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O'Cochlain F et al. 2004. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat. Genet. 36:382–87
    [Google Scholar]
  16. 16.
    Borst P, Elferink RO. 2002. Mammalian ABC transporters in health and disease. Annu. Rev. Biochem. 71:537–92
    [Google Scholar]
  17. 17.
    Borst P, Schinkel AH. 2013. P-glycoprotein ABCB1: a major player in drug handling by mammals. J. Clin. Investig. 123:4131–33
    [Google Scholar]
  18. 18.
    Callebaut I, Chong PA, Forman-Kay JD. 2018. CFTR structure. J. Cyst. Fibros. 17:S5–8
    [Google Scholar]
  19. 19.
    Chen J, Lu G, Lin J, Davidson AL, Quiocho FA. 2003. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol. Cell 12:651–61
    [Google Scholar]
  20. 20.
    Chen ZP, Xu D, Wang L, Mao YX, Li Y et al. 2022. Structural basis of substrate recognition and translocation by human very long-chain fatty acid transporter ABCD1. Nat. Commun. 13:3299
    [Google Scholar]
  21. 21.
    Chen ZS, Hopper-Borge E, Belinsky MG, Shchaveleva I, Kotova E, Kruh GD. 2003. Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol. Pharmacol. 63:351–58
    [Google Scholar]
  22. 22.
    Chipman DM, Shaanan B. 2001. The ACT domain family. Curr. Opin. Struct. Biol. 11:694–700
    [Google Scholar]
  23. 23.
    Chutkow WA, Simon MC, Le Beau MM, Burant CF 1996. Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes 45:1439–45
    [Google Scholar]
  24. 24.
    Coelho D, Kim JC, Miousse IR, Fung S, du Moulin M et al. 2012. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat. Genet. 44:1152–55
    [Google Scholar]
  25. 25.
    Cserepes J, Szentpetery Z, Seres L, Ozvegy-Laczka C, Langmann T et al. 2004. Functional expression and characterization of the human ABCG1 and ABCG4 proteins: indications for heterodimerization. Biochem. Biophys. Res. Commun. 320:860–67
    [Google Scholar]
  26. 26.
    Cui Y, Konig J, Buchholz JK, Spring H, Leier I, Keppler D. 1999. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol. Pharmacol. 55:929–37
    [Google Scholar]
  27. 27.
    Cui YX, Xia XY, Zhou Y, Gao L, Shang XJ et al. 2013. Novel mutations of ABCB6 associated with autosomal dominant dyschromatosis universalis hereditaria. PLOS ONE 8:e79808
    [Google Scholar]
  28. 28.
    Davis W Jr. 2015. The ATP-binding cassette transporter-2 (ABCA2) overexpression modulates sphingosine levels and transcription of the amyloid precursor protein (APP) gene. Curr. Alzheimer Res. 12:847–59
    [Google Scholar]
  29. 29.
    Dawson RJ, Locher KP. 2006. Structure of a bacterial multidrug ABC transporter. Nature 443:180–85
    [Google Scholar]
  30. 30.
    De Marcos Lousa C, van Roermund CW, Postis VL, Dietrich D, Kerr ID et al. 2013. Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids. PNAS 110:1279–84
    [Google Scholar]
  31. 31.
    De Roeck A, Van Broeckhoven C, Sleegers K. 2019. The role of ABCA7 in Alzheimer's disease: evidence from genomics, transcriptomics and methylomics. Acta Neuropathol 138:201–20
    [Google Scholar]
  32. 32.
    de Vree JM, Jacquemin E, Sturm E, Cresteil D, Bosma PJ et al. 1998. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. PNAS 95:282–87
    [Google Scholar]
  33. 33.
    Dean M, Annilo T. 2005. Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu. Rev. Genom. Hum. Genet. 6:123–42
    [Google Scholar]
  34. 34.
    Dean M, Rzhetsky A, Allikmets R. 2001. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11:1156–66
    [Google Scholar]
  35. 35.
    Deme JC, Hancock MA, Xia X, Shintre CA, Plesa M et al. 2014. Purification and interaction analyses of two human lysosomal vitamin B12 transporters: LMBD1 and ABCD4. Mol. Membr. Biol. 31:250–61
    [Google Scholar]
  36. 36.
    Demirel O, Waibler Z, Kalinke U, Grunebach F, Appel S et al. 2007. Identification of a lysosomal peptide transport system induced during dendritic cell development. J. Biol. Chem. 282:37836–43
    [Google Scholar]
  37. 37.
    Dietrich CG, Geier A, Oude Elferink RP 2003. ABC of oral bioavailability: transporters as gatekeepers in the gut. Gut 52:1788–95
    [Google Scholar]
  38. 38.
    Dong G, Wearsch PA, Peaper DR, Cresswell P, Reinisch KM. 2009. Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. Immunity 30:21–32
    [Google Scholar]
  39. 39.
    Durmus S, Hendrikx JJ, Schinkel AH. 2015. Apical ABC transporters and cancer chemotherapeutic drug disposition. Adv. Cancer Res. 125:1–41
    [Google Scholar]
  40. 40.
    Elborn JS. 2016. Cystic fibrosis. Lancet 388:2519–31
    [Google Scholar]
  41. 41.
    Elferink RP, Tytgat GN, Groen AK. 1997. Hepatic canalicular membrane. 1. The role of mdr2 P-glycoprotein in hepatobiliary lipid transport. FASEB J 11:19–28
    [Google Scholar]
  42. 42.
    Engelen M, Kemp S, de Visser M, van Geel BM, Wanders RJ et al. 2012. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet. J. Rare Dis. 7:51
    [Google Scholar]
  43. 43.
    Ferdinandusse S, Jimenez-Sanchez G, Koster J, Denis S, Van Roermund CW et al. 2015. A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum. Mol. Genet. 24:361–70
    [Google Scholar]
  44. 44.
    Fiedorczuk K, Chen J. 2022. Mechanism of CFTR correction by type I folding correctors. Cell 185:158–68.e11
    [Google Scholar]
  45. 45.
    Fitzgerald ML, Morris AL, Rhee JS, Andersson LP, Mendez AJ, Freeman MW. 2002. Naturally occurring mutations in the largest extracellular loops of ABCA1 can disrupt its direct interaction with apolipoprotein A-I. J. Biol. Chem. 277:33178–87
    [Google Scholar]
  46. 46.
    Fitzgerald ML, Mujawar Z, Tamehiro N. 2010. ABC transporters, atherosclerosis and inflammation. Atherosclerosis 211:361–70
    [Google Scholar]
  47. 47.
    Fourcade S, Ruiz M, Camps C, Schluter A, Houten SM et al. 2009. A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis. Am. J. Physiol. Endocrinol. Metab. 296:E211–21
    [Google Scholar]
  48. 48.
    Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM et al. 2005. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 65:4320–33
    [Google Scholar]
  49. 49.
    Frank NY, Pendse SS, Lapchak PH, Margaryan A, Shlain D et al. 2003. Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter. J. Biol. Chem. 278:47156–65
    [Google Scholar]
  50. 50.
    Frauenfeld J, Loving R, Armache JP, Sonnen AF, Guettou F et al. 2016. A saposin-lipoprotein nanoparticle system for membrane proteins. Nat. Methods 13:345–51
    [Google Scholar]
  51. 51.
    Fromm MF. 2004. Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol. Sci. 25:423–29
    [Google Scholar]
  52. 52.
    Gaudet R, Wiley DC. 2001. Structure of the ABC ATPase domain of human TAP1, the transporter associated with antigen processing. EMBO J 20:4964–72
    [Google Scholar]
  53. 53.
    Geertsma ER, Nik Mahmood NA, Schuurman-Wolters GK, Poolman B 2008. Membrane reconstitution of ABC transporters and assays of translocator function. Nat. Protoc. 3:256–66
    [Google Scholar]
  54. 54.
    Graf SA, Haigh SE, Corson ED, Shirihai OS. 2004. Targeting, import, and dimerization of a mammalian mitochondrial ATP binding cassette (ABC) transporter, ABCB10 (ABC-me). J. Biol. Chem. 279:42954–63
    [Google Scholar]
  55. 55.
    Guo Y, Kotova E, Chen ZS, Lee K, Hopper-Borge E et al. 2003. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2′,3′-dideoxycytidine and 9′-(2′-phosphonylmethoxyethyl)adenine. J. Biol. Chem. 278:29509–14
    [Google Scholar]
  56. 56.
    Harakalova M, van Harssel JJ, Terhal PA, van Lieshout S, Duran K et al. 2012. Dominant missense mutations in ABCC9 cause Cantu syndrome. Nat. Genet. 44:793–96
    [Google Scholar]
  57. 57.
    Hegyi Z, Homolya L. 2016. Functional cooperativity between ABCG4 and ABCG1 isoforms. PLOS ONE 11:e0156516
    [Google Scholar]
  58. 58.
    Helias V, Saison C, Ballif BA, Peyrard T, Takahashi J et al. 2012. ABCB6 is dispensable for erythropoiesis and specifies the new blood group system Langereis. Nat. Genet. 44:170–73
    [Google Scholar]
  59. 59.
    Higgins CF. 1992. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8:67–113
    [Google Scholar]
  60. 60.
    Hillgren KM, Keppler D, Zur AA, Giacomini KM, Stieger B et al. 2013. Emerging transporters of clinical importance: an update from the International Transporter Consortium. Clin. Pharmacol. Ther. 94:52–63
    [Google Scholar]
  61. 61.
    Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC et al. 2011. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat. Genet. 43:429–35
    [Google Scholar]
  62. 62.
    Hovnanian A. 2005. Harlequin ichthyosis unmasked: a defect of lipid transport. J. Clin. Investig. 115:1708–10
    [Google Scholar]
  63. 63.
    Hubacek JA, Berge KE, Cohen JC, Hobbs HH. 2001. Mutations in ATP-cassette binding proteins G5 (ABCG5) and G8 (ABCG8) causing sitosterolemia. Hum. Mutat. 18:359–60
    [Google Scholar]
  64. 64.
    Ichikawa Y, Bayeva M, Ghanefar M, Potini V, Sun L et al. 2012. Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. PNAS 109:4152–57
    [Google Scholar]
  65. 65.
    Jackson SM, Manolaridis I, Kowal J, Zechner M, Taylor NMI et al. 2018. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 25:333–40
    [Google Scholar]
  66. 66.
    Jin MS, Oldham ML, Zhang Q, Chen J 2012. Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490:566–69
    [Google Scholar]
  67. 67.
    Juliano RL, Ling V. 1976. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455:152–62
    [Google Scholar]
  68. 67a.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov Met al 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–89
    [Google Scholar]
  69. 68.
    Kashiwayama Y, Seki M, Yasui A, Murasaki Y, Morita M et al. 2009. 70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) localizes to endoplasmic reticulum not peroxisomes, and NH2-terminal hydrophobic property determines the subcellular localization of ABC subfamily D proteins. Exp. Cell Res. 315:190–205
    [Google Scholar]
  70. 69.
    Kawaguchi K, Morita M. 2016. ABC transporter subfamily D: distinct differences in behavior between ABCD1–3 and ABCD4 in subcellular localization, function, and human disease. Biomed. Res. Int. 2016:6786245
    [Google Scholar]
  71. 70.
    Kelsell DP, Norgett EE, Unsworth H, Teh MT, Cullup T et al. 2005. Mutations in ABCA12 underlie the severe congenital skin disease harlequin ichthyosis. Am. J. Hum. Genet. 76:794–803
    [Google Scholar]
  72. 71.
    Kemp S, Pujol A, Waterham HR, van Geel BM, Boehm CD et al. 2001. ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: role in diagnosis and clinical correlations. Hum. Mutat. 18:499–515
    [Google Scholar]
  73. 72.
    Kemp S, Wanders RJ. 2007. X-linked adrenoleukodystrophy: very long-chain fatty acid metabolism, ABC half-transporters and the complicated route to treatment. Mol. Genet. Metab. 90:268–76
    [Google Scholar]
  74. 73.
    Kerr ID. 2004. Sequence analysis of twin ATP binding cassette proteins involved in translational control, antibiotic resistance, and ribonuclease L inhibition. Biochem. Biophys. Res. Commun. 315:166–73
    [Google Scholar]
  75. 74.
    Kim Y, Chen J. 2018. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science 359:915–19
    [Google Scholar]
  76. 75.
    Kobayashi A, Takanezawa Y, Hirata T, Shimizu Y, Misasa K et al. 2006. Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1. J. Lipid Res. 47:1791–802
    [Google Scholar]
  77. 76.
    Komatani H, Kotani H, Hara Y, Nakagawa R, Matsumoto M et al. 2001. Identification of breast cancer resistant protein/mitoxantrone resistance/placenta-specific, ATP-binding cassette transporter as a transporter of NB-506 and J-107088, topoisomerase I inhibitors with an indolocarbazole structure. Cancer Res 61:2827–32
    [Google Scholar]
  78. 77.
    Kool M, van der Linden M, de Haas M, Scheffer GL, de Vree JM et al. 1999. MRP3, an organic anion transporter able to transport anti-cancer drugs. PNAS 96:6914–19
    [Google Scholar]
  79. 78.
    Kowal J, Ni D, Jackson SM, Manolaridis I, Stahlberg H, Locher KP. 2021. Structural basis of drug recognition by the multidrug transporter ABCG2. J. Mol. Biol. 433:166980
    [Google Scholar]
  80. 79.
    Ksander BR, Kolovou PE, Wilson BJ, Saab KR, Guo Q et al. 2014. ABCB5 is a limbal stem cell gene required for corneal development and repair. Nature 511:353–37
    [Google Scholar]
  81. 80.
    Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R et al. 2013. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45:1452–58
    [Google Scholar]
  82. 81.
    Lankat-Buttgereit B, Tampe R. 1999. The transporter associated with antigen processing TAP: structure and function. FEBS Lett 464:108–12
    [Google Scholar]
  83. 82.
    Le LTM, Thompson JR, Dang PX, Bhandari J, Alam A. 2022. Structures of the human peroxisomal fatty acid transporter ABCD1 in a lipid environment. Commun. Biol. 5:7
    [Google Scholar]
  84. 83.
    Le Guennec K, Nicolas G, Quenez O, Charbonnier C, Wallon D et al. 2016. ABCA7 rare variants and Alzheimer disease risk. Neurology 86:2134–37
    [Google Scholar]
  85. 84.
    Le Saux O, Urban Z, Tschuch C, Csiszar K, Bacchelli B et al. 2000. Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum. Nat. Genet. 25:223–27
    [Google Scholar]
  86. 85.
    Lee JY, Kinch LN, Borek DM, Wang J, Wang J et al. 2016. Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533:561–64
    [Google Scholar]
  87. 86.
    Lee JY, Yang JG, Zhitnitsky D, Lewinson O, Rees DC. 2014. Structural basis for heavy metal detoxification by an Atm1-type ABC exporter. Science 343:1133–36
    [Google Scholar]
  88. 87.
    Lee KPK, Chen J, MacKinnon R 2017. Molecular structure of human KATP in complex with ATP and ADP. eLife 6:e32481
    [Google Scholar]
  89. 88.
    Lee MH, Lu K, Hazard S, Yu H, Shulenin S et al. 2001. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat. Genet. 27:79–83
    [Google Scholar]
  90. 89.
    Leonard GD, Fojo T, Bates SE. 2003. The role of ABC transporters in clinical practice. Oncologist 8:411–24
    [Google Scholar]
  91. 90.
    Leslie EM, Deeley RG, Cole SP. 2005. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol. Appl. Pharmacol. 204:216–37
    [Google Scholar]
  92. 91.
    Li N, Wu JX, Ding D, Cheng J, Gao N, Chen L. 2017. Structure of a pancreatic ATP-sensitive potassium channel. Cell 168:101–10.e10
    [Google Scholar]
  93. 92.
    Li S, Ren Y, Lu X, Shen Y, Yang X 2021. Cryo-EM structure of human ABCB8 transporter in nucleotide binding state. Biochem. Biophys. Res. Commun. 557:187–91
    [Google Scholar]
  94. 93.
    Linton KJ. 2015. Lipid flopping in the liver. Biochem. Soc. Trans. 43:1003–10
    [Google Scholar]
  95. 94.
    Liu F, Lee J, Chen J 2021. Molecular structures of the eukaryotic retinal importer ABCA4. eLife 10:e63524
    [Google Scholar]
  96. 95.
    Liu F, Zhang Z, Csanady L, Gadsby DC, Chen J 2017. Molecular structure of the human CFTR ion channel. Cell 169:85–95.e8
    [Google Scholar]
  97. 96.
    Liu F, Zhang Z, Levit A, Levring J, Touhara KK et al. 2019. Structural identification of a hotspot on CFTR for potentiation. Science 364:1184–88
    [Google Scholar]
  98. 97.
    Locher KP. 2016. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23:487–93
    [Google Scholar]
  99. 98.
    Locher KP, Lee AT, Rees DC. 2002. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:1091–98
    [Google Scholar]
  100. 99.
    Lu G, Westbrooks JM, Davidson AL, Chen J 2005. ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation. PNAS 102:17969–74
    [Google Scholar]
  101. 100.
    Lu K, Lee MH, Hazard S, Brooks-Wilson A, Hidaka H et al. 2001. Two genes that map to the STSL locus cause sitosterolemia: genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively. Am. J. Hum. Genet. 69:278–90
    [Google Scholar]
  102. 101.
    Ma FC, Wang HF, Cao XP, Tan CC, Tan L, Yu JT. 2018. Meta-analysis of the association between variants in ABCA7 and Alzheimer's disease. J. Alzheimers Dis. 63:1261–67
    [Google Scholar]
  103. 102.
    Maddirevula S, Alzahrani F, Al-Owain M, Al Muhaizea MA, Kayyali HR et al. 2019. Autozygome and high throughput confirmation of disease genes candidacy. Genet. Med. 21:736–42
    [Google Scholar]
  104. 103.
    Maguire A, Hellier K, Hammans S, May A 2001. X-linked cerebellar ataxia and sideroblastic anaemia associated with a missense mutation in the ABC7 gene predicting V411L. Br. J. Haematol. 115:910–17
    [Google Scholar]
  105. 104.
    Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM et al. 2018. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50:1505–13
    [Google Scholar]
  106. 105.
    Manolaridis I, Jackson SM, Taylor NMI, Kowal J, Stahlberg H, Locher KP. 2018. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 563:426–30
    [Google Scholar]
  107. 106.
    Matsumura Y, Sakai H, Sasaki M, Ban N, Inagaki N. 2007. ABCA3-mediated choline-phospholipids uptake into intracellular vesicles in A549 cells. FEBS Lett 581:3139–44
    [Google Scholar]
  108. 107.
    Michaki V, Guix FX, Vennekens K, Munck S, Dingwall C et al. 2012. Down-regulation of the ATP-binding cassette transporter 2 (Abca2) reduces amyloid-beta production by altering Nicastrin maturation and intracellular localization. J. Biol. Chem. 287:1100–11
    [Google Scholar]
  109. 108.
    Morita M, Imanaka T. 2012. Peroxisomal ABC transporters: structure, function and role in disease. Biochim. Biophys. Acta 1822:1387–96
    [Google Scholar]
  110. 109.
    Morita SY, Kobayashi A, Takanezawa Y, Kioka N, Handa T et al. 2007. Bile salt–dependent efflux of cellular phospholipids mediated by ATP binding cassette protein B4. Hepatology 46:188–99
    [Google Scholar]
  111. 110.
    Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV et al. 2012. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44:981–90
    [Google Scholar]
  112. 111.
    Mosser J, Douar AM, Sarde CO, Kioschis P, Feil R et al. 1993. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature 361:726–30
    [Google Scholar]
  113. 112.
    Murina V, Kasari M, Takada H, Hinnu M, Saha CK et al. 2019. ABCF ATPases involved in protein synthesis, ribosome assembly and antibiotic resistance: structural and functional diversification across the tree of life. J. Mol. Biol. 431:3568–90
    [Google Scholar]
  114. 113.
    Navarro-Quiles C, Mateo-Bonmati E, Micol JL 2018. ABCE proteins: from molecules to development. Front. Plant Sci. 9:1125
    [Google Scholar]
  115. 114.
    Nestorowicz A, Glaser B, Wilson BA, Shyng SL, Nichols CG et al. 1998. Genetic heterogeneity in familial hyperinsulinism. Hum. Mol. Genet. 7:1119–28
    [Google Scholar]
  116. 115.
    Nosol K, Bang-Sorensen R, Irobalieva RN, Erramilli SK, Stieger B et al. 2021. Structures of ABCB4 provide insight into phosphatidylcholine translocation. PNAS 118:e2106702118
    [Google Scholar]
  117. 116.
    Nosol K, Romane K, Irobalieva RN, Alam A, Kowal J et al. 2020. Cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1. PNAS 117:26245–53
    [Google Scholar]
  118. 117.
    Oldham ML, Grigorieff N, Chen J 2016. Structure of the transporter associated with antigen processing trapped by herpes simplex virus. eLife 5:e21829
    [Google Scholar]
  119. 118.
    Oldham ML, Hite RK, Steffen AM, Damko E, Li Z et al. 2016. A mechanism of viral immune evasion revealed by cryo-EM analysis of the TAP transporter. Nature 529:537–40
    [Google Scholar]
  120. 119.
    Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J 2007. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450:515–21
    [Google Scholar]
  121. 120.
    Olsen JA, Alam A, Kowal J, Stieger B, Locher KP. 2020. Structure of the human lipid exporter ABCB4 in a lipid environment. Nat. Struct. Mol. Biol. 27:62–70
    [Google Scholar]
  122. 121.
    Olson TM, Alekseev AE, Moreau C, Liu XK, Zingman LV et al. 2007. KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nat. Clin. Pract. Cardiovasc. Med. 4:110–16
    [Google Scholar]
  123. 122.
    Orlando BJ, Liao M. 2020. ABCG2 transports anticancer drugs via a closed-to-open switch. Nat. Commun. 11:2264
    [Google Scholar]
  124. 123.
    Ortmann B, Copeman J, Lehner PJ, Sadasivan B, Herberg JA et al. 1997. A critical role for tapasin in the assembly and function of multimeric MHC class I–TAP complexes. Science 277:1306–9
    [Google Scholar]
  125. 124.
    Paggio A, Checchetto V, Campo A, Menabo R, Di Marco G et al. 2019. Identification of an ATP-sensitive potassium channel in mitochondria. Nature 572:609–13
    [Google Scholar]
  126. 125.
    Pravda L, Sehnal D, Tousek D, Navratilova V, Bazgier V et al. 2018. MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res 46:W368–73
    [Google Scholar]
  127. 126.
    Pujol A, Ferrer I, Camps C, Metzger E, Hindelang C et al. 2004. Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: a therapeutic target for X-adrenoleukodystrophy. Hum. Mol. Genet. 13:2997–3006
    [Google Scholar]
  128. 127.
    Qian H, Zhao X, Cao P, Lei J, Yan N, Gong X. 2017. Structure of the human lipid exporter ABCA1. Cell 169:1228–39.e10
    [Google Scholar]
  129. 128.
    Quazi F, Lenevich S, Molday RS. 2012. ABCA4 is an N-retinylidene-phosphatidylethanolamine and phosphatidylethanolamine importer. Nat. Commun. 3:925
    [Google Scholar]
  130. 129.
    Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R et al. 1989. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–73
    [Google Scholar]
  131. 130.
    Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK et al. 2009. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–31
    [Google Scholar]
  132. 131.
    Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G et al. 1989. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–65
    [Google Scholar]
  133. 132.
    Rozet JM, Gerber S, Souied E, Perrault I, Chatelin S et al. 1998. Spectrum of ABCR gene mutations in autosomal recessive macular dystrophies. Eur. J. Hum. Genet. 6:291–95
    [Google Scholar]
  134. 133.
    Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P. 1996. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5:103–14
    [Google Scholar]
  135. 134.
    Scortecci JF, Molday LL, Curtis SB, Garces FA, Panwar P et al. 2021. Cryo-EM structures of the ABCA4 importer reveal mechanisms underlying substrate binding and Stargardt disease. Nat. Commun. 12:5902
    [Google Scholar]
  136. 135.
    Shintre CA, Pike AC, Li Q, Kim JI, Barr AJ et al. 2013. Structures of ABCB10, a human ATP-binding cassette transporter in apo- and nucleotide-bound states. PNAS 110:9710–15
    [Google Scholar]
  137. 136.
    Shirihai OS, Gregory T, Yu C, Orkin SH, Weiss MJ. 2000. ABC-me: a novel mitochondrial transporter induced by GATA-1 during erythroid differentiation. EMBO J 19:2492–502
    [Google Scholar]
  138. 137.
    Shulenin S, Nogee LM, Annilo T, Wert SE, Whitsett JA, Dean M. 2004. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N. Engl. J. Med. 350:1296–303
    [Google Scholar]
  139. 138.
    Shyng SL, Ferrigni T, Shepard JB, Nestorowicz A, Glaser B et al. 1998. Functional analyses of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes 47:1145–51
    [Google Scholar]
  140. 139.
    Skarda L, Kowal J, Locher KP. 2021. Structure of the human cholesterol transporter ABCG1. J. Mol. Biol. 433:167218
    [Google Scholar]
  141. 140.
    Smith AJ, Timmermans-Hereijgers JL, Roelofsen B, Wirtz KW, van Blitterswijk WJ et al. 1994. The human MDR3 P-glycoprotein promotes translocation of phosphatidylcholine through the plasma membrane of fibroblasts from transgenic mice. FEBS Lett 354:263–66
    [Google Scholar]
  142. 141.
    Song G, Zhang S, Tian M, Zhang L, Guo R et al. 2021. Molecular insights into the human ABCB6 transporter. Cell Discov 7:55
    [Google Scholar]
  143. 142.
    Stieger B. 2011. The role of the sodium-taurocholate cotransporting polypeptide (NTCP) and of the bile salt export pump (BSEP) in physiology and pathophysiology of bile formation. Handb. Exp. Pharmacol. 2011:205–59
    [Google Scholar]
  144. 143.
    Stieger B, Meier Y, Meier PJ. 2007. The bile salt export pump. Pflüg. Arch. 453:611–20
    [Google Scholar]
  145. 144.
    Stockner T, Gradisch R, Schmitt L. 2020. The role of the degenerate nucleotide binding site in type I ABC exporters. FEBS Lett 594:3815–38
    [Google Scholar]
  146. 145.
    Sun Y, Wang J, Long T, Qi X, Donnelly L et al. 2021. Molecular basis of cholesterol efflux via ABCG subfamily transporters. PNAS 118:e2110483118
    [Google Scholar]
  147. 146.
    Sun YL, Li X. 2022. Cholesterol efflux mechanism revealed by structural analysis of human ABCA1 conformational states. Nat. Cardiovasc. Res. 1:238–45
    [Google Scholar]
  148. 147.
    Swerdlow RH. 2016. Rare ABCA7 variants in Alzheimer disease: guilt by association. Neurology 86:2118–19
    [Google Scholar]
  149. 148.
    Tanaka N, Abe-Dohmae S, Iwamoto N, Fitzgerald ML, Yokoyama S 2010. Helical apolipoproteins of high-density lipoprotein enhance phagocytosis by stabilizing ATP-binding cassette transporter A7. J. Lipid Res. 51:2591–99
    [Google Scholar]
  150. 149.
    Taylor NMI, Manolaridis I, Jackson SM, Kowal J, Stahlberg H, Locher KP. 2017. Structure of the human multidrug transporter ABCG2. Nature 546:504–9
    [Google Scholar]
  151. 150.
    Thomas AC, Cullup T, Norgett EE, Hill T, Barton S et al. 2006. ABCA12 is the major harlequin ichthyosis gene. J. Investig. Dermatol. 126:2408–13
    [Google Scholar]
  152. 151.
    Thomas C, Aller SG, Beis K, Carpenter EP, Chang G et al. 2020. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett 594:3767–75
    [Google Scholar]
  153. 152.
    Thomas PM, Wohllk N, Huang E, Kuhnle U, Rabl W et al. 1996. Inactivation of the first nucleotide-binding fold of the sulfonylurea receptor, and familial persistent hyperinsulinemic hypoglycemia of infancy. Am. J. Hum. Genet. 59:510–18
    [Google Scholar]
  154. 153.
    Tsai MF, Li M, Hwang TC. 2010. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. J. Gen. Physiol. 135:399–414
    [Google Scholar]
  155. 154.
    US Food Drug Admin. Cent. Drug Eval. Res. (US FDA). 2020. In vitro drug interaction studies—cytochrome P450 enzyme- and transporter-mediated drug interactions: guidance for industry Guidance Doc., US FDA https://www.fda.gov/regulatory-information/search-fda-guidance-documents/in-vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions
  156. 155.
    van Bon BW, Gilissen C, Grange DK, Hennekam RC, Kayserili H et al. 2012. Cantu syndrome is caused by mutations in ABCC9. Am. J. Hum. Genet. 90:1094–101
    [Google Scholar]
  157. 156.
    van Roermund CW, Visser WF, Ijlst L, van Cruchten A, Boek M et al. 2008. The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters. FASEB J 22:4201–8
    [Google Scholar]
  158. 157.
    van Roermund CWT, Visser WF, Ijlst L, Waterham HR, Wanders RJA. 2011. Differential substrate specificities of human ABCD1 and ABCD2 in peroxisomal fatty acid β-oxidation. Biochim. Biophys. Acta 1811:148–52
    [Google Scholar]
  159. 158.
    Wada M, Toh S, Taniguchi K, Nakamura T, Uchiumi T et al. 1998. Mutations in the canilicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II/Dubin-Johnson syndrome. Hum. Mol. Genet. 7:203–7
    [Google Scholar]
  160. 159.
    Wahrle SE, Jiang H, Parsadanian M, Legleiter J, Han X et al. 2004. ABCA1 is required for normal central nervous system ApoE levels and for lipidation of astrocyte-secreted apoE. J. Biol. Chem. 279:40987–93
    [Google Scholar]
  161. 160.
    Wang C, Cao C, Wang N, Wang X, Wang X, Zhang XC 2020. Cryo-electron microscopy structure of human ABCB6 transporter. Protein Sci 29:2363–74
    [Google Scholar]
  162. 161.
    Wang L, He F, Bu J, Zhen Y, Liu X et al. 2012. ABCB6 mutations cause ocular coloboma. Am. J. Hum. Genet. 90:40–48
    [Google Scholar]
  163. 162.
    Wang L, Hou WT, Chen L, Jiang YL, Xu D et al. 2020. Cryo-EM structure of human bile salts exporter ABCB11. Cell Res 30:623–25
    [Google Scholar]
  164. 163.
    Wang L, Hou WT, Wang J, Xu D, Guo C et al. 2022. Structures of human bile acid exporter ABCB11 reveal a transport mechanism facilitated by two tandem substrate-binding pockets. Cell Res 32:501–4
    [Google Scholar]
  165. 164.
    Wang N, Silver DL, Costet P, Tall AR. 2000. Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J. Biol. Chem. 275:33053–58
    [Google Scholar]
  166. 165.
    Wang R, Qin Y, Li X. 2022. Structural basis of acyl-CoA transport across the peroxisomal membrane by human ABCD1. Cell Res 32:214–17
    [Google Scholar]
  167. 166.
    Wang Z, Stalcup LD, Harvey BJ, Weber J, Chloupkova M et al. 2006. Purification and ATP hydrolysis of the putative cholesterol transporters ABCG5 and ABCG8. Biochemistry 45:9929–39
    [Google Scholar]
  168. 167.
    Ward A, Reyes CL, Yu J, Roth CB, Chang G 2007. Flexibility in the ABC transporter MsbA: alternating access with a twist. PNAS 104:19005–10
    [Google Scholar]
  169. 168.
    Webster AR, Heon E, Lotery AJ, Vandenburgh K, Casavant TL et al. 2001. An analysis of allelic variation in the ABCA4 gene. Investig. Ophthalmol. Vis. Sci. 42:1179–89
    [Google Scholar]
  170. 169.
    Wolters JC, Abele R, Tampe R. 2005. Selective and ATP-dependent translocation of peptides by the homodimeric ATP binding cassette transporter TAP-like (ABCB9). J. Biol. Chem. 280:23631–36
    [Google Scholar]
  171. 170.
    Xie T, Zhang Z, Fang Q, Du B, Gong X. 2021. Structural basis of substrate recognition and translocation by human ABCA4. Nat. Commun. 12:3853
    [Google Scholar]
  172. 171.
    Xie T, Zhang Z, Yue J, Fang Q, Gong X. 2022. Cryo-EM structures of the human surfactant lipid transporter ABCA3. Sci. Adv. 8:eabn3727
    [Google Scholar]
  173. 172.
    Xu D, Feng Z, Hou WT, Jiang YL, Wang L et al. 2019. Cryo-EM structure of human lysosomal cobalamin exporter ABCD4. Cell Res 29:1039–41
    [Google Scholar]
  174. 173.
    Yan Q, Shen Y, Yang X 2022. Cryo-EM structure of AMP-PNP-bound human mitochondrial ATP-binding cassette transporter ABCB7. J. Struct. Biol. 214:107832
    [Google Scholar]
  175. 174.
    Ye H, Rouault TA. 2010. Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49:4945–56
    [Google Scholar]
  176. 175.
    Yu Q, Ni D, Kowal J, Manolaridis I, Jackson SM et al. 2021. Structures of ABCG2 under turnover conditions reveal a key step in the drug transport mechanism. Nat. Commun. 12:4376
    [Google Scholar]
  177. 176.
    Yvan-Charvet L, Wang N, Tall AR 2010. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler. Thromb. Vasc. Biol. 30:139–43
    [Google Scholar]
  178. 177.
    Zarbock R, Kaltenborn E, Frixel S, Wittmann T, Liebisch G et al. 2015. ABCA3 protects alveolar epithelial cells against free cholesterol induced cell death. Biochim. Biophys. Acta 1851:987–95
    [Google Scholar]
  179. 178.
    Zelcer N, Saeki T, Reid G, Beijnen JH, Borst P. 2001. Characterization of drug transport by the human multidrug resistance protein 3 (ABCC3). J. Biol. Chem. 276:46400–7
    [Google Scholar]
  180. 179.
    Zhang C, Li D, Zhang J, Chen X, Huang M et al. 2013. Mutations in ABCB6 cause dyschromatosis universalis hereditaria. J. Investig. Dermatol. 133:2221–28
    [Google Scholar]
  181. 180.
    Zhang H, Huang CS, Yu X, Lee J, Vaish A et al. 2021. Cryo-EM structure of ABCG5/G8 in complex with modulating antibodies. Commun. Biol. 4:526
    [Google Scholar]
  182. 181.
    Zhang Y, Li F, Patterson AD, Wang Y, Krausz KW et al. 2012. Abcb11 deficiency induces cholestasis coupled to impaired beta-fatty acid oxidation in mice. J. Biol. Chem. 287:24784–94
    [Google Scholar]
  183. 182.
    Zhang Z, Liu F, Chen J 2018. Molecular structure of the ATP-bound, phosphorylated human CFTR. PNAS 115:12757–62
    [Google Scholar]
  184. 183.
    Zhao C, MacKinnon R. 2021. Molecular structure of an open human KATP channel. PNAS 118:e2112267118
    [Google Scholar]
  185. 184.
    Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J et al. 2001. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 7:1028–34
    [Google Scholar]
  186. 185.
    Zollmann T, Bock C, Graab P, Abele R. 2015. Team work at its best: TAPL and its two domains. Biol. Chem. 396:967–74
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-111622-091232
Loading
/content/journals/10.1146/annurev-biophys-111622-091232
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error